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Statistical Inference for Proportions

his module will discuss the most

commonly used statistical proce-

dures when the parameters of interest

arrive in the form of proportions. Un-
derstanding these methods is especially important
to radiologists because so much radiologic re-
search and clinical work involves dichotomous
(e.g., yes or no, present or absent) outcomes sum-
marized as proportions. For example, a given dis-
ease or condition may be present or absent in any
given subject, and any time a diagnostic tool is
used, test characteristics such as sensitivity, spec-
ificity, and positive and negative predictive values
are all summarized as proportions.

We will continue to use the three basic meth-
ods for statistical inferences, including p values
and confidence intervals (Cls) from a frequentist
viewpoint, and posterior distributions leading to
credible intervals from a Bayesian viewpoint. We
will only briefly review the basic principles be-
hind these generic inferential principles, so read-
ers may wish to ensure they have a good
understanding of the previous module [1] in this
series before tackling this one. It may also be use-
ful to recall the basic properties of the binomial
distribution [2] because it is the central distribu-
tion used for inferences involving proportions.

We begin with inferences for single pro-
portions, which are covered in the next section.
Then we discuss inferences for two or more pro-
portions from independent groups, inferences for
dependent proportions, sample size determination
for studies involving one or two proportions, and
Bayesian methods for proportions. Finally, we will
summarize what we have learned in this module.

Inferences for Single Proportions
Standard Frequentist Hypothesis Testing
Suppose a new computer-aided automated
system for the detection of lung nodules on
chest radiographs has been developed [3].

Suppose further that one wishes to investigate
whether this new system provides improved
sensitivity compared with standard detection
via non-computer-aided methods of analyz-
ing chest radiographs. In other words, sup-
pose that chest radiographs are taken from a
series of subjects who all truly have lung nod-
ules, and we know that using standard (non-
computer-aided) methods 90% of them will
be found to have lung nodules and 10% of
these cases will be missed. Is there evidence
that the new computer-aided automated sys-
tem provides increased sensitivity compared
with the standard method of detection?

To look for evidence of improved sensitiv-
ity in the new automated system, we might
wish to test the null hypothesis (Hy)) that the
automated system is in fact not better than
standard detection, versus an alternative hy-
pothesis (H,) that it is better. Formally, we
can state these hypotheses as:

HO: p <0.9
Hp:p>09

where p represents the unknown true proba-
bility of success of the new automated system
in detecting lung nodules.

Suppose that we observe the results from 10
subjects with lung nodules, and all 10 test posi-
tively with the new automated system. Recalling
the correct definition of a p value [1] (it is the
probability of obtaining a result as extreme as or
more extreme than the result observed, given
that the null hypothesis is exactly correct), how
would we calculate the p value in this case? For
our example of the new automated technique,
the definition implies that we need to calculate
the probability of obtaining 10 (or more, but in
this case more than 10 is impossible) successful
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lung nodule detections in the 10 patients to
whom the technique was applied, given that the
true rate of success is exactly 90%. Recall [2]
that if x follows a binomial distribution with
probability of success p, then Pr (x successes in
n trials) = [nY/(x!(n-x))]p*(1 — p)*, where x! is
read as “x factorial” and is equal to x(x — 1) (x —
2)...(2) (1). For example, 5! =(5) 4) 3) (2) (1) =
120, and by convention 0! = 1. Using this bi-
nomial probability function, we can calculate the
probability of 10 successes in arow with p = prob-
ability of success = 0.9 as shown in equation 1:

10!
W[J.F)'”(l —0.9)" =0.9"

0.3487 (D
So there is about a 34.9% chance of obtaining
results as extreme as or more extreme than the
10 of 10 results observed, if the true rate for
the new technique is exactly 90%. Therefore,
the observed result is not unusual, and hence
compatible with the null hypothesis, so we
cannot reject H,.

This calculation could be done exactly, be-
cause the sample size was quite small. For larger
sample sizes, the normal approximation to the bi-
nomial distribution [2] could be used. Also, this
test was one-sided, but two-sided hypotheses are
also of interest. For example, suppose we wish to
test a similar null hypothesis as above (H: p =
0.9) but against a two-sided alternative (H,: p #
0.9). Suppose we observed 98 successes in 100
trials. Because our test is two-sided, according to
the definition of a p value we need to calculate the
probability of obtaining data as extreme as or
more extreme than the observed 98 of 100. Now,
98 is 8 higher than the 90 expected under the null
hypothesis, so that to be as extreme as or more ex-
treme than the 98 observed, we need to be 8 or
more above or below the expected 90. That is, we
need to calculate the probability of 98, 99, or 100
successes on one side, and 82, 81, 80, ...,2, 1,0
on the other side. This lengthy calculation, in-
volving the sum of 85 binomial calculations, can
be well approximated by using the normal ap-
proximation to the binomial distribution [2]. Let
our estimate of the unknown proportion be p =
98 /100 =0.98. We can calculate equations 2—4:

p—0.9

[fp(1=p)

n

@

08 —-0.9 3)
\,.-"'_*.’3{ 1 —.9)/100
2.67 “
Looking up 2.67 on normal tables, we find 0.004,

