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Data Analysis for the Health Sciences – EPIB-621 – 4 credits

Instructors: Lawrence Joseph
Email address: Lawrence.Joseph@mcgill.ca

Course Home page: www.medicine.mcgill.ca/epidemiology/Joseph/EPIB-621.html
Telephone: 934-1934 X 44713

Address: McGill University Health Centre
2155 Guy Street, #343
Montreal, Quebec, Canada, H3H 2R9

Brief Course Outline: Univariate and multivariate statistical techniques
for continuous and dichotomous outcomes. Focus is on multiple linear and
logistic regression models. Additional topics will include adjusting for miss-
ing data, measurement error and hierarchical (random effects) models. All
material will be taught from both Bayesian and frequentist viewpoints. R
and WinBUGS software will be used throughout the course.

Place and Time: January 7 to April 10, 2019. Mondays and Wednesdays,
11:30–1:30 PM. All lectures and exams take place in Room 1034, McIntyre
Medical Building.

Assessment: Assignments 5 × 4% each = 20%, Midterm Exam = 30%,
Final Exam = 50%.

Prerequisites: Previous courses in differential and integral calculus, and
EPIB 607 or equivalent.

Midterm Exam: February 20, 2019, 11:30 PM to 1:30 PM, Room 1034, McIntyre.
Final Exam: April 10, 2019, 11:30 PM to 1:30 PM, Room 1034, McIntyre.

Please note that both exams are open book.
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Equipment:

• Access to a computer with R and WinBUGS software loaded on (both
are freeware) is required. Computers in the basement of Purvis Hall
can be used, as needed.

• A hand calculator with logarithm and exponential functions will be
required for exams. Use of computers or other similar devices will not
be allowed during exams.

Reference material: No single textbook will be exactly followed, but most
material covered in the course is included in the following textbooks. The
lectures will follow the course pack (see link below).

• Michael H. Kutner, Christopher J. Nachtsheim, John Neter, William
Li. Applied Linear Statistical Models, 5th Edition, McGraw-Hill, 2005.

• David W. Hosmer and Stanley Lemeshow, Applied Logistic Regression,
2nd Edition Wiley, 2000.

• A. Gelman, J. Carlin, H. Stern and D. Rubin, Bayesian Data Analysis,
2nd Edition, Chapman and Hall, 2003.

• Woodworth G, Biostatistics: A Bayesian Introduction, Wiley, 2004.

• Course pack is downloadable from:

http://www.medicine.mcgill.ca/epidemiology/Joseph/

Follow the link to the 621 course, then click on “Course outline”. Each
lecture is available in pdf form by clicking on the lecture title. Supple-
mentary material is available for some lectures, listed separately.

We strongly suggest that you print out a copy of the lectures, bringing
them to class, perhaps collecting the pages into a binder. This is the
material I will actually follow, on a day-to-day basis, some of the print
may be difficult to view on the screen, and you will almost surely want
to take your own notes on top of some of the pages. The text books
are for reference, although you will likely wish to buy a copy of one or
more of these, not only for this course, but as excellent references for
all your future analysis work.
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Overview of Content: The course will be divided into four main sections:

1. Review of basic univariate statistics: Inferences for means and
proportions, simple linear regression, p-values and confidence intervals.
Includes introduction to the Bayesian viewpoint for these three basic
types of analyses, including Bayesian posterior distributions and cred-
ible intervals. The R software package will be introduced.

2. Linear regression: Linear regression for two or more explanatory
(X) variables, including polynomial terms, use of dummy variables, in-
ference for regression parameters from frequentist and Bayesian view-
points, residuals, addressing confounding and the use of interaction
terms, model selection, goodness of fit, predictions using regression
equations, hierarchical (random effects) models, programming in R and
WinBUGS.

3. Logistic regression: Logistic regression for one or more explana-
tory variables, including use of dummy variables, inference for logistic
regression parameters and odds ratios from frequentist and Bayesian
viewpoints, addressing confounding and the use of interaction terms,
model selection, goodness of fit, the inverse logit for predictions us-
ing logistic regression equations, hierarchical (random effects) models,
programming in R and WinBUGS.

4. Additional topics (as time permits): Adjusting for missing data
and measurement error.

See detailed outline on page 4 for the topics to be covered in each lecture.

