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Bayesian Inference for Logistic Regression Parame-

ters

Bayesian inference for logistic analyses follows the usual pattern for all Bayesian
analyses:

1. Write down the likelihood function of the data.

2. Form a prior distribution over all unknown parameters.

3. Use Bayes theorem to find the posterior distribution over all parameters.

We have applied this generic formulation so far to univariate problems with binomial
distributions, normal means (with variance known and unknown), multinomial pa-
rameters, Poisson mean parameters, and, in the multivariate case, to linear regression
parameters with normally distributed residuals.

The latter case is most similar to Bayesian inference in logistic regression, but in some
ways logistic regression is even simpler, because there is no variance term to estimate,
only the regression parameters.

For logistic regression, the above three steps are summarized as follows:

Likelihood function: As usual, the likelihood function used by Bayesians matches
that from frequentist inference.

In particular, recall that once we have the probability of success (which in logis-
tic regression varies from one subject to another, depending on their covariates),
the likelihood contribution from the ith subject is binomial:

likelihoodi = π(xi)
yi(1− π(xi))

(1−yi)

where π(xi) represents the probability of the event for subject i who has co-
variate vector xi, and yi indicates the presence, yi = 1, or absence yi = 0 of the
event for that subject.

Of course, in logistic regression, we know that

π(x) =
eβ0+β1X1+...+βpXp

1 + eβ0+β1X1+...+βpXp
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so that the likelihood contribution from the ith subject is

likelihoodi =

(
eβ0+β1Xi1+...+βpXip

1 + eβ0+β1Xi1+...+βpXip

)yi
(

1− eβ0+β1Xi1+...+βpXip

1 + eβ0+β1Xi1+...+βpXip

)(1−yi)

Since individual subjects are assumed independent from each other, the likeli-
hood function over a data set of n subjects is then

likelihood =
n∏

i=1

( eβ0+β1Xi1+...+βpXip

1 + eβ0+β1Xi1+...+βpXip

)yi
(

1− eβ0+β1Xi1+...+βpXip

1 + eβ0+β1Xi1+...+βpXip

)(1−yi)


Prior distribution:

The set of unknown parameters consists of β0, β1, . . . , βp.

In general, any prior distribution can be used, depending on the available prior
information. The choice can include informative prior distributions if something
is known about the likely values of the unknown parameters, or “diffuse” or
“non-informative” priors if either little is known about the coefficient values or
if one wishes to see what the data themselves provide as inferences.

If informative prior distributions are desired, it is often difficult to give such
information on the logit scale, i.e., on the β parameters directly.

One may prefer to provide prior information on the OR = exp(β) scale, and
mathematically transform back to the logit scale. Alternatively, one can take
various situations (e.g., male, 73 years old, on drug A, etc.) and derive prior
distributions on the probability scale. If sufficient elicitations of this type are
made, one can mathematically transform back to the coefficient scale. One can
find free software (e.g., a program called ELICITOR) that facilitates such prior
derivations.

For this course, however, we will use the most common priors for logistic re-
gression parameters, which are of the form:
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βj ∼ N(µj, σ
2
j )

The most common choice for µ is zero, and σ is usually chosen to be large enough
to be considered as non-informative, common choices being in the range from
σ = 10 to σ = 100.

Posterior distribution via Bayes Theorem:

The posterior distribution is derived by multiplying the prior distribution over
all parameters by the full likelihood function, so that

posterior =
n∏

i=1

( eβ0+β1Xi1+...+βpXip

1 + eβ0+β1Xi1+...+βpXip

)yi
(

1− eβ0+β1Xi1+...+βpXip

1 + eβ0+β1Xi1+...+βpXip

)(1−yi)


×
p∏

j=0

1√
2πσj

exp

−1

2

(
βj − µj

σj

)2


the latter part of the above expression being recognized as normal distributions
for the β parameters.

Of course, the above expression has no closed form expression, and even if it did, we
would have to perform multiple integration to obtain the marginal distribution for
each coefficient. So, as is usual for Bayesian analysis, we will use the Gibbs sampler
as implemented by WinBUGS to solve approximate the properties of the marginal
posterior distributions for each parameter.

As was the case for frequentist inference, taking exp(β) provides the odds ratio for
a one unit change of that parameter. We will see how easy it is to carry out such
inferences from a Bayesian viewpoint using WinBUGS.

Let’s see some examples. We will begin with a simple simulated model, and move on
to multivariate examples. We will program each in WinBUGS.

