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Review: Frequentist inferences for means and proportions

Here we review some of the basic material from EPIB-607 (or equivalent). In
particular, we will cover frequentist hypothesis testing and interval estimation
for means and proportions, while reminding ourselves of the exact meanings
and interpretations of p-values and confidence intervals, both in theory and
in real practice.

For single means and single proportions, we have the analogy below between
means and proportions, and a summary table for all possible situations for
means follows on the next page.

Means Proportions

Data {x1, x2, . . . , xn} {x1, x2, . . . , xn} = {0, 1, . . . , 1}

Estimator x =
∑n

i=1 xi
n p̂ =

∑n
i=1 xi
n = # of 1’s

n

SD sd =
√∑n

i=1 (xi−x)2
n−1 sd =

√
p̂(1− p̂)

CI x± 1.96× sd√
n

p̂± 1.96× sd√
n

Test Z = x−µ0
sd√
n

Z = p̂−p0
sd√
n
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Summary of Testing Procedures

There are two philosophies, state error rates in advance, or calculate p-values
based on the data observed.

Philosophy 1:

1. State H0 and HA. State the α error you think is appropriate for the
problem.

2. Find the rejection region.

3. From the data, check whether the observed data fall into the rejection
region or not.

4. If the data fall into the rejection region, conclusion is that there is
enough evidence to reject the null hypothesis H0 in favour of the alter-
native HA. If the data do not fall into the rejection region, can only
say that there is no evidence to reject the null hypothesis.

Philosophy 2:

Definition: The p-value is the probability of obtaining a result as or more
extreme than that observed assuming that the null hypothesis is in fact true.

It is very important to note that the p-value is not the probability that
the null hypothesis is correct after having seen the data, even though many
clinicians often falsely interpret it this way. The p-value does not directly or
indirectly provide this probability, and in fact can be orders of magnitude
different from it. In other words, it is possible to have a p-value equal to 0.05,
when the probability of the null hypothesis is 0.5, different from the p-value
by a factor of 10. Therefore, p-values are the answer to a rather obscure
question, which, at best, indirectly helps the researcher in answering their
scientific question.
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Example of Testing for two means

Here we will illustrate the formula for testing equality of two means, i.e,

z =

∣∣∣∣∣∣∣∣
x̄1 − x̄2√
σ2
1

n1
+

σ2
2

n2

∣∣∣∣∣∣∣∣ .

For example, suppose we wish to look at the difference in mean tumor di-
ameter between two groups of patients with brain cancer in a clinical trial
setting, with subjects randomized into accelerated and standard schedule
groups. Suppose we observe a mean tumor diameter of x̄1 = 3.0 cm (σ1 = 1.5
cm) in 200 subjects under the new schedule, and a mean tumor diameter of
x̄2 = 3.7 cm (σ2 = 1.4 cm) in 200 subjects under the standard schedule.
Plugging into the above formula, we get:

z =

∣∣∣∣∣∣∣∣
x̄1 − x̄2√
σ2
1

n1
+

σ2
2

n2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣ 3.0− 3.7√
1.52

200
+ 1.42

200

∣∣∣∣∣∣ = 4.82

Looking up 4.82 on normal tables gives a p-value of 2 × (0.0000007) =
0.0000014. Since this indicates a very rare event under H0, we can reject
the null hypothesis that the two means are equal.

• How is this p-value interpreted?

• How useful is knowing this p-value by itself?

Proportions

The situation with proportions is simpler, since one does not need to worry
about estimating variances (since the variance of a proportion is fixed once
the proportion itself is fixed). We have already seen the case of a single
proportion, and for two or more proportions, we have:
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Testing (two proportions exactly):

Z =
p̂1 − p̂2√

p̂(1− p̂)
(

1
n1

+ 1
n2

) (1)

where p̂ is the overall estimate of p under H0 : p1 = p2 = p0.

