# Linear Regression

use lbw1.dta, clear

. regress bwt lwt

| bwt   | Coef.    | Std. Err. | t     | P> t  | [95% Conf. | Interval] |
|-------|----------|-----------|-------|-------|------------|-----------|
| lwt   | 4.429993 | 1.713244  | 2.59  | 0.010 | 1.050222   | 7.809763  |
| _cons | 2369.184 | 228.4671  | 10.37 | 0.000 | 1918.479   | 2819.888  |

. gen lwt130=lwt-130

. regress bwt lwt I 30

**twoway lfit** calculates the prediction for yvar from a linear regression of yvar on xvar and plots the resulting line

. twoway (scatter bwt lwt) (lfit bwt lwt)



<u>Postestimation commands after **regress**</u> (type **help regress postestimation** for a full list of available commands):

**predict** can be used to obtain predictions, residuals, influence statistics, etc. . regress bwt lwt age

You can get fitted values using **predict** *newvar*, **xb** . predict predval, xb

or store residuals using predict newvar, residual

. predict rbwt, residual





There are other postestimation diagnostic plots like **rvfplot** (to plot residuals versus predicted values) and **rvpplot** (plot residuals versus explanatory variable)

. rvfplot, yline(0)

. rvpplot lwt, yline(0)

Use **lincom** to calculate linear combinations of the model parameters. For example, to estimate the expected birthweight of a child born to a 25 year old women who weighed 125lbs: [bwt= $\beta_0 + \beta_1$ \*lwt+ $\beta_2$ \*age+ error]

. lincom \_cons + lwt\*125 + age\*25

( 1) **125\*lwt + 25\*age + \_cons = 0** 

| (1) | 2938.177 | 56.33194  | 52.16 | 0.000 | 2827.045   | 3049.308  |
|-----|----------|-----------|-------|-------|------------|-----------|
| bwt | Coef.    | Std. Err. | t     | P> t  | [95% Conf. | Interval] |

Categorical Predictors (factor variables):

. tab race

| race     | Freq. | Percent | Cum.   |
|----------|-------|---------|--------|
| 1. white | 96    | 50.79   | 50.79  |
| 2. black | 26    | 13.76   | 64.55  |
| 3. other | 67    | 35.45   | 100.00 |

. regress bwt i.race, noheader

| bwt            | Coef.                  | Std. Err.            | t              | P> t           | [95% Conf.             | Interval]              |
|----------------|------------------------|----------------------|----------------|----------------|------------------------|------------------------|
| race<br>2<br>3 | -383.3181<br>-298.9955 | 157.8914<br>113.6899 | -2.43<br>-2.63 | 0.016<br>0.009 | -694.8064<br>-523.2829 | -71.82985<br>-74.70811 |
| _cons          | 3103.01                | 72.88956             | 42.57          | 0.000          | 2959.214               | 3246.807               |

#### . regress bwt b2.race, noheader

| bwt   | Coef.    | Std. Err. | t     | P> t  | [95% Conf. | Interval] |
|-------|----------|-----------|-------|-------|------------|-----------|
| race  |          |           |       |       |            |           |
| 1     | 383.3181 | 157.8914  | 2.43  | 0.016 | 71.82985   | 694.8064  |
| 3     | 84.32262 | 165.0131  | 0.51  | 0.610 | -241.2152  | 409.8604  |
| _cons | 2719.692 | 140.0601  | 19.42 | 0.000 | 2443.382   | 2996.003  |

\* the b2. prefix specifies to use the  $2^{nd}$  category as the base (or reference)

# Interactions in regression models

# Interaction between continuous (lwt130) and categorical (race) variables: . regress bwt i.race c.lwt130 i.race#c.lwt130, noheader

| bwt           | Coef.     | Std. Err. | t     | P> t  | [95% Conf. | Interval] |
|---------------|-----------|-----------|-------|-------|------------|-----------|
| race          |           |           |       |       |            |           |
| 2             | -413.8986 | 167.1201  | -2.48 | 0.014 | -743.6285  | -84.16868 |
| 3             | -227.6167 | 117.5805  | -1.94 | 0.054 | -459.6043  | 4.370945  |
|               |           |           |       |       |            |           |
| lwt130        | 4.985665  | 2.487707  | 2.00  | 0.047 | .0773892   | 9.89394   |
|               |           |           |       |       |            |           |
| race#c.lwt130 |           |           |       |       |            |           |
| 2             | -2.55752  | 4.3425    | -0.59 | 0.557 | -11.12532  | 6.010284  |
| 3             | 1.147422  | 4.258696  | 0.27  | 0.788 | -7.255035  | 9.54988   |
|               |           |           |       |       |            |           |
| _cons         | 3092.779  | 72.17968  | 42.85 | 0.000 | 2950.368   | 3235.191  |

note: the c. prefix specifies lwt130 as a continuous variable for the interaction. Also the same analysis could be done using the shorter command: regress bwt b2.race###c.lwt130