and doubling this value gives us our two-sided p
value, which is 0.008. It is unlikely that rates of
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98% or more extreme will be observed in 100 tri-
als if the true rate is in fact only 90%. Therefore,
in this case, sufficient evidence exists to reject the
null hypothesis in favor of the alternative.
Although p values are still often found in the lit-
erature, several major problems are associated
with their use, as we have previously discussed [1].
Briefly, the null hypothesis is virtually never ex-
actly true (is it possible that the true underlying sen-
sitivity is exactly 90%, as opposed to, say,
89.9999% or 90.0001%?), so we know it should
be rejected regardless of the data we observe. Fur-
thermore, the p value says nothing about the effect
size, which is crucial to clinical decision making,
with large sizes usually implying a more clinically
important effect than small sizes. A much more in-
teresting question is to estimate the rate or propor-
tion of interest, together with a measure of the
accuracy of the estimate. Cls are one answer to this
question, and we discuss them next. The Bayesian
solution—credible intervals—is discussed later.

Confidence Intervals for Single Proportions

Continuing the previous example, we have ob-
served rates of 100% (10/10 in our smaller sample)
or 98% (98/100 in our larger sample), but we know
that these are estimates only, not guaranteed (in
fact, unlikely) to exactly equal the true rates. On
the basis of these data, however, what can we say
about what we would expect the true rate to be?

One way to answer this question is with a
CI. CIs usually have the form

estimate + k x standard error

where the estimate and SE are calculated
from the data, and where k is a constant de-
pendent on the width of the CI desired. The
value of k is usually near 2 (e.g., k is 1.96 for
a95% CI).

If one observes x =98 positive tests in n =100
subjects known to have lung nodules, a point es-
timate of the success rateis p =x/n=0.98 or
98%. We use the notation p rather than p to in-
dicate that this is an estimated rate, not necessar-
ily equal to the true rate, which we denote by p.
Following this generic formula, a CI for a bino-
mial probability of success parameter is given
by the formula in equation 5,

(ﬁ o 5 x [rlr RPN \ b x [fla ;}]) -
where z is derived from normal tables, and is
given by z=1.96 for the usual 95% CI (z=1.64
fora90% CI and z=2.56 for a99% CI). There-
fore, the 95% CI in our example is calculated
as shown in equation 6,

0.98 x 0.02 0.98 x 0.02
(II.!]N 196 x | I;” (008 -+ 196 x y l:Il )(6)

which here gives (0.930-0.994).

Technical note: This formula uses the normal
approximation to the binomial distribution [2].
Exact formulae are also available [4], which are
especially useful for small sample sizes or for es-
timates p near O or 1. For example, using an ex-
act approach to this CI yields (0.930-0.998),
which is very close to but not identical to that
given by the indicated normal approximated in-
terval. In addition, when p equals O or 1 exactly,
the normal approximation breaks down, because
the variance is estimated to be 0. Here one has no
choice but to use a different procedure. The exact
method yields a wider 95% CI of (0.741-1.000)
in the case of our smaller data set, where 10 pos-
itive values were found in 10 subjects. There is
also an easy-to-use and reasonably accurate rule
of thumb when calculating a binomial CI and one
observes 0 events. The rule is this: If you observe
n patients, and none of these patients have an
event, then a 95% CI for the probability of the
event goes from 0 to 3/ n. For example, if you ob-
serve 0 events in 10 binomial trials, then an ap-
proximate 95% CI would go from 0 to 3/ 10 =
0.3. By symmetry, the rule would say that if you
observe only events in 7 trials, then the 95% CI
would go from (1-3/n) to 1. For example, if you
observe 10 events in 10 trials, then the 95% CI
would go from 0.7 to 1, which is reasonably close
to the exact solution of (0.741-1.000) given here.

How does one interpret this CI? Recall from
the previous module [1] that the 95% confi-
dence value (often called the confidence coeffi-
cient) is a long-run probability over repeated
uses of the CI procedure. In practice, there are
five different interpretations associated with
ClIs, depending on where the upper and lower CI
limits fall with respect to clinical cut points of
interest (see Fig. 2 of Joseph and Reinhold [1]).
The formula displayed in equation 5 of this arti-
cle provides a procedure that, when used repeat-
edly across different problems, will capture the
true value of p 95% of the time and fail to cap-
ture the true value 5% of the time. In this sense,
we have confidence that the procedure works
well in the long run, although in any single ap-
plication, of course, the interval either does or
does not contain the true proportion p.