Confidence Intervals:

p̂1 − p̂2 − z
√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

, p̂1 − p̂2 + z

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2



In the above formula, p̂1 and p̂2 are the observed proportions in the two
groups out of sample sizes n1 and n2, respectively, and z is the relevant
percentile from normal tables, chosen according to the desired level of the
confidence interval. For example, for a 95% confidence interval z = 1.96, for
a 90% interval z = 1.64, and so on.

Testing (two or more proportions):

The generic setup is:

Category 1 Category 2 . . . Category c
Population 1 n11 n12 . . . n1c

Population 2 n21 n22 . . . n2c

...
...

...
...

...
Population r nr1 nr2 . . . nrc

Examples:



6

1. Use of Stroke Unit versus Medical Unit for acute stroke in the elderly
(Taken from Garraway et al, British Medical Journal, 1980).

Patient Independent Patient Dependent
Stroke Unit 67 34

Medical Unit 46 45

2. Quality of Sleep before elective operation

Bad Reasonably Good Very Good
Triazolam 2 17 12
Placebo 8 15 8

Example 1 can be handled by the methods for two proportions based on the
binomial distribution, which we have already seen. However, it is not possible
to directly extend these methods to the case when there are three (or more)
outcome categories and/or more than two populations. Furthermore, we have
been using the Normal distribution approximation to the binomial, which we
know is only valid for “large enough” sample sizes. What can we do if we
have a table larger than 2 × 2 or if the sample size is “small”?

Methods to Compare Two or More Proportions

Suppose we wish to test the null hypothesis that π1 = π2 = . . . = πN , that
is, we have measured the frequency of occurrence of a dichotomous outcome
in N populations, and wish to check if the frequencies are all equal. There
are several candidate tests:

Normal approximation (Z) Test: We have seen this test when N = 2.
The test does not apply when N > 2. Alternative hypothesis can be
one or two-sided. Requires large samples sizes to be accurate. “Large”
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is often stated as a criterion like

sample size ×min{π, (1− π)} ≥ 5.

This is somewhat arbitrary, but works reasonably well as a rough guide.

Chi-square (χ2) Test: The χ2 test does apply when N > 2, but the alter-
native hypothesis is always two-sided. Requires large samples sizes to
be accurate. “Large” is often operationalized as “the expected number
of subjects in each cell in the r × c table must be at least 5”. We will
see soon how to calculate these expected cell sizes.

Fisher’s Exact Test: Both the χ2 and Z tests require “large” sample sizes
to be accurate, but the Fisher’s Exact is “exact” for any sample size.
The Fisher’s Exact Test also applies when N > 2, but unlike the χ2

test, the alternative hypothesis can be one or two-sided.

While it is common practice to use a χ2 test for large sample sizes and Fisher’s
Exact Test for smaller sample sizes, a natural question is “Why not just use
Fisher’s Exact Test all the time, since it is always applicable?” There are
two possible answers. The first is that, as we will see, it is computational
“expensive” to use Fisher’s Exact Test, compared to a χ2 test. Second,
there are different assumptions behind each. As will become clear from the
examples on the next few pages, in the Fisher’s Exact Test, all “margins”
are held fixed (“conditioned upon”), while this is not the case for the Z and
χ2 tests. Thus there is a slightly different inferential philosophy behind each.

One sample χ2 Test

Suppose we observe the following table of data:

Success Failure
Population x n− x

We would like to test the hypothesis H0 : π = π0. For example, we might
observe patient survival rates one month following a particular sugery, and
would lke to test if the survival rate is 80%. We observe the following data:
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Success Failure
Population 60 40

We would like to test the hypothesis H0 : π = 0.80, where π represents the
true one month survival rate.

Procedure: Since we hypothesize π = 0.80, and since we have 100 subjects,
we expect 80 survivors and 20 deaths. Observed dicrepancies from these
expected values are evidence against the null hypothesis. We calculate:

X2 =
∑

all cells

(observed− expected)2

expected

=
(60− 80)2

80
+

(40− 20)2

20
= 400/80 + 400/20 = 25

Comparing the X2 = 25 value on χ2 tables with 1 degree of freedom (1
df), we find that p < 0.0005, so that we have evidence to reject the null
hypothesis.

