sysuse auto
*A simple scatterplot of MPG by weight
twoway (scatter mpg weight)
*Add a title
twoway (scatter mpg weight), title("Scatterplot of mileage by weight")

*Restrict to only foreign cars

twoway (scatter mpg weight if foreign==1), title("Scatterplot of mileage by weight for foreign cars")
*Put foreign and domestic on the same graph
twoway (scatter mpg weight if foreign==1)(scatter mpg weight if foreign==0), title("Scatterplot of mileage by weight" "for foreign and domestic cars")

*Format the legend so it shows which dots are foreign and which are domestic
twoway (scatter mpg weight if foreign==1)(scatter mpg weight if foreign==0), title("Scatterplot of mileage by weight for foreign and domestic cars") scale(0.8) legend(title("Origin") order(1 "Foreign" 2 "Domestic"))

twoway (scatter mpg weight if foreign==0)(scatter mpg weight if foreign==1), ysize(3) xsize(2) legend(title("Origin") order(1 "Domestic" 2 "Foreign"))

**Change the appearance of the graph

graph query, schemes
set scheme s1mono
twoway (scatter mpg weight if foreign==0) (scatter mpg weight if foreign==1), legend(title("Origin") order(1 "Domestic" 2 "Foreign"))
set scheme economist
twoway (scatter mpg weight if foreign==0) (scatter mpg weight if foreign==1) , legend(title("Origin") order(1 "Domestic" 2 "Foreign"))

**set scheme back to normal

set scheme s2color
** Can also change the appearance of symbols
palette symbolpalette
twoway (scatter mpg weight if foreign==0, msymbol(D)) (scatter mpg weight if foreign==1, msymbol(Dh)), legend(title("Origin") order(1 "Domestic" 2 "Foreign"))

**Change the color of symbols

graph query colorstyle
palette color magenta emerald
twoway (scatter mpg weight if foreign==0, msymbol(D) mcolor(emerald) mfcolor(yellow))
(scatter mpg weight if foreign==1, msymbol(Dh) mcolor(magenta)), legend(title("Origin") order(1 "Domestic" 2 "Foreign"))

**Bar Graphs

graph bar (mean) price, over(rep78) ytitle("Average Price (\$)")
/* Can get mean, median p5, p95, sum, count, min, max*/

**Make the labels more descriptive and add title

graph bar (mean) price, over(rep78, relabel(1 "one repair" 2 "two repairs" 3 "three repairs" 4 "four repairs" 5 "five repairs")) ytitle("Average Price (\$)") title("Average price by number of repairs in 1978")

Average price by number of repairs in 1978

**Another look
graph bar (mean) price, over(rep78, relabel(1 "one repair" 2 "two repairs" 3 "three repairs" 4 "four repairs" 5 "five repairs")) ytitle("Average Price (\$)") title("Average price by number of repairs in 1978") asyvars

*Stratify by re78 and foreign

graph bar (mean) price, over(rep78, relabel(1 "one repair" 2 "two repairs" 3 "three repairs" 4 "four repairs" 5 "five repairs")) asyvars ytitle("Average Price (\$)") title("Average price by number of repairs in 1978 and origin of car") over(foreign)
*Stratify by re78 and foreign- split title onto two lines
graph bar (mean) price, over(rep78, relabel(1 "one repair" 2 "two repairs" 3 "three repairs" 4 "four repairs" 5 "five repairs")) asyvars ytitle("Average Price (\$)") title("Average price by number of repairs" "in 1978 and origin of car") over(foreign) \}