For our smaller data set, with 10 subjects found
to be positive in 10 trials, the 95% CI ranges from
74.1% to 100%, providing a large and inconclu-
sive interval, because it may well be better or
worse than the standard diagnosis, which is as-
sumed to be successful 90% of the time. In our
larger data set, the 95% CI ranged from 93.0% to
99.4%, so we can be quite certain that it is better
than standard diagnoses. However, it can be as lit-
tle as 3% better (90% compared with the lower CI
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§7-\: 1R Data from a Two-Group Study

Diagostic Method Test Positive Test Negative Total
Automated system 285 15 300
Standard diagnosis 265 45 310
Total 550 60 610

§V-\:18 3y B Expected Data for the Example in Table | Under the Null Hypothesis

Diagnostic Method Test Positive Test Negative Total
Automated system 270.49 29.51 300
Standard diagnosis 279.51 30.49 310
Total 550 60 610

limit of 93%). Whether this is enough evidence to
switch to the new automated system or not de-
pends on clinical judgment. This in turn depends
on many factors, including the cost and availability
of the new automated system and the average clin-
ical benefits that will accrue to those diagnosed
earlier by the more sensitive diagnostic method.

Inferences for Two or More Independent
Proportions

Letus continue with our example comparing the
diagnostic properties of a new automated system
for the detection of lung nodules on chest radio-
graphs compared with standard detection via non-
computer-aided methods. Earlier we assumed that
the rate in the standard diagnosis group was exactly
known before the study, but this is somewhat unre-
alistic. We will now relax this assumption, and con-
sider the data from the two-group study shown in
Table 1 (presented in the form of a 2 x 2 table of
data because we have two possible outcomes in
each of the two groups being compared).

Again, we assume that all 610 subjects studied
are truly positive, so that one would like to draw
inferences about whether the automated system
has increased sensitivity compared with the usual
diagnosis group. Although one observes p | =
[285 / 300] = 0.95 sensitivity for the automated
system compared with p , = [265 / 310] = 0.855
sensitivity using standard diagnosis, for a 9.5%
observed difference, a CI will provide us with a
range of values compatible with the data that will
help draw a better conclusion than simply look-
ing at the observed point estimates. To calcu-
late a CI for this difference in proportions, we
can use the formula in equation 7,

p . [p1(L—p1) Pl —pa)
— Py — 21/ + .
1= P2 ‘k 1 o

Pr—p2tz \

n) g

. - . 7
(1 =) + pa(l = p-_»)) ™
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which extends equation 5 to the case of two pro-
portions. In this formula, p; and p, are the ob-
served proportions in the two groups out of
sample sizes n; and n,, respectively, and z is the
relevant percentile from normal tables, chosen
according to the desired level of the CI. For ex-
ample, for a 95% CI z = 1.96, for a 90% interval
z=1.64, and so on. Using this formula for the di-
agnosis data given, one finds that a 95% CI for
the difference in sensitivity is (0.049-0.141).
This interval suggests that the automated system
is indeed better, likely by at least as much as
0.049. Unless cost is a prohibitive factor, from
these data it looks like the automated system is
worthwhile (at least in these hypothetical data).

Although CIs are preferred for reasons we
have briefly discussed here and which were
more extensively discussed in a previous
module in this series [1], we will also discuss
hypothesis testing for proportions, because one
often sees such tests in the literature. Suppose
we wish to test the null hypothesis that p; =
p,—that is, the null hypothesis states that the
success rates are identical in the two units. Be-
cause we hypothesize p; = p,, we expect to ob-
serve, on average, the data in Table 2.

Why do we expect to observe this table of
data if the null hypothesis is true? We have
observed a total of 550 “successes” divided
among the two groups. If p; = p, and if the
sample sizes were equal in the two groups, we
would have expected (550 / 2) = 275 suc-
cesses in each group. However, because the
sample sizes are not equal, we expect 550 x
(300 / 610) = 270.49 to go to the automated
system group, and 550 x (310/610) =279.51
to go the standard diagnosis group. Similarly,
expected values for the 60 negatively testing
patients can be calculated. Observed discrep-
ancies from these expected values are evi-
dence against the null hypothesis. To perform

a chi-square test, we now calculate as shown
in equations 8-10:

¥? - [:th‘f‘r\'vfl—:-X]n‘{-tvd]2 )

all cells expected

(285 — 270.49)2 (15 — 29.51)?

270.49 20.51

(265 — 279.51)2 (45 — 30.49)?
279.51 3049

+©

(10)

Comparing the %2 = 15.57 value on chi-
square tables with 1 degree of freedom (df)
(see Armitage and Berry [4] or almost any ba-
sic textbook on statistics to find such tables),
we find that p = 0.0001 so that we have strong
evidence to reject the null hypothesis. This
coincides with our conclusion from the CI,
but note that the CI is more informative than
simply looking at the p value from the chi-
square test, because a range for the difference
in sensitivities is provided by the CI. Thus,
the clinical importance of any differences can
be more easily evaluated.

The chi-square test can be extended to in-
clude tables larger than the so-called 2 x 2 table
of this example. For instance, a 3 x 2 table
could arise if, rather than classifying patients
as positive or negative, we included a third out-
come category, such as “chest radiograph is in-
conclusive.” A 3 x 2 table could also arise if we
considered comparing a third method of diag-
nosis rather than the two considered here. In
these cases we would sum over 3 x 2 = 6 terms
rather than the four terms of a 2 x 2 table. Al-
though for 2 x 2 tables the df is always equal to
1, in general the df for chi-square tests is given
by (r—1) x (¢ — 1), where the number of rows
in the table is r and the number of columns is
c. Thus, in the case of a 3 x 2 table, we would
have (3 — 1) x (2 -1) = 2 df. In general, cases
with arbitrary numbers of rows and columns
can be constructed and analyzed using the chi-
square test.