Two sample χ2 Test

Suppose we observe the following table of data, introduced previously:

Patient Independent Patient Dependent Total
Stroke Unit 67 34 101

Medical Unit 46 45 91
Total 113 79 192

We would like to test the hypothesis H0 : π1 = π2; that is, the proportion
of independent patients is the same on Medical or Stroke Units.

Procedure: Since we hypothesize π1 = π2, we expect to observe the following
table of data, on average:
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Patient Independent Patient Dependent Total
Stroke Unit 59.44 41.56 101

Medical Unit 53.56 37.44 91
Total 113 79 192

Once again, observed discrepancies from these expected values are evidence
against the null hypothesis. We calculate:

X2 =
∑

all cells

(observed− expected)2

expected

=
(67− 59.44)2

59.44
+

(34− 41.56)2

41.56
+

(46− 53.56)2

53.56
+

(45− 37.44)2

37.44
= 4.9268

Comparing the X2 = 4.9268 value on χ2 tables with 1 df, we find that
0.025 < p < 0.05 (by computer the exact value is 0.0264), so that we have
evidence to reject the null hypothesis.

The χ2 Test for 2× 3 table

Suppose we observe the following table of data, introduced previously:

Bad Reasonably Good Very Good Total
Triazolam 2 17 12 31
Placebo 8 15 8 31

Total 10 32 20 62

We would like to test the hypothesis that the proportions of patients that ex-
perience bad, reasonably good and very good outcomes are the same whether
they were given the drug or the placebo.

Procedure: Since we hypothesize equal proportions in each treatment group,
we expect to observe the following table of data, on average:
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Bad Reasonably Good Very Good Total
Triazolam 5 16 10 31
Placebo 5 16 10 31

Total 10 32 20 62

As before, observed dicrepancies from these expected values are evidence
against the null hypothesis. We calculate:

X2 =
∑

all cells

(observed− expected)2

expected

=
(2− 5)2

5
+

(8− 5)2

5
+

(17− 16)2

16
+

(15− 16)2

16

(8− 10)2

10
+

(12− 10)2

10
= 4.525

Comparing the X2 = 4.525 value on χ2 tables with 2 df, we find that 0.10 <
p < 0.15 (by computer the exact value is 0.104), so that we do not have
sufficient evidence to reject the null hypothesis at either the 0.05 or 0.10
levels. Note that in general for an r × c table, df = (r− 1)× (c− 1).

Question: We note that the proportion on triazolam increases from 20% to
53% to 60% across outcomes, so it may be a good idea to test for a trend
(covered in 607?).

Fisher’s Exact Test

Suppose we observe the following table of data:

Success Failure Total
Group A 4 2 6
Group B 1 6 7

Total 5 8 13

As with the Z and χ2 tests, we would like to test the null hypothesis H0 :
π1 = π2. However, since the sample size is so small, there is doubt about
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the applicability of these tests to this data set. An “exact” test can be
constructed via the following reasoning:

We have observed a total of 5 successes. If groups A and B receive equally
effective treatments, then the five successes should be eqaully distributed
between the two groups. If the sample sizes were equal, we would expect
2.5 successes in each group, but since the sizes are not equal, we expect the
successes to be divided in a 6:7 ratio (almost but not quite half/half). As
in the previous tests, discrepancies from this “fair split” indicate departures
from the null hypothesis. We calculate:

6

13
× 5 = 2.31, and

7

13
× 5 = 2.69

Therefore, approximately 2:3 or 3:2 split is expected, and more extreme splits
are evidence against the null hypothesis. How extreme is too extreme to be
compatible with the null hypothesis? We will calculate the probability of
each possible split:

A 5 1 4 2 3 3 2 4 1 5 0 6
B 0 7 1 6 2 5 3 4 4 3 5 2

5 8 5 8 5 8 5 8 5 8 5 8
Prob 0.005 0.082 0.326 0.408 0.163 0.016

The tables with probabilities of 0.005 + 0.082 + 0.016 = 0.103 have values
equal to or more extreme than those observed, so by the definition of the
p-value, p = 0.103 by the Fisher’s Exact Test.