[^0]```
gen x=1
graph bar (count) x, over(rep78) over(foreign) asyvars stack
```

*Add title to legend and change title on $\mathbf{y}$-axis
graph bar (count) x, over(rep78) over(foreign) asyvars stack ytitle("Number of cars") legend(title("Number of Repairs in 1978"))
*As a percent rather than a count
graph bar (count) $x$, over(rep78) over(foreign) percent asyvars stack ytitle("Number of cars") legend(title("Number of Repairs in 1978"))

**Weighted Scatterplot (weight the dots of the scatterplot by some variable)
sysuse census, clear
*Generate a variable for the percent urban
generate urban $=($ popurban $/$ pop $) * 100$
label var urban "\% Urbanization"
*Scatter plot of median age by percent urban weighted by population size
twoway scatter medage urban [fw=pop]
**Change age format on the $\boldsymbol{y}$-axis
format medage \%9.0f
twoway scatter medage urban [fw=pop], msymbol(0h) yscale(range(24 35))
twoway scatter medage urban [fw=pop], msymbol(0h) yscale(range(24 35)) note("The marker for each state is proportional to population size")


## **Line plots

sysuse uslifeexp, clear
twoway line le_wmale le_wfemale le_bmale le_bfemale year
**Add a title to the $y$-axis and remove life expectancy from the labels
twoway line le_wmale le_wfemale le_bmale le_bfemale year, ytitle("Life expectancy") legend(order(1""white māles" 2 "whīte females" 3 "black males" 4 "black females"))

## *Change look of the lines

palette linepalette
twoway line le_wmale le_wfemale le_bmale le_bfemale year, lpattern(solid dash solid dash) ytitle("Life expectancy") legend(order(1 "white males" 2 "white females" 3 "black males" 4 "black females"))

**Dropped-line plots (length of time each subject was in the study and whether they died or were censored) sysuse cancer, clear
**Keep the people who got drug \#2
keep if drug==2
**Sort by studytime (order by the length of their follow-up)
sort studytime
**Generate a patient number equal to the observation number that indexes each person gen patient=_n
twoway (dropline studytime patient if died==1, horizontal)(dropline studytime patient if died==0, horizontal)
**Remove filling for censored patients, properly label ledgend and create a different scale for the $y$ axis twoway (dropline studytime patient if died==1, horizontal)(dropline studytime patient if died==0, horizontal mfcolor(white)), legend(order(1 "Death" 2 "Censored")) ylabel(1(1)14)


## **Correlation plots

sysuse auto, clear
graph matrix price mpg weight length, half
corr price mpg weight length


## **Combine graphs

twoway scatter mpg weight, name(scatter, replace)
hist mpg, freq name(histogram_mpg, replace)
graph bar weight, over(foreign) name(bar, replace)
graph combine scatter histogram_mpg bar



**Arrange them in one column
graph combine scatter histogram_mpg bar, row(3) graph combine scatter histogram_mpg bar, col(3)



**Other graphs to know about

## **ECLPLOT (useful to plot Odds Ratios and CIs)

sysuse nlsw88, clear
cc union collgrad, by(race)
. cc union collgrad, by(race)

| race | OR | [95\% Conf. | Interval] | M-H Weight |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| white | 1.702344 | 1.280028 | 2.256791 | 37.13673 | (exact) |
| black | 1.859987 | 1.121557 | 3.060468 | 11.83234 | (exact) |
| other | 1.32 | . 1440014 | 10.51459 | 1.041667 | (exact) |
| Crude | 1.64747 | 1.295668 | 2.089715 |  | (exact) |
| M-H combined | 1.731678 | 1.368956 | 2.190507 |  |  |

Test of homogeneity $(\mathrm{M}-\mathrm{H}) \quad \operatorname{chi2}(2)=0.19 \operatorname{Pr}>\operatorname{chi2}=0.9085$
Test that combined OR = 1:
Mantel-Haenszel chi2(1) = 21.22
Pr>chi2 = 0.0000
. statsby, by(race): cc union collgrad
eclplot or lb_or ub_or race
eclplot or lb_or ub_or race, xscale(range(04)) xlabel(1(1)3) ytitle("Odds Ratio") title("Race-stratified odds ratio and 95\% CI for association" "between union status and college graduate")



[^0]:    **Make a stacked bar graph
    *We want a count of cars by rep78 adn foreign-- since this is individual data, we need to create a variable giving all observations a value of I