In order for the chi-square test to be valid,
one needs to ensure that the expected value
for each cell in the table is at least 5. This was
satisfied in the previous example, in which
our smallest expected table value was 29.51,
much larger than 5. Fisher’s exact test [4] is
often used if this criterion is not satisfied for
a particular table. The Fisher’s exact test is
valid for tables of any size, in particular for
small sample sizes.
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172118k Generic Setup of a 2 X 2 Table

First Test
Second Test Total
Positive Negative
Positive a b a+b
Negative c d c+d
Total atc b+d N=a+b+c+d

Inferences for Dependent Proportions
A two-group clinical trial, where n; sub-
jects receive treatment A and n, different sub-
jects receive treatment B, usually results in
independent samples. That is, the results un-
der treatment regimen A (number of success-
ful outcomes among the n; subjects given
treatment A) do not depend on the outcomes
in group B (number of successful outcomes
among the n, subjects given treatment B).

Sometimes, however, subjects or data
points may come in pairs, so that dependen-
cies among the groups are naturally induced.
Consider, for example, the frequently occur-
ring situation in which two diagnostic tests
are given to each of a series of subjects. Each
subject may test positively or negatively on
each of the two tests, so that the data arising
from such a study may be summarized in a 2 x
2 table, as seen in Table 3.

Thus, we observe a number of subjects
who are positive on both tests, b subjects who
are negative on the first test but positive on
the second test, ¢ subjects who are positive on
the first test but negative on the second, and d
subjects who test negatively on both tests.
The cells with a and d contain concordant
pairs, because the two test results agree with
each other, whereas the cells with  and ¢ con-
tain discordant pairs.

Similar data can arise from a matched
case—control study. In this type of study de-
sign, cases (e.g., those with a particular dis-
ease) are first found and then matched to a
particular control case with similar character-
istics but without the condition of interest.

As a concrete example, suppose we wish to
investigate whether impaired renal function is
related to diminished renal size. Because we
would otherwise require large numbers of sub-

jects to be followed up over a long period of [RE:1RILH Data in a Case Control Study

time, a case—control design may be considered.
Thus, one finds patients with impaired renal
function and control subjects without impaired
renal function, and discovers whether there is a
tendency of those with impaired renal function
to show diminished renal size on sonography
compared with those without impaired renal
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function. Of course, patients with impaired re-
nal function may tend to be different from sub-
jects without (control subjects) in many ways,
so to minimize possible confounding one may
want to control for age, sex, height, hyperten-
sion, diabetes, and so on. For each patient, one
may want to find a control subject with similar
age, sex, height, and other characteristics, thus
forming a series of matched pairs. Within each
of these pairs, one then classifies each patient
and control subject into whether they have di-
minished renal size at sonography or not.

Within each matched pair are four possibil-
ities: Both the patients and control subjects
show diminished renal size, or both may not
show diminished renal size. These two possi-
bilities form concordant pairs (introduced in
previous text) because similar renal size is
shown for each subject forming the pair. Of
course, the other two possibilities are that the
patient shows diminished renal size and the
control does not, and vice versa, forming the
nonconcordant pairs. As was the case with di-
agnostic test studies, the data may be formed
into a 2 x 2 table, as shown in Table 4.

Note that there are a total of N pairs of sub-
jects in this study, meaning that we in fact
have 2N individuals (similarly, in the diag-
nostic test case, we have 2N tests, but only N
subjects). We have a subjects in whom both
the patient and the matched control subject
showed diminished renal size, b subjects in
whom the control but not the patient showed
diminished renal size, and so on.

Suppose we would like to test the null hy-
pothesis that diminished renal size is unre-
lated to impaired renal function versus the
alternative hypothesis that a relation exists

between diminished renal size and impaired
renal function. The McNemar test focuses on
the discordant pairs, represented in Table 4 by
b and c. We can formulate the statistic shown
in equation 11,

o (b—cl—17
b+c

which approximately follows a chi-square
distribution with 1 df. Thus, a p value can be
calculated for this test.

For example, suppose we observe the fol-
lowing data: @ = 200, b = 100, ¢ =75, and d =
300. According to the McNemar test, we
calculate as shown in equation 12:

an

(100 —

X2 - =D 509 a2

T
175
Looking up 3.29 on chi-square tables yields
a p value of 0.069, so that it is close to but
does not cross the (admittedly arbitrary)
threshold of 0.05. Thus, at least at the type
1 error level of 0.05, we do not have evi-
dence to reject the null hypothesis.

Of course, the McNemar test can also be
used for testing hypotheses relating to diag-
nostic test data of the type described at the be-
ginning of this section.

The general criticisms relating to hypothe-
sis testing and p values carry over the partic-
ular case of testing dependent proportions
through the McNemar test. Odds ratios and
associated CIs can be calculated from
matched pair studies, and these will be cov-
ered in a future module in this series.