Calculating Probabilities for the Fisher’s Exact Test

The probabilities on the previous page were calculated using the hyperge-
ometric distribution. In general, if we observe

A a b a+ b
B c d c+ d

a+ c b+ d N
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where N = a+ b+ c+ d, then the probability of observing that table is:

Prob =
(a+ b)!(c+ d)!(a+ c)!(b+ d)!

N !a!b!c!d!

A less simplified equivalent formulae provides a clue as to how the probability
is calculated:

Prob =
(a+c)!
a!c!
× (b+d)!

b!d!
N !

(a+b)!(c+d)!

Consider the A and B labels as random labels. In how many ways can one
choose that all 5 (or 4 or 3 or 2 or 1 or 0) of the A labels happen to end up
as “successes”?

How useful are p-values for medical decision

making?

While p-values are still often found in the literature, there are several major
problems associated with their use:

1. P -values are often misinterpreted as the probability of the null hypoth-
esis given the data, when in fact they are calculated assuming the null
hypothesis to be true. In fact, p-values discuss probabilities of the
form P (data|H0), not P (H0|data). The latter is only available from a
Bayesian viewpoint.

2. Clinicians often use p-values to “dichotomize” results into “important”
or “unimportant” depending on whether p < 0.05 or p > 0.05, respec-
tively. However, there is not much difference between p-values of 0.049
and 0.051, so that the cutoff of 0.05 is arbitrary.
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3. P -values concentrate attention away from the magnitude of treatment
differences. For example, one could have a p-value that is very small,
but is associated with a clinically unimportant difference. This is espe-
cially prone to occur in cases where the sample size is large. Conversely,
results of potentially great clinical interest are not necessarily ruled out
if p > 0.05, especially in studies with small sample sizes. Therefore, one
should not confuse statistical significance (i.e., p < 0.05) with practical
or clinical importance.

4. The null hypothesis is almost never exactly true. Does one seriously
ever believe that the null hypothesis µ = µ0 is correct (rather than, say,
µ = µ0 + 0.0000001)? Since one knows the null hypothesis is almost
surely false to begin with, it makes little sense to test it. Instead, one
should concern oneself with the question of “by how much are the two
treatments different”, or “what is a point and interval estimate of µ”.

There are so many problems associated with p-values that most statisti-
cians now recommend against their use, in favor of confidence intervals or
Bayesian methods. In fact, some prominent journals have virtually ban-
ished p-values from publication (e.g., Epidemiology, see quote below), others
strongly discourage their use in favor of confidence intervals and/or have pub-
lished articles and editorials encouraging the use of Bayesian methodology
(e.g. American Journal of Epidemiology). In this course we will focus mainly
on these more informative techniques for drawing statistical inferences.

One of the most prominent epidemiologists, Kenneth Rothman, former editor
of the premiere journal, Epidemiology, wrote in that journal (Rothman, K.
Writing for Epidemiology, 1998;9(3):333-337.

When writing for Epidemiology, you can also enhance your prospects
if you omit tests of statistical significance. Despite a widespread
belief that many journals require significance tests for publica-
tion, the Uniform Requirements for Manuscripts Submitted to
Biomedical Journals discourages them [see Uniform Requirements
for Manuscripts Submitted to Biomedical Journals. N Engl J Med
1997;336:309-315], and every worthwhile journal will accept pa-
pers that omit them entirely. In Epidemiology, we do not
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publish them at all. Not only do we eschew publishing claims
of the presence or absence of statistical significance, we discour-
age the use of this type of thinking in the data analysis, such as
in the use of stepwise regression. We also would like to see the
interpretation of a study based not on statistical significance, or
lack of it, for one or more study variables, but rather on careful
quantitative consideration of the data in light of competing ex-
planations for the findings. For example, we prefer a researcher to
consider whether the magnitude of an estimated effect could be
readily explained by uncontrolled confounding or selection biases,
rather than simply to offer the uninspired interpretation that the
estimated effect is significant, as if neither chance nor bias could
then account for the findings.