How to get the most from this course: We will be covering a lot of
material, much of which will be totally new, and it will most likely all appear
to go by very fast. Please never hesitate to ask questions in class and
contact us via email with questions outside of class. You will get the most
out of this course if you keep up with the material on a day-to-day basis,
and ask questions about what you do not understand right away, rather than
waiting until later, when it may become impossible to catch up. This applies
both to the “theoretical” material and to the software packages we will use.
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Data Analysis in the Health Sciences

Course Outline – EPIB–621

Date Topic Covered
Mon Jan 7 Introduction/Motivation/Evaluation/Scope/Background
Wed Jan 9 Frequentist inferences for means and proportions
Mon Jan 14 Bayesian inferences for means and proportions
Wed Jan 16 Introduction to R
Mon Jan 21 Simple linear regression: one variable
Wed Jan 23 Linear regression with two or more variables: basic concepts
Mon Jan 28 Dummy variables in linear regression
Wed Jan 30 Confounding and collinearity in linear regression
Mon Feb 4 Interaction terms and prediction in linear regression
Wed Feb 6 Goodness of fit in linear regression
Mon Feb 11 Bayesian inference for linear regression models
Wed Feb 13 Model selection and predictions in linear regression
Mon Feb 18 Review
Wed Feb 20 Midterm Exam
Mon Feb 25 Hierarchical/random effects linear models
Wed Feb 27 Introduction to logistic regression: Univariate
Mon Mar 4 No Class – Spring Break
Wed Mar 8 No Class – Spring Break
Mon Mar 11 Introduction to logistic regression: Multivariate
Wed Mar 13 Confounding and collinearity in logistic regression
Mon Mar 18 Goodness of fit in logistic regression
Wed Mar 20 Bayesian analysis of logistic regression models
Mon Mar 25 Model selection in logistic regression
Wed Mar 27 Hierarchical/random effects logistic regression
Mon April 1 Missing data
Wed Apr 3 Measurement error
Mon Apr 8 Review
Wed Apr 10 Final Exam
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Mathematical Background:

Functions including exp, log, logit, inverse logit, lines, derivatives, integrals

Note: The following are very non-rigorous definitions designed to suit the purpose
of our course. Refer to any calculus textbook for the exact definitions and/or more
information.

Functions: For our purposes, a function assigns a unique numerical value
to each number in a specified set. For example, the function

f(x) = x2, −∞ < x < +∞
assigns the value x2 to each x, −∞ < x < +∞. Thus x = 1 is assigned the
value 1, x = 2 is assigned the value 4, and x = −2.1 is assigned the value
+4.41, etc. A function is defined over a set of values, which here is the set
of all real numbers.

Functions are often easily understood by looking at the graph of the function.
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Functions are used throughout statistics to describe probability (density)
functions, linear and logistic regression models, and many other places. Let’s
look at some examples:

(i) The Uniform probability (density) function describes the experiment of
choosing a random number between 0 and 1. The function is

f(x) =

{
1, 0 ≤ x ≤ 1
0, otherwise,

and the graph is shown below:

(ii) The standard Normal probability (density) function is used extensively
in virtually every discipline where statistics are used, including medicine.
The function is

f(x) =
1√
2π
exp

{
−x

2

2

}
, −∞ < x < +∞
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and the graph is shown below:

(iii) Another very common density used in Bayesian analysis is the beta.
As we will see later in the course, it is typically used in problems involving
proportions. Note that its range is between 0 and 1, very convenient for
proportions. The function for the beta density is

f(θ) =

{
1

B(α,β)
θα−1(1− θ)β−1, 0 ≤ θ ≤ 1, α, β > 0, and

0, otherwise,
.

[ B(α, β) represents the Beta function evaluated at (α, β). It is simply the
normalizing constant that is necessary to make the density integrate to one,
that is, B(α, β) =

∫ 1
0 x

α−1(1 − x)β−1dx.] Some graphs of beta densities are
shown below.

Note the flexibility of this family of distributions.
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(iv) Yet another useful distribution is the gamma, which is sometimes used
to model normal variances (or, more accurately, as we will see, the inverse of
normal variances, known as the precision, i.e., precision = 1/variance). The
gamma density is given by

f(x) =
βα

Γ(α)
e−βxxα−1, for x > 0 .