Interaction between two categorical variables:

. tab smoke race

#### . regress bwt lwt130 b0.smoke##b2.race, noheader

| bwt        | Coef.     | Std. Err. | t     | P> t  | [95% Conf. | Interval] |
|------------|-----------|-----------|-------|-------|------------|-----------|
| lwt130     | 3.565503  | 1.708612  | 2.09  | 0.038 | . 1942672  | 6.936739  |
| 1.SMOKE    | -326.1209 | 2/3.234   | -1.19 | 0.234 | -865.2345  | 212.9928  |
| race       |           |           |       |       |            |           |
| 1          | 612.0322  | 198.5243  | 3.08  | 0.002 | 220.3271   | 1003.737  |
| 3          | 67.67792  | 199.1864  | 0.34  | 0.734 | -325.3336  | 460.6894  |
|            |           |           |       |       |            |           |
| smoke#race |           |           |       |       |            |           |
| 1 1        | -230.5573 | 306.36    | -0.75 | 0.453 | -835.0313  | 373.9167  |
| 1 3        | 251.8071  | 348.5279  | 0.72  | 0.471 | -435.8677  | 939.4819  |
|            |           |           |       |       |            |           |
| _cons      | 2785.196  | 172.5243  | 16.14 | 0.000 | 2444.791   | 3125.601  |

. testparm i.smoke#i.race

This tests the hypothesis of additivity between race and smoking (i.e., no interaction)

Notes on prefixes for interaction models:

- a categorical variable is often specified with a i. or b#. prefix, where # is the integer value you want to use as the reference (base) level
- continuous variables are specified with the c. prefix in interaction terms
- an interaction term (without main effects) is specified by one #
- an interaction term with main effects is specified by ##
- higher order interactions are allowed, for example i.smoke###i.race###c.lwt130

# Logistic Regression

There are two main commands for logistic regression: **logistic** and **logit Logistic** returns odds ratios by default, while the default for **logit** is log odds-ratios (but you can get odds ratios by using the **or** option)

. tabodds low race, or

- . logistic low i.race
- . logit low i.race
- . logit low i.race, or

. logistic low i.race lwt130

| low             | Odds Ratio           | Std. Err.            | Z              | P> z           | [95% Conf.           | Interval]            |
|-----------------|----------------------|----------------------|----------------|----------------|----------------------|----------------------|
| race<br>2<br>3  | 2.946799<br>1.61775  | 1.438078<br>.5769647 | 2.21<br>1.35   | 0.027<br>0.177 | 1.132277<br>.8041433 | 7.669169<br>3.254538 |
| lwt130<br>_cons | .9849141<br>.3093892 | .0063409<br>.0754679 | -2.36<br>-4.81 | 0.018<br>0.000 | .9725641<br>.1918119 | .9974208<br>.4990394 |

Adjusted for weight at last menstrual period, the odds ratio for blacks compared with whites is 2.95 (1.13, 7.67). The OR for a 1 lb difference in lwt is 0.98 (0.97, 0.99). To get the OR for a 10 lb difference use **lincom** 

. lincom 10\*lwt130

### ( 1) **10\*[low]lwt130 = 0**

| (1) | . 8589807  | .0553018  | -2.36 | 0.018 | .7571509   | .9745057  |
|-----|------------|-----------|-------|-------|------------|-----------|
| low | Odds Ratio | Std. Err. | z     | P> z  | [95% Conf. | Interval] |

To get estimated probabilities for each subject in the dataset: . predict predprob

Other logistic models:

Conditional logistic regression for matched case control using **clogit** Multinomial logistic regression using **mlogit** and ordinal logistic regression using **ologit** In the case of sparse data you can fit a logistic model by exact models using **exlogistic** 