Many data analysts appear to remain oblivious to the qualita-
tive nature of significance testing. Although calculations based
on mountains of valuable quantitative information may go into
it, statistical significance is itself only a dichotomous indicator.
As it has only two values, significant or not significant, it cannot
convey much useful information. Even worse, those two values
often signal just the wrong interpretation. These misleading sig-
nals occur when a trivial effect is found to be significant, as often
happens in large studies, or when a strong relation is found non-
significant, as often happens in small studies. P -values, being
more quantitative, are preferable to statements about statistical
significance tests, and we do publish P -values on occasion. We
do not publish them as an inequality, such as P < 0.05, but as a
number, such as P = 0.13. By giving the actual value, one avoids
the problem of dichotomizing the continuous P -value into a two-
valued measure. Nevertheless, P -values still confound effect size
with study size, the two components of estimation that we be-
lieve need to be reported separately. Therefore, we prefer that
P -values be omitted altogether, provided that point and interval
estimates, or some equivalent, are available.

One arena in which P -values are the usual analytic tool is in
the assessment of trends, such as the trend in rate across dose
categories. Even here, we believe that they should be avoided.
Slope estimates are better, and smoothed trend evaluations, such
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as kernel smoothing or spline regression, are better yet; these
presentations should ideally include some assessment of statistical
precision to accompany the trend estimate.

Frequentist confidence intervals

While the p-value provides some information concerning the rarity of events
as or more extreme than that observed assuming the null hypothesis to be ex-
actly true, it provides no information about what the true parameter values
might be. In the above two mean example, we have observed a tumor diam-
eter difference of 0.7 cm, which was shown to be “statistically significant”,
with a p-value of about 0.000001. Although we have observed a difference
of 0.7 cm, we know that our data are from a random sample of patients to
whom this procedure could be applied, so that the true mean difference could
in fact be higher or lower than our observed difference. How likely is it that
the true mean difference in tumor diameter is clinically important?

One way to answer this question is with a confidence interval. We can calcu-
late a 95% confidence interval for the difference in means for the two groups
using the formula (see previous chart)x̄1 − x̄2 − 1.96

√
σ2
1

n1

+
σ2
2

n2

, x̄1 − x̄2 + 1.96

√
σ2
1

n1

+
σ2
2

n2



Plugging in the values we obtained from our clinical trial example given
above, we find a CI of (-0.46,-0.94). Thus, roughly speaking, it is likely that
the true tumor diameter difference between our two schedules is somewhere
between about half a cm less under the new schedule (-0.46 cm) and up to
almost a 1 cm reduction (-0.94). Although our p-value for this same data
set was very small, which enabled us to reject the null hypothesis, we can
see that the confidence interval provides more clinically useful information
about the magnitude of the difference. We can also see that, in contrast to
what may be believed after seeing the p-value, we are still uncertain about
the clinical utility of the new schedule, since values near the lower limit of
the CI would not be very interesting clinically (it would represent less than
a 30% change from the mean baseline tumor size), while differences near 1
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cm may be clinically interesting. Therefore, our conclusions from the CI are
more detailed than those from the p-value. This is true in general, as we will
now discuss.

Interpreting confidence intervals

Confidence intervals are derived from procedures that are set up to “work”
95% of the time (if a 95% CI is used). The two CI equations above provide
procedures that, when used repeatedly across different problems, will capture
the true value of the mean (or difference in means) 95% of the time, and fail to
capture the true value 5% of the time. In this sense, we have confidence that
the procedure works well in the long run, although in any single application, of
course, the interval either does or does not contain the true mean. Note that
we are careful not to say that our confidence interval has a 95% probability
of containing the true parameter value. For example, we did not say that the
true difference in mean tumor diameter is in the interval (-0.49, -0.94) with
95% probability. This is because the confidence limits and the true mean
tumor diameters are both fixed numbers, and it makes no more sense to say
that the true mean is in this interval than it does to say that the number 2
is inside the interval (1, 6) with probability 95%. Of course, 2 is inside this
interval, just like the number 8 is outside of the interval (1, 6). However, the
procedure used to calculate confidence intervals provides random upper and
lower limits which depend on the data collected, and in repeated uses of this
formula across a range of problems, we expect the random limits to capture
the true value 95% of the time, and exclude the true mean 5% of the time.
Refer to Figure 1. If we look at the set of confidence intervals as a whole,
we see that about 95% of them include the true parameter value. However,
if we pick out a single trial, it either contains the true value (about 95% of
the time) or excludes this value (about 5% of the time).
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Figure 1: A series of 95% confidence intervals for an unknown parameter.
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Despite their somewhat unnatural interpretation, confidence intervals are
generally preferred to p-values. This is because they focus attention on the
range of values compatible with the data, on a scale of direct clinical interest.
Given a confidence interval, one can assess the clinical meaningfulness of the
result, as can be seen in Figure 2.