Simple Logistic Regression Program Using WinBUGS

We will investigate a simulated logistic regression model of bone fractures with inde-
pendent variables age and sex. The true model had: alpha = -25, b.sex = 0.5, b.age
= 0.4. With so few data points and three parameters to estimate, do not expect pos-
terior means/medians to equal the correct values exactly, but all would most likely
be in the 95% intervals.
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Model

model

{

for (i in 1:n) {

# Linear regression on logit

logit(p[i]) <- alpha + b.sex*sex[i] + b.age*age[i]

# Likelihood function for each data point

frac[i] ~ dbern(p[i])

}

alpha ~ dnorm(0.0,1.0E-4) # Prior for intercept

b.sex ~ dnorm(0.0,1.0E-4) # Prior for slope of sex

b.age ~ dnorm(0.0,1.0E-4) # Prior for slope of age

}

Data

list(sex=c(1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1,
1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1,
0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0,
1, 1, 1, 1, 1),
age= c(69, 57, 61, 60, 69, 74, 63, 68, 64, 53, 60, 58, 79, 56, 53, 74, 56, 76, 72, 56, 66,
52, 77, 70, 69, 76, 72, 53, 69, 59, 73, 77, 55, 77, 68, 62, 56, 68, 70, 60, 65, 55, 64, 75,
60, 67, 61, 69, 75, 68, 72, 71, 54, 52, 54, 50, 75, 59, 65, 60, 60, 57, 51, 51, 63, 57, 80,
52, 65, 72, 80, 73, 76, 79, 66, 51, 76, 75, 66, 75, 78, 70, 67, 51, 70, 71, 71, 74, 74, 60,
58, 55, 61, 65, 52, 68, 75, 52, 53, 70),
frac=c(1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1,
1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0,
1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1,
0, 0, 1),
n=100)

Initial Values

list(alpha=0, b.sex=1, b.age=1)

Results
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node mean sd MC error 2.5% median 97.5% start sample
alpha -22.55 5.013 0.6062 -34.33 -21.64 -14.29 1001 4000
b.age 0.3559 0.07771 0.009395 0.227 0.3418 0.5338 1001 4000
b.sex 1.405 0.7719 0.05094 -0.0387 1.374 3.031 1001 4000
p[1] 0.9575 0.03153 0.002943 0.879 0.9647 0.9952 1001 4000
p[2] 0.307 0.09828 0.004853 0.13 0.3012 0.5082 1001 4000
p[3] 0.6308 0.1041 0.003344 0.4166 0.6356 0.8178 1001 4000
p[4] 0.2477 0.103 0.007281 0.07738 0.2379 0.4728 1001 4000

(etc...)

So, as expected, CrIs are wide, but all contain the true values.

Can compare the results to a frequentist analysis of the same data:

> logistic.regression.or.ci( glm( frac ~ age + sex, family = binomial) )

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -21.85041 4.42511 -4.938 7.90e-07 ***

age 0.34467 0.06857 5.027 4.99e-07 ***

sex 1.36110 0.73336 1.856 0.0635 .

Note the very similar results. Small differences arise from two different places: Fre-
quentist results are not particularly accurate in small sample sizes, and Bayesian
results are not that accurate (check the MC error column) because only 4000 itera-
tions were run.

Bayesian analysis accuracy here can be improved by running more iterations. Nothing
much can be done for the frequentist analysis except to change to a more “exact”
method (beyond scope of this course).

We will next look at another simple example, but include predictions and odds ratios.

CHD and age example

We have already seen this data set:
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Age CHD Age CHD Age CHD Age CHD
20 0 35 0 44 1 55 1
23 0 35 0 44 1 56 1
24 0 36 0 45 0 56 1
25 0 36 1 45 1 56 1
25 1 36 0 46 0 57 0
26 0 37 0 46 1 57 0
26 0 37 1 47 0 57 1
28 0 37 0 47 0 57 1
28 0 38 0 47 1 57 1
29 0 38 0 48 0 57 1
30 0 39 0 48 1 58 0
30 0 39 1 48 1 58 1
30 0 40 0 49 0 58 1
30 0 40 1 49 0 59 1
30 0 41 0 49 1 59 1
30 1 41 0 50 0 60 0
32 0 42 0 50 1 60 1
32 0 42 0 51 0 61 1
33 0 42 0 52 0 62 1
33 0 42 1 52 1 62 1
34 0 43 0 53 1 63 1
34 0 43 0 53 1 64 0
34 1 43 1 54 1 64 1
34 0 44 0 55 0 65 1
34 0 44 0 55 1 69 1

A WinBUGS program for these data could be:

model {

for (i in 1:n) {

logit(p[i]) <- alpha + b.age*age[i] # Linear regression on logit for age

# Likelihood function for each data point

CHD[i] ~ dbern(p[i])