Sample Size Determination for One
and Two Proportions

As previously discussed [1], there has been a
strong trend away from hypothesis testing and p
values toward the use of ClIs in the reporting of
results from biomedical research. Because the
design phase of a study should synchronize with
the analysis that will be eventually performed,
sample size calculations should be performed
on the basis of ensuring adequate numbers for

Diminished Renal Size
Diminished Renal Size
Patient Has Patient Does Not Have Total
Control has a b a+b
Control does not have [4 d c+d
Total atc b+d N=a+b+c+d
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accurate estimation of important quantities that
will be estimated in the study, rather than by
power calculations. For one- and two-sample
problems, the formulae are as given in the fol-
lowing paragraphs.

Single Sample

Let p be the proportion that is to be esti-
mated, and assume that we wish to estimate p
to an accuracy of a total CI width of w =2 x
h, where h is half the total CI width.

Then we can perform the calculation shown
in equation 13,

2 P

n="sp(l-p)=—
h?

pll=p). 13

w?
where, again, z is the appropriate normal quan-
tile (e.g., z=1.96 for a 95% CI).

Two Sample

Let p; and p, be the two proportions whose
difference we would like to estimate to a total
Cl widthof w =2 x h.

Then we can perform the calculation
shown in equation 14,

CAx(px(L=—p)+pax(1—pa)) x2*
- ur -
" (14)

mx(l=—m)+pex(l—p2)) x2z*
h?

where n represents the required sample size
for each group.

As an example, suppose we want to design
a study to measure the difference in diagnos-
tic accuracy for two types of imaging tech-
niques, say MRI versus CT for staging
cervical carcinoma. Suppose that CT is
thought to be successful in staging patients
with cervical carcinoma, with probability p; =
0.70, and MRI may improve this to p, = 0.80.
We would like to estimate the true difference
to within 4 = 0.05, so that not only will we be
able to detect any differences of 10%, but the
95% CI will be far enough away from O (if our
predicted rates are correct) so that we can
make a more definitive conclusion as to the
clinical usefulness of MRI. We calculate as
shown in equations 15 and 16
pa % (1—p)) x 22

(g % (1—py) 4

(15)
h? (16)
0.7)+ 0.8 (1 =08)) = L.o6*
= - 569
0.052

(0.7 = (1

so that 569 patients are required in each group.
The main practical difficulty with equations
13 and 14 is assigning appropriate values for p,
p;» and p,. Itis therefore useful to note that equa-
tion 13 is maximized when p = 0.5, so using this
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value is conservative in the sense that the desired
CI width will be respected regardless of the esti-
mated value of p that will be observed in the
study. This conservative value, however, may
provide too large a sample size and therefore be
wasteful of resources if the true proportion is far
from 0.5. A conservative rule of thumb is to use
the value of p that is closest to 0.5, selected from
the set of all plausible values. Similarly, equation
14 is maximized for p; =p,=0.5, so a similar rule
of thumb applies for each of p; and p,.

Bayesian Inference for Proportions

Consider again the problem introduced in
the section called Inferences for Single Pro-
portions. Recall that in that example the sen-
sitivity of standard interpretation of
radiographs is assumed to be 90%, whereas
the small data set collected so far for the new
automated radiograph interpretation system
indicates a 100% success rate but is based on
only 10 subjects. The frequentist CI was very
wide, ranging from 74.1% to 100%. There-
fore, the data themselves have not been par-
ticularly helpful in making a decision as to
which technique to use for the next patient,
because values indicating a new test that is
both more and less sensitive than the standard
diagnostic method have not been ruled out by
the CI. At this point, with the data being rela-
tively uninformative, the radiologist may de-
cide to be conservative and remain with the
standard method until more information be-
comes available about the new automated
technique, or may go with his or her “gut feel-
ing” as to the likelihood that the new therapy
is truly better or not better. If there have been
data from animal experiments or strong theo-
retic reasons why the new technique may be
better, the radiologist may be tempted to try
the new one. Can anything be done to aid in
this decision-making process?

Bayesian analysis has several advantages
over standard or frequentist statistical analy-
ses. These advantages include the following:

First is the ability to address questions of
direct clinical interest, such as direct proba-
bility statements about hypotheses of inter-
est and credible intervals with similarly
easy interpretations [1]. Hence, results of
Bayesian analyses are straightforward to
interpret, in contrast to the obscure and dif-
ficult-to-understand (and frequently misin-
terpreted) inferences provided by p values
and Cls [1].

Second is the ability to incorporate rele-
vant information not directly contained in the
data into any statistical analysis. This enters

in the form of prior information about param-
eters of interest.

The third advantage is that Bayesian anal-
ysis is a natural way to update statistical anal-
yses as new information becomes available.