Depending on where the upper and lower confidence interval limits fall in
relation to the upper and lower limits of the region of clinical equivalence,
different conclusions should be drawn. The region of clinical equivalence,
sometimes called the region of clinical indifference, is the region inside of
which two treatments, say, would be considered to be the same for all prac-
tical purposes. The point 0, indicating no difference in results between two
treatments, is usually included in the region of clinical equivalence, but val-
ues above and below 0 are usually also included. How wide this region is
depends on each individual clinical situation. For example, if one treatment
schedule is much more expensive than another, one may want at least a 50%
reduction in tumor diameter in order to consider it the preferred treatment.
There are five different conclusions that can be made after a confidence in-
terval has been calculated, as illustrated by the five hypothetical intervals
displayed in Figure 2:
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Figure 2: How to interpret confidence intervals. Depending on where the
confidence interval lies in relation to a region of clinical equivalence, different
conclusions can be drawn.
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1. The CI includes zero, and both upper and lower CI limits, if they were
the true values, would not be clinically interesting. Therefore, this
variable has been shown to have no important effect.

2. The CI includes zero, but one or both of the upper or lower CI limits,
if they were the true values, would be interesting clinically. Therefore,
the results of this variable in this study is inconclusive, and further
evidence needs to be collected.

3. The CI does not include zero, and all values inside the upper and lower
CI limits, if they were the true values, would be clinically interesting.
Therefore, this study shows this variable to be important.

4. The CI does not include zero, but all values inside the upper and lower
CI limits, if they were the true values, would not be clinically interest-
ing. Therefore, this study shows this variable, while having some small
effect, is not clinically important.

5. The CI does not include zero, but only some of the values inside the
upper and lower CI limits, if they were the true values, would be clini-
cally interesting. Therefore, this study shows this variable has at least a
small effect, and may be clinically important. Further study is required
in order to better estimate the magnitude of this effect.

Revisiting the confidence interval discussed above in light of Figure 2, we see
that the interval based on the two group clinical trial is of type 5. Once again,
note that this confidence interval provides much more detailed conclusions
compared to the information contained in a p-value. P -values group together
intervals 1 and 2 as “nonsignificant” and intervals 3, 4, and 5 as “significant”.
This can lead to very misleading conclusions, from a clinical viewpoint. For
example, quite similar clinical conclusions should be drawn from intervals 1
and 4, even though one is “significant”, and the other is not. It should now
be clear why many journals discourage reporting results in terms of p-values,
and encourage confidence intervals.
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Summary of frequentist statistical inference

The main tools for statistical inference from the frequentist point of view are
p-values and confidence intervals. P -values have fallen out of favor among
statisticians, and although they continue to appear in medical journal arti-
cles, their use is likely to greatly diminish in the coming years. Confidence
intervals provide much more clinically useful information than p-values, so
are to be preferred in practice. Confidence intervals still do not allow for the
formal incorporation of pre-existing knowledge into any final conclusions. For
example, in some cases there may be compelling medical reasons why a new
technique may be better than a standard technique, so that faced with an
inconclusive confidence interval, a researcher may still wish to switch to the
new technique, at least until more data become available. On what basis
could this decision be justified? We will return to this question later, where
we look at Bayesian statistical inference.