}

alpha ~ dnorm(0.0,1.0E-4) # Prior for intercept

b.age ~ dnorm(0.0,1.0E-4) # Prior for slope of age

# Now to calculate the odds ratios for various functions of age
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# OR per unit change in age

or.age <- exp(b.age)

# OR per decade change in age

or.age10 <- exp(10*b.age)

# OR per five year change in age

or.age5 <- exp(5*b.age)

# We can also make various predictions

# Predict fracture rate for 20 year old

pred.age20 <- exp(alpha + b.age*20)/(1+ exp(alpha + b.age*20))

# Predict fracture rate for 50 year old

pred.age50 <- exp(alpha + b.age*50)/(1+ exp(alpha + b.age*50))

# Predict fracture rate for 70 year old

pred.age70 <- exp(alpha + b.age*70)/(1+ exp(alpha + b.age*70))

}

# Data

list(CHD = c(0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0,

1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0, 1 , 0 , 0 , 1, 0 ,

0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0, 0 ,

1 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0, 1 ,

0 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1,

1 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1),

n=100,

age = c(20, 23, 24, 25, 25, 26, 26, 28, 28, 29, 30, 30, 30, 30, 30,

30, 32, 32, 33, 33, 34, 34, 34, 34, 34, 35, 35, 36, 36, 36, 37, 37,

37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 42, 42, 43, 43, 43, 44,

44, 44, 44, 45, 45, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 50,

50, 51, 52, 52, 53, 53, 54, 55, 55, 55, 56, 56, 56, 57, 57, 57, 57,

57, 57, 58, 58, 58, 59, 59, 60, 60, 61, 62, 62, 63, 64, 64, 65, 69))
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# Inits

list(alpha = 0, b.age=0)

# Results

node mean sd MC error 2.5% median 97.5% start sample

alpha -5.465 1.166 0.05372 -7.833 -5.426 -3.302 1001 20000

b.age 0.1142 0.02476 0.001142 0.06816 0.1134 0.1646 1001 20000

or.age 1.121 0.02783 0.001285 1.071 1.12 1.179 1001 20000

or.age10 3.232 0.8271 0.03851 1.977 3.108 5.184 1001 20000

or.age5 1.784 0.2238 0.01039 1.406 1.763 2.277 1001 20000

pred.age20 0.0484 0.03161 0.001302 0.01013 0.04084 0.1294 1001 20000

pred.age50 0.5599 0.06235 8.727E-4 0.4388 0.5599 0.6821 1001 20000

pred.age70 0.9143 0.04954 0.001894 0.7902 0.9252 0.9785 1001 20000

# Note ease in getting ORs for any value of age change, and predictions.

# Compare to frequentist results we saw earlier

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.30945 1.13365 -4.683 2.82e-06 ***

age 0.11092 0.02406 4.610 4.02e-06 ***

$intercept.ci

[1] -7.531374 -3.087533

$slopes.ci

[1] 0.06376477 0.15807752

$OR

age

1.117307

$OR.ci

[1] 1.065842 1.171257

# Note that results are extremely similar, because we ran

# more iterations, and because sample size is larger.

# Can get MC errors smaller by running more iterations...

node mean sd MC error 2.5% median 97.5% start sample

b.age 0.1145 0.02475 5.187E-4 0.06807 0.1137 0.1655 1001 100000
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or.age 1.122 0.02782 5.838E-4 1.07 1.12 1.18 1001 100000

# ...but nothing much really changes. Differences due to priors

# and/or frequentist normal approximations, sample size not that

# large still.

One more example

Finally, consider again the multivariate model we saw before on low birth weights.

Recall the data description:

Variable Coding
Low Birth Weight (0 = Birth Weight ≥ 2500g, low
1 = Birth Weight < 2500g)

Age of the Mother in Years age

Weight in Pounds at the Last Menstrual Period lwt

Race (1 = White, 2 = Black, 3 = Other) race

Smoking Status During Pregnancy (1 = Yes, 0 = No) smoke

History of Premature Labor (0 = None 1 = One, etc.) ptl

History of Hypertension (1 = Yes, 0 = No) ht

Presence of Uterine Irritability (1 = Yes, 0 = No) ui

Number of Physician Visits During the First Trimester ftv
(0 = None, 1 = One, 2 = Two, etc.)

Birth Weight in Grams bwt

Unlike frequentist analyses, there is no problem in declaring variables as factors or
not in WinBUGS. This simplifies matters somewhat, but also means that dummy
variables need to be created “manually” before the analysis is run.