A main theoretic difference between fre-
quentist and Bayesian statistical analyses is that
Bayesian analysis permits parameters of interest
(binomial probabilities, population means, and
so on) to be considered as random quantities, so
that probabilities can be attached to the possible
values that they may attain. On the other hand, fre-
quentists consider these parameters to be fixed (al-
beit possibly unknown) constants, so they have no
choice but to attach their probabilities to the data
that could arise from the experiment, rather than to
the parameters. This distinction is the main reason
Bayesian analysis can answer direct questions of
interest, whereas frequentist analyses must settle
for answering more obscure questions in the form
of p values and ClIs.

The ability to address questions of direct inter-
est, however, comes at the cost of having to do a
bit more work. Not only do Bayesians have to
collect data from their experiments, but they also
have to quantify the state of knowledge of all pa-
rameters before their collecting this data. This
nontrivial step is summarized in a prior distribu-
tion. The information in the prior distribution is
updated by the information in the data to arrive at
a posterior distribution, which summarizes all
available information, past and current. We will
apply a Bayesian analysis to our radiologist’s de-
cision later in this section, but first we need to re-
call the basic elements of all Bayesian analyses
and see how they are applied to drawing infer-
ences about our parameter of interest here, the bi-
nomial success rate of the new automated
radiographic technique.

Let us generically denote our parameter of in-
terest as 6. Hence, @ can be a binomial pa-
rameter, a set of two independent or dependent
binomial parameters, or the mean and variance
from a normal distribution, or an odds ratio, or
a set of regression coefficients, and so on. Note
in particular that & can be two- or more dimen-
sional. The parameter of interest is sometimes
usefully thought of as the “true state of nature.”
As discussed in more detail in the previous
module in this series [1], the basic elements of a
Bayesian analysis then are as follows:

First is the prior probability distribution, f
(O). This subjective prior distribution summa-
rizes what is known about @before the exper-
iment is performed.

Second is the likelihood function, f (x | 6).
The likelihood function provides the distribu-
tion of the data, x, given the parameter value 6.
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For instance, for proportions it may be a bino-
mial likelihood, as in equation 17:

l(z|p) = Pr{z successes in N trials} =
N

! 17
o) ok

(‘\' — ;"'(] _ ‘r)}l.\-—.J'J

Third is the posterior distribution, f (8 |
X). The posterior distribution summarizes
the information in the data, X, together with
the information in the prior distribution, f
(6). Thus, it summarizes what is known
about the parameter of interest @ after the
data are collected.

Bayes’ theorem relates the above three
quantities:

posterior distribution =
[likelihood of the data x prior distribution] /
a normalizing constant,

or using our notation and omitting the nor-
malizing constant, as shown in equation 18,

Joseph and Reinhold

J0lz) oc f(z|0) x f(6) A3
where o indicates “is proportional to.”

Thus, we update the prior distribution to a
posterior distribution after seeing the data via
Bayes’ theorem. The current posterior distri-
bution can be used as a prior distribution for
the next study; hence, Bayesian inference
provides a natural way to represent the learn-
ing that occurs as science progresses.

The prior distribution is subjective and cho-
sen by each investigator according to his or her
appreciation of the past literature regarding the
unknown parameters of interest. Hence, the
prior distribution is not unique to each experi-
ment but can vary from investigator to investi-
gator. This can be seen as accurately reflecting
clinical reality. Different clinicians can have dif-
ferent initial opinions about a parameter value,
although these opinions tend to concentrate
about a constantly narrowing range of values as

more data accumulate. This is how Bayes’ the-
orem operates, because the prior becomes a less
important contributor to the posterior distribu-
tion as more data become available. See the pre-
vious module for more discussion about prior
distributions [1].

We now will apply the general Bayesian tech-
nique we have described to the specific problem
of inferences for binomial proportions.

Suppose that in a given experiment x “suc-
cesses” are observed in N binomial trials. Let
6 = p denote the parameter of interest—the
true but unknown probability of success—
and suppose that the problem is to find an in-
terval that covers the most likely locations for
p given the data.

The Bayesian solution to this problem fol-
lows the usual pattern, as outlined previously.
Hence, the main steps can be summarized as
first, write down the likelihood function for the
data. Second, write down the prior distribution

Fig. 1.—Series of four beta densities.
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A-D, Graphs show beta(1,1) (A), beta(10,10) (B), beta(2,8) (C), and beta(8,2) (D) densities. Beta(1,1) distribution (A) is also known as the uniform density.
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for the unknown parameter p. Third, use Bayes’
theorem (i.e., multiply the equation for the
likelihood function of the data by the prior dis-
tribution) to derive the posterior distribution.
Use this posterior distribution, or summaries of
it like 95% credible intervals, for statistical in-
ferences. Credible intervals are the Bayesian
analogues to frequentist CIs.

For the case of a single binomial parame-
ter, these steps are realized in this manner:

Step |

The likelihood function is the usual bino-
mial probability formula shown in equation
17, where I(x | p) represents the likelihood
function for the success rate p given data x.

Step 2

Although any prior distribution can be
used, two distributions are of particular inter-
est. The first prior distribution we will discuss
is the uniform prior distribution, which spec-
ifies that all possible values (for proportions,
this implies all values in the range of 0-0) are
equally probable, a priori. See Figure 1A. The
uniform distribution is suitable for use as a
“diffuse” or a “noninformative” distribution,
when little or no prior information is available
or when one wishes to see the information
contained in the data by itself.

