EPIB 613: Graphing Lecture

Nov 22, 2012

sysuse auto

*A simple scatterplot of MPG by weight

twoway (scatter mpg weight)

*Add a title

twoway (scatter mpg weight), title("Scatterplot of mileage by weight")

*Restrict to only foreign cars

twoway (scatter mpg weight if foreign==1), title("Scatterplot of mileage by weight for foreign cars")

*Put foreign and domestic on the same graph

twoway (scatter mpg weight if foreign==1)(scatter mpg weight if foreign==0), title("Scatterplot of mileage by weight" "for foreign and domestic cars")

*Format the legend so it shows which dots are foreign and which are domestic

twoway (scatter mpg weight if foreign==1)(scatter mpg weight if foreign==0), title("Scatterplot of mileage by weight for foreign and domestic cars") scale(0.8) legend(title("Origin") order(1 "Foreign" 2 "Domestic"))

*Change the size and shape of the graph

twoway (scatter mpg weight if foreign==0)(scatter mpg weight if foreign==1), ysize(3)
xsize(2) legend(title("Origin") order(1 "Domestic" 2 "Foreign"))

**Change the appearance of the graph

graph query, schemes

```
set scheme s1mono
twoway (scatter mpg weight if foreign==0) (scatter mpg weight if foreign==1),
legend(title("Origin") order(1 "Domestic" 2 "Foreign"))
```

set scheme economist
twoway (scatter mpg weight if foreign==0)(scatter mpg weight if foreign==1) ,
legend(title("Origin") order(1 "Domestic" 2 "Foreign"))

****set scheme back to normal** set scheme s2color

** Can also change the appearance of symbols

palette symbolpalette
twoway (scatter mpg weight if foreign==0, msymbol(D)) (scatter mpg weight if foreign==1,
msymbol(Dh)), legend(title("Origin") order(1 "Domestic" 2 "Foreign"))

**Change the color of symbols

graph query colorstyle
palette color magenta emerald
twoway (scatter mpg weight if foreign==0, msymbol(D) mcolor(emerald) mfcolor(yellow))
(scatter mpg weight if foreign==1, msymbol(Dh) mcolor(magenta)), legend(title("Origin")
order(1 "Domestic" 2 "Foreign"))

**Bar Graphs

graph bar (mean) price, over(rep78) ytitle("Average Price (\$)")
/* Can get mean, median p5, p95, sum, count, min, max*/

**Make the labels more descriptive and add title

graph bar (mean) price, over(rep78, relabel(1 "one repair" 2 "two repairs" 3 "three repairs"
4 "four repairs" 5 "five repairs")) ytitle("Average Price (\$)") title("Average price by
number of repairs in 1978")

****Another look**

graph bar (mean) price, over(rep78, relabel(1 "one repair" 2 "two repairs" 3 "three repairs"
4 "four repairs" 5 "five repairs")) ytitle("Average Price (\$)") title("Average price by
number of repairs in 1978") asyvars

*Stratify by re78 and foreign

graph bar (mean) price, over(rep78, relabel(1 "one repair" 2 "two repairs" 3 "three repairs" 4 "four repairs" 5 "five repairs")) asyvars ytitle("Average Price (\$)") title("Average price by number of repairs in 1978 and origin of car") over(foreign)

*Stratify by re78 and foreign- split title onto two lines

graph bar (mean) price, over(rep78, relabel(1 "one repair" 2 "two repairs" 3 "three repairs" 4 "four repairs" 5 "five repairs")) asyvars ytitle("Average Price (\$)") title("Average price by number of repairs" "in 1978 and origin of car") over(foreign) \

**Make a stacked bar graph

*We want a count of cars by rep78 adn foreign-- since this is individual data, we need to create a variable giving all observations a value of I

gen x=1
graph bar (count) x, over(rep78) over(foreign) asyvars stack

*Add title to legend and change title on y-axis

graph bar (count) x, over(rep78) over(foreign) asyvars stack ytitle("Number of cars")
legend(title("Number of Repairs in 1978"))

*As a percent rather than a count

graph bar (count) x, over(rep78) over(foreign) percent asyvars stack ytitle("Number of cars") legend(title("Number of Repairs in 1978"))

****Weighted Scatterplot (weight the dots of the scatterplot by some variable)**

sysuse census, clear

*Generate a variable for the percent urban

generate urban = (popurban/pop)*100
label var urban "% Urbanization"

*Scatter plot of median age by percent urban weighted by population size

twoway scatter medage urban [fw=pop]

**Change age format on the y-axis

```
format medage %9.0f
twoway scatter medage urban [fw=pop], msymbol(0h) yscale(range(24 35))
twoway scatter medage urban [fw=pop], msymbol(0h) yscale(range(24 35)) note("The marker for
each state is proportional to population size")
```


**Line plots sysuse uslifeexp, clear twoway line le_wmale le_wfemale le_bmale le_bfemale year

**Add a title to the y-axis and remove life expectancy from the labels

twoway line le_wmale le_wfemale le_bmale le_bfemale year, ytitle("Life expectancy")
legend(order(1 "white males" 2 "white females" 3 "black males" 4 "black females"))

*Change look of the lines

palette linepalette

twoway line le_wmale le_wfemale le_bmale le_bfemale year, lpattern(solid dash solid dash)
ytitle("Life expectancy") legend(order(1 "white males" 2 "white females" 3 "black males" 4
"black females"))

****Dropped-line plots (length of time each subject was in the study and whether they died or were censored)** sysuse cancer, clear

**Keep the people who got drug #2

keep if drug==2

****Sort by studytime (order by the length of their follow-up)**

sort studytime

**Generate a patient number equal to the observation number that indexes each person

gen patient=_n

twoway (dropline studytime patient if died==1, horizontal)(dropline studytime patient if died==0, horizontal)

**Remove filling for censored patients, properly label ledgend and create a different scale for the y axis

twoway (dropline studytime patient if died==1, horizontal)(dropline studytime patient if died==0, horizontal mfcolor(white)), legend(order(1 "Death" 2 "Censored")) ylabel(1(1)14)

****Correlation plots**

sysuse auto, clear graph matrix price mpg weight length, half corr price mpg weight length

****Combine graphs**

twoway scatter mpg weight, name(scatter, replace)
hist mpg, freq name(histogram_mpg, replace)
graph bar weight, over(foreign) name(bar, replace)
graph combine scatter histogram_mpg bar

**Arrange them in one column

graph combine scatter histogram_mpg bar, row(3)
graph combine scatter histogram_mpg bar, col(3)

****ECLPLOT (useful to plot Odds Ratios and Cls)**

sysuse nlsw88, clear
cc union collgrad, by(race)

. cc union collgrad, by(race)

race	0R	[95% Conf.	Interval]	M-H Weight	
white black other	1.702344 1.859987 1.32	1.280028 1.121557 .1440014	2.256791 3.060468 10.51459	37.13673 11.83234 1.041667	(exact) (exact) (exact)
Crude M-H combined	1.64747 1.731678	1.295668 1.368956	2.089715 2.190507		(exact)
Test of homogeneit	су (М-Н)	chi2(2) =	0.19 Pr>ch	i2 = 0.9085	
	Test that c	ombined OR = 1 Mantel-Haens	: zel chi2(1) Pr>chi2	= 21.22 = 0.0000	

. statsby, by(race): cc union collgrad

eclplot or lb_or ub_or race eclplot or lb_or ub_or race, xscale(range(0 4)) xlabel(1(1)3) ytitle("Odds Ratio") title("Race-stratified odds ratio and 95% CI for association" "between union status and college graduate")