A typical gamma graph is:

Aside from probability densities, several functions are of particular interest
to us in this course.

(v) The exponential function is defined by
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f(x) = exp(x) = ex

where e is the constant 2.718282. . . . It’s graph looks like this (note that
exp(0) = 1):

We already saw a use of the exp function in the definition of the normal
density. It will also be used extensively in logistic regression.

(vi) The log function is the inverse function to the exponential, essentially
meaning that exp(log(x)) = x and log(exp(x)) = x (but watch the range).
In general, the logarithm logb(x) for a base b and a number x is defined to
be the inverse function of taking b to the power x. Here is the graph for base
e = 2.718282 (note that log(1) = 0):
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As we will now see, the log function is also used extensively in logistic re-
gression.

(vii) The logit function is defined by

f(x) = logit(x) = log
(

x

1− x

)
It’s graph looks like this (note that logit(0.5) = 0):
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As we will see later in the course, this is the basic function behind logistic
regression.

(viii) The inverse logit function is (no surprise here!) the inverse function
to the logit.

f(x) = inv.logit(x) =
exp (x)

1 + exp (x)

It’s graph looks like this (note that inv.logit(0) = 0.5):
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As we will see, this is the function required to predict probabilities of events
after running a logistic regression.

(ix) The straight line is the basic function behind linear regression. You may
recall that we can define a straight line as

f(x) = y = a+ bx

where a is the intercept of the line (where the line crosses the y-axis), and b
is the slope (amount by which y goes up when x increases by one unit). The
graph would look like this (letting a = 1 and b = 2):
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Derivatives: The derivative of a function measures the slope of the tangent
line to the graph of the function at a given point. For example, if

f(x) = x2,

then the derivative is given by

f ′(x) = 2× x.

For example, this means that the slope of the tangent line at the point x = 2
(with f(x) = y = 4) is 2× 2 = 4.
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You may recall the following useful facts relating to derivatives:

1. The slope of a line is a measure of how quickly the function is rising or falling
as x increases in value.

2. If a function has a maximum or minimum value, then the derivative is usually
equal to 0 at that point. In the above, the function has a minimum at x = 0,
where the value of the derivative is zero.

Derivatives will be used for maximum likelihood estimators, the most com-
mon way frequentist estimators are derived.

Integrals: The indefinite integral is a synonym for “anti-differentiation”.
In other words, when we calculate the indefinite integral of a function, we
look for a function that when differentiated, returns the function under the
integral sign. For example, the indefinite integral of the function f(x) = x2

is given by the
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∫
x2 dx =

1

3
× x3

because the derivative of 1
3
× x3 is x2.

Indefinite integrals are used in many places in statistics. For example, we will
see them in the context of regression, when we want to look at the probability
density of a regression coefficient. Here, we use an indefinite integral to go
from a joint density (many variables at once) to a marginal density (of a
single variable).

The definite integral of a function is the area under the graph of that func-
tion. This area can be approximated directly from the graph, but exact
mathematical formulae are also available from calculus. For example, the
area under the the curve ranging from -1 to +2 of the function f(x) = x2 is
given by the following definite integral formula:

∫ +2

−1
x2 dx =

1

3
× x3

∣∣∣∣∣+2

–1
=

23

3
− (−1)3

3
=

8

3
+

1

3
= 3.

The area under a curve of a probability density function gives the probability
of getting values in the region of the definite integral. For example, suppose
we wished to calculate the probability that in choosing a random number
between 0 and 1 (Uniform density function) the particular number we choose
falls between 0.2 and 0.4. This is calculated by the definite integral

∫ 0.4

0.2
1 dx = x

∣∣∣∣∣0.40.2
= 0.4− 0.2 = 0.2.
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Aspirin Tylenol

Cured Not Cured Cured Not Cured

5 5 5 5

6 4 5 5

6 4 4 6

7 3 4 6

8 2 4 6

8 2 3 7

9 1 3 7

... ... ... ...

10 0 0 10
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Why is prior information crucial to making any final decisions?

Clearly, background context is always important to any conclusions. Can you
think of similar medically related examples?
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