A second particularly convenient prior dis-
tribution, for reasons to be explained, is the beta
distribution. A random variable, 6, has a distri-
bution that belongs to the beta family if it has a
probability density given by equation 19

fle) = g1 (1 — §)°!

i
Bla.B) a9

for0< #<1, and &, f> 0. B(a, f) represents the
beta function evaluated at (¢ /). It is simply the
normalizing constant that is necessary to make
the total area under the curve equal to 1, but oth-
erwise plays no role.

Some beta distributions are illustrated in Figure
1. For example, using a beta(er= 1, = 1) distri-
bution reproduces the perfectly flat or uniform dis-
tribution discussed previously. Thus, the uniform
distribution is really just a special case of the beta
distribution. On the other hand, a beta(ar= 10, f=
10) density produces a curve similar in shape to a
normal density centered at 8= 0.5. If o> fthe
curve is skewed toward values near 1, whereas if
o< fthe curve is skewed toward values near 0.

The mean of the beta distribution is given
by equation 20,

Q

a+ 3’

= (20)
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and the SD is given by equation 21.

af

V@a+8)2(a+pB+1)
To choose a prior distribution, one needs
only to specify values for zand £. This can be
done by finding the o and S values that give
the correct prior mean and SD values. Solving
these two equations in two unknowns, the for-

mulae are shown in equations 22 and 23.

@n

p (o4 —p)
G—'.!

(22)

(p—1) (0% + p? — p)

3= .
p

(23)

For example, if we wish to find a member
of the beta family centered near ¢ = 0.9 and
with ¢ = 0.05, then plugging these values for
4 and © into these two equations gives & =
31.5and f=3.5, so that a beta(31.5, 3.5) will
have the desired properties. This curve, pic-
tured in Figure 2, may be an appropriate prior
distribution for the problem introduced at the
beginning of this section if the radiologist be-
lieves, a priori, that the new technique is
likely to be successful between 80% and
100% of the time, and whose best guess of the
rate is 90%. Note that this clinician has cen-
tered the prior around the rate thought to be
equal to the standard treatment. Thus, this
prior distribution would give equal a priori
weight to both the null and alternative

hypotheses given at the start of the section on
Inferences for Single Proportions. We will re-
turn to this example again shortly.

Step 3

As always, Bayes’ theorem says

posterior distribution e prior distribution x
likelihood function.

In this case, it can be shown (by relatively
simple algebra) that if the prior distribution is
beta(;, f) and the data are x successes in N tri-
als, then the posterior distribution is again a
beta distribution, beta(a + x, f+ N — x). This
simplicity arises from noticing that both the
beta prior distribution as represented in equa-
tion 19 and the binomial likelihood as given in
equation 17 have the general form p*x (1 —p)?,
so that when multiplying them as required by
Bayes’ theorem, the exponents simply add,
and the form is once again recognized to be
from the beta family of distributions.

Hence, if we observe the new automated
computer-aided radiologic method to cor-
rectly identify 10 patients in a row with lung
nodules, and if we use the prior distribution
discussed previously, then the posterior
distribution is a beta(31.5 + 10, 3.5 + 0) =
beta(41.5, 3.5) distribution, which is illustrated
in Figure 2. The mean of this distribution is
[41.5/(41.5+3.5)] =0.922, and the 95% pos-
terior credible interval is (0.844-0.988). The

10

probability density

05 08 07

probability of success

T T T
08 09 10

Fig. 2—Prior (dotted line) and posterior (solid line) beta densities for automated radiology example.
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probability of being greater than 90% is 0.748
(area under the curve to the right of 0.9 in Fig.
2). Therefore, the radiologist may or may not
be tempted to try the automated technique on
the next patient but should realize that this de-
cision is mostly based on the prior informa-
tion, to which the data contributed only a
small amount of new information. Looking at
Figure 2, we see that the prior density was
shifted only a small amount by the data. If in-
stead the radiologist “lets the data speak for
themselves” by using a beta(1,1) or uniform
prior distribution (Fig. 1), then the 95% inter-
valis (0.773-0.971), very similar numerically
to the frequentist CI of the section Inferences
for Single Proportions, although their inter-
pretations are quite different. Bayesian inter-
vals (deliberately called credible intervals to
distinguish them from frequentist confidence
intervals) are interpreted directly as the poste-
rior probability that p is in the interval, given
the data and the prior distribution. No refer-
ences to long-run frequencies or other exper-
iments are required, as is the case for ClIs.

In general, one should usually perform a
Bayesian analysis using a diffuse prior distri-
bution like a beta(1,1) distribution, to exam-
ine what information the current data set
provides. Then one or more Bayesian analy-
ses with more informative prior distributions
could be performed, depending on the avail-
able prior information. If opinions in the
medical community are widely divergent
concerning the parameters of interest, then
several prior distributions should be used. If
the data set is large, then similar conclusions
will be reached no matter which prior distri-
bution one starts with. On the other hand, with
smaller data sets, diversity of opinions will
still exist, even after the new data are ana-
lyzed. Bayesian analysis allows this situation
to be accurately represented and assessed.