Incidence Rate Data

. use compliance2.dta, clear

. codebook, compact

| Variable  | Obs Un | ique | Mean      | Min    | Max   | Label                      |
|-----------|--------|------|-----------|--------|-------|----------------------------|
| id        | 555    | 555  | 6199.575  | 30     | 12630 | Person number              |
| particip  | 555    | 2    | .7405405  | 0      | 1     | Participated               |
| birthdate | 555    | 508  | -12484.96 | -14235 | -9502 | Date of birth              |
| randate   | 555    | 12   | 12707.7   | 12512  | 14122 | Date of randomization      |
| enddate   | 555    | 101  | 14441.18  | 12597  | 14609 | Date of last observation   |
| died      | 555    | 2    | .1855856  | 0      | 1     | Died                       |
| ranage    | 555    | 494  | 68.97373  | 64.27  | 73.79 | Age at randomization       |
| ranagr    | 555    | 5    | 67.94595  | 64     | 72    | Age group at randomization |

This is data on a cohort of 555 men invited to participate in a screening trial for aneurysms. The men were followed until death or end of follow up.

To study the association between participation and mortality for incidence-rate data we can use **ir** (an epitab command like **cs** and **cc**). The syntax is **ir** *var\_case var\_exposed var\_time* 

Define a variable for person time at risk (in years): . gen pyr=(enddate-randate)/365

. ir died particip pyr

. ir died particip pyr, level(99)

To adjust for age group by stratification: . ir died particip pyr, by(ranagr)

. ir died particip pyr, by(ranagr)

| Age gro | up at ran                  | IRR                                                      | [95% Conf.                                              | Interval]                                               | M-H Weight                                               |                                                     |
|---------|----------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|
|         | 64<br>66<br>68<br>70<br>72 | .3140617<br>.4926495<br>.5236575<br>.7504398<br>.4302365 | .0744762<br>.1420931<br>.228229<br>.2471127<br>.2117449 | 1.513131<br>2.151985<br>1.24793<br>2.512317<br>.8811187 | 3.307495<br>3.341521<br>8.088149<br>4.137178<br>12.27482 | (exact)<br>(exact)<br>(exact)<br>(exact)<br>(exact) |
| <br>М-Н | Crude<br>combined          | +<br>  .4490994<br>  .4913825                            | .2982485<br>.3313807                                    | .6820111<br>.7286386                                    |                                                          | (exact)                                             |
| Test o  | f homogene                 | ity (M-H)                                                | chi2(4) =                                               | 1.34 Pr>ch                                              | ni2 = 0.8549                                             |                                                     |

The regression model corresponding to **ir** is poisson:

. poisson died particip i.ranagr, exposure(pyr) irr

# Time to Event (Survival) Models

With time to event data, it is typical to set the time scale and event using **stset**. Stata remembers this information so you do not have to repeat it each time you issue a survival command.

```
. gen timeatrisk=(enddate-randate)/365
. stset timeatrisk, failure(died)
failure event: died != 0 & died < .
obs. time interval: (0, timeatrisk]
exit on or before: failure
555 total obs.
0 exclusions
555 obs. remaining, representing
103 failures in single record/single failure data
2635.836 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 5.745205
```

Kaplan-Meier survival function:



. sts graph, by(particip) ytitle("Proportion surviving")

Log-rank test for equality of survivor functions: . sts test particip

To get the incidence rate from data that is stset can use  ${\it stir}$  (instead of using  ${\it ir})$  . stir particip, by(ranagr)

Cox proportional Hazards regression

. stcox particip

| No. of subject<br>No. of failure<br>Time at risk | ts =<br>es =<br>= <b>2635.83</b> 5 | 555<br>103<br>5618 |              | Numb                      | er of ob | s =             | 555       |
|--------------------------------------------------|------------------------------------|--------------------|--------------|---------------------------|----------|-----------------|-----------|
| Log likelihood                                   | d = -626.22                        |                    | LR c<br>Prob | hi2( <b>1</b> )<br>> chi2 | =        | 15.03<br>0.0001 |           |
| t                                                | Haz. Ratio                         | Std. Err.          | Z            | P> z                      | [95%     | Conf.           | Interval] |
| particip                                         | .4463335                           | .089556            | -4.02        | 0.000                     | .3012    | 086             | .6613808  |

. stcox particip i.ranagr

Cox regression -- Breslow method for ties

. stcurve, survival at I (ranagr=72 particip=0) at2(ranagr=72 particip=1)