The only such variable here is race, which we will need to recode as two separate
dummy variables (as is done internally by R when the variable is declared to be a
factor).
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model {

for (i in 1:189) {

logit(p[i]) <- alpha + b.age*age[i] + b.lwt*lwt[i]

+ b.race2*race2[i] + b.race3*race3[i]

+b.smoke*smoke[i] + b.ptl*ptl[i]

+ b.ht*ht[i] + b.ui*ui[i] + b.ftv*ftv[i]

# Likelihood function for each data point

low[i] ~ dbern(p[i])

}

alpha ~ dnorm(0.0,1.0E-2) # Prior for intercept

b.age ~ dnorm(0.0,1.0E-2) # Priors for slopes

b.lwt ~ dnorm(0.0,1.0E-2)

b.race2 ~ dnorm(0.0,1.0E-2)

b.race3 ~ dnorm(0.0,1.0E-2)

b.smoke ~ dnorm(0.0,1.0E-2)

b.ptl ~ dnorm(0.0,1.0E-2)

b.ht ~ dnorm(0.0,1.0E-2)

b.ui ~ dnorm(0.0,1.0E-2)

b.ftv ~ dnorm(0.0,1.0E-2)

# Now to calculate the odds ratios for various functions of age

# OR per decade change in age

or.age10 <- exp(10*b.age)

# OR for smoke

or.smoke <- exp(b.smoke)

# Predict rate for 40 year old, with lwt, smoker and ht

pred.age20 <- exp(alpha + b.age*40 + b.lwt + b.smoke + b.ht)

/(1+ exp(alpha + b.age*40 + b.lwt + b.smoke + b.ht))

}

# Inits

list(alpha = 0, b.age=0, b.lwt=0, b.race2=0, b.race3=0,

b.smoke=0, b.ptl=0, b.ht=0)
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# Data

low[] age[] lwt[] race2[] race3[] smoke[] ptl[] ht[] ui[] ftv[]

0 19 182 1 0 0 0 0 1 0

0 33 155 0 1 0 0 0 0 1

0 20 105 0 0 1 0 0 0 1

0 21 108 0 0 1 0 0 1 1

0 18 107 0 0 1 0 0 1 0

0 21 124 0 1 0 0 0 0 0

0 22 118 0 0 0 0 0 0 1

0 17 103 0 1 0 0 0 0 1

0 29 123 0 0 1 0 0 0 1

0 26 113 0 0 1 0 0 0 0

..............etc........................

END

# Note: Compulsory blank line above after END statement.

# Results

node mean sd MC error 2.5% median 97.5% start sample

alpha 0.7015 1.272 0.06921 -1.659 0.6785 3.368 1001 20000

b.age -0.02903 0.04015 0.001827 -0.1112 -0.02705 0.0462 1001 20000

b.ftv -0.07864 0.3802 0.00588 -0.8317 -0.0774 0.6678 1001 20000

b.ht 1.964 0.7269 0.01085 0.5814 1.951 3.447 1001 20000

b.lwt -0.01705 0.00689 3.053E-4 -0.03086 -0.017 -0.00379 1001 20000

b.ptl 0.5933 0.3651 0.00421 -0.1112 0.5897 1.327 1001 20000

b.race2 1.313 0.5474 0.006877 0.2388 1.308 2.402 1001 20000

b.race3 0.8732 0.4706 0.01131 -0.04335 0.8692 1.822 1001 20000

b.smoke 0.9452 0.4286 0.008723 0.1257 0.942 1.798 1001 20000

b.ui 0.7688 0.4802 0.005109 -0.173 0.7688 1.714 1001 20000

or.age10 0.8096 0.3299 0.01425 0.3288 0.763 1.587 1001 20000

or.smoke 2.825 1.307 0.02651 1.134 2.565 6.035 1001 20000

pred 0.8559 0.163 0.005065 0.3824 0.9182 0.9956 1001 20000

Results similar to frequentist results previously seen, differences mostly owing to some
coding changes.
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Conclusion

In these sorts of simple examples, there is not really much difference between Bayesian
and frequentist inferences.

More generally, we have these comparisons:

• Not repeated above since we have seen this example before, but all preliminary
steps apply equally to Bayesian analysis as to frequentist analysis.

• Maybe frequentist analysis of standard models easier (maybe depends on taste/habit
as well).

• Bayesian models more flexible, handles more complex models.

• Bayesian model selection probably superior (BIC/AIC).

• Bayesian hierarchical models easier to extend to many levels.

• Philosophical differences.

• Bayesian analysis more accurate in small samples (but then may depend on
priors).

• Bayesian models can incorporate prior information.