Although we discuss only the simple case
of Bayesian inference for a single binomial
proportion, these methods are easily extended
to the case of two or more proportions. For a
clinical example using Bayesian analysis to

compare two proportions, see Brophy and Jo-
seph [5]. This example also illustrates the use
of a range of prior distributions and shows
that Bayesian analysis can often come up with
answers that are quite different from those ob-
tained using a frequentist approach.

Discussion

This module has introduced some of the
major ideas behind statistical inference for
proportions, with emphasis on the simple
methods for one and two samples. Rather
than a simple catalogue listing of which meth-
ods to use for which types of dichotomous
data, we have tried to explain the logic behind
the common statistical procedures seen for bi-
nary data in the medical literature, the correct
way to interpret the results, and what their ad-
vantages and drawbacks may be. We have
also introduced Bayesian inference as a
strong alternative to standard frequentist sta-
tistical methods, for both its ability to incor-
porate the available prior information into the
analysis and its ability to address questions of
direct clinical interest.

For more information about inferences on
proportions, see the books by Fleiss [6] for
the frequentist perspective and by Gelman et
al. [7] for the Bayesian view. General books
on statistical inferences in medicine [8-10]
all contain many techniques on inferences
for proportions that are beyond the scope of
this module.

Software is available that makes carrying
out all the analyses discussed in this module
relatively easy. From the frequentist view-
point, there are literally dozens of statistical
packages available for purchase, but much
excellent free software is also available. For
example, the R package [11] is freely avail-
able for most computer platforms, including
Windows (Microsoft) and Linux PCs and
MacOS (Apple). It is a comprehensive pack-
age that is constantly being updated. Free
Bayesian software includes First Bayes [12]
for simple problems and WinBUGS [13, 14]
for more complicated problems.

The previous module covered similar tech-
niques to those covered here for continuous
data, and future modules in this series will
cover techniques suitable for other types of
study designs and questions that arise in radi-
ology, including linear and logistic regression
methods. The latter is especially relevant be-
cause logistic regression allows one to ana-
lyze dichotomous outcomes from one or more
groups while adjusting the analysis for poten-
tial confounding factors.

References
1. Joseph L, Reinhold C. Fundamentals of clinical
research for radiologists. Statistical inferences for
continuous variables. AJR 2005;184:1047-1056
2. Joseph L, Reinhold C. Fundamentals of clinical
research for radiologists. Introduction to probabil-
ity theory and sampling distributions. AJR
2003;180:917-923
3. Kakeda S, Moriya J, Sato H, et al. Improved de-
tection of lung nodules on chest radiographs using
a commercial computer-aided diagnosis system.
AJR 2004;182:505-510
4. Armitage P, Berry G. Statistical methods in med-
ical research, 3" ed. Oxford, England: Blackwell
Scientific Publications, 1994
5. Brophy J, Joseph L. Placing trials in context using
Bayesian analysis: GUSTO revisited by Reverend
Bayes. JAMA 1995;273:871-875
6. Fleiss J. Statistical methods for rates and propor-
tions. New York, NY: Wiley, 1981
7. Gelman A, Carlin J, Stern H, Rubin D. Bayesian
data analysis, 2nd ed. London, England: Chap-
man and Hall, 2003
8. Rosner B. Fundamentals of biostatistics. Belmont,
MA: Duxbury, 1995
9. Bland M. An introduction to medical statistics, 3rd
ed. Oxford, England: Oxford University Press, 2000
10. Le C. Introductory biostatistics. New York, NY:
Wiley, 2003
11. R, version 1.8.0. Available at: cran.r-project.org/.
Accessed February 2, 2004
12. O’Hagan A. First Bayes software. Available at:
www.shef.ac.uk/~stlao/1b.html. Accessed December
25,2003
13. Spiegelhalter D, Thomas A, Best N. WinBUGS
version 1.4 user manual. Cambridge, UK: MRC
Biostatistics Unit, 2003
14. WinBUGS, version 1.4. Available at: www.mrc-bsu.
cam.ac.uk/bugs/. Accessed February 2, 2004

. The Research Framework, April 2001
. Protocol, June 2001
. Data Collection, October 2001

N O R W

Characteristics, October 2002

. Introduction, which appeared in February 2001 9.

. Population and Sample, November 2001
. Statistically Engineering the Study for Success, July 2002 13.
. Screening for Preclinical Disease: Test and Disease 14.

The reader’s attention is directed to earlier articles in the Fundamentals of Clinical Research series:

8. Exploring and Summarizing Radiologic Data, January 2003

Visualizing Radiologic Data, March 2003

10. Introduction to Probability Theory and Sampling
Distributions, April 2003

11. Observational Studies in Radiology, November 2004

12. Randomized Controlled Trials, December 2004

Clinical Evaluation of Diagnostic Tests, January 2005

ROC Analysis, February 2005

15. Statistical Inference for Continuous Variables, April 2005

1064

AJR:184, April 2005



