[^0]2 Analysis of Rates of Fatal Crashes on rural interstate highways in New Mexico in the 5 years 19821986 ( 55 mph limit) and in 1987 ( 65 mph limit). Data from Oct. 27 article in JAMA by Gallaher et al. 1989;262:2243-2245.


The authors argued that it was inappropriate to compare the 1987 rate with the average of the 19821986 rates, since rates seem to have been falling over the 5 years. The authors first fitted a regression line to the rates for 5 years before the change, then predicted within what range the rate would be for 1987 if the downward trend continued. The following is output from Systat.

a Interpret the fitted "constant" of 418.740. Why does it have such a large standard error? Rewrite the fitted model using a more appropriate "beginning of time" (don't worry about being Y2K compliant! you could even use the Microsoft definition of the "beginning of time").
b Interpret the $\mathbf{- 0 . 2 1 0}$ and its standard error 0.093 [for parts a and $b$ use your parents in law as your intended readership]
c Scientists often interpret an absolute value of "b/SE(b)" of 2.0 or more as $" \mathbf{P}<0.05$ ( 2 -sided)". Here $\mathrm{b} / \mathrm{SE}(\mathrm{b})$ is $\mathbf{- 2 . 2 6 , ~ b u t ~} \mathrm{P}(2$ tail) is $0.109!$ ! Explain.
d Use equations 2.4 and $\mathbf{2 . 4 a}$ (p46) to quickly hand-calculate the $b_{1}$. What weights do the 5 different rates receive in the calculation? Why are these weights appropriate?
e Obtain the 5 fitted values and thus verify by hand that the 0.294 is in fact the square root of the "average" squared residual.

3 Analysis of Rates of Fatal Crashes: fill in the ___ 's and .... 's:

- "fitted" (predicted) rate for $1987=\ldots \times \ldots=1.47$
(slightly different from authors' because of rounding)
- range of variation for 1987 rate:
$1.47 \pm t \ldots, 95 \times \sqrt{1+\frac{1}{\left.\cdots+\frac{[1987-1984]^{2}}{\sum_{\text {year }}[y e a r-1984]^{2}}\right)}}=$
$1.47 \pm \times \sqrt{1+\frac{1}{\cdots}+\cdots}=$
$1.47 \pm \ldots=0.14$ to 2.80.

The observed value of 2.9 is just outside the $95 \%$ range of random variation predicted for 1987. In fact, using the SD of 1.45 [the 0.4205 obtained by multiplying the 0.294 by the radical, the 2.9 is $\mathrm{t}=(2.9-$ 1.47)/ $0.4205=3.40$ SD's above expected, and since the estimated SD is based on only 3 df , this deviate is somewhere between the $97.5 \%$ and the $99 \%$ ile. It is not clear whether the p-value in the article is 1 - or 2 -sided, or indeed whether the authors calculated it in the same way as here.

4 Blood Alcohol and Eye Movements:

```
www.epi.mcgill.ca/hanley/c678/ datasets: alcohol and smooth pursuit
```


## Questions are at end of documentation file

## SAS Program and output for NKNW Problem 2.4

| DATA prob <br> INPUT gp <br> LINES; | $\begin{aligned} & 19 ; \\ & \text { entro } \end{aligned}$ |
| :---: | :---: |
| 3.1 | 5.5 |
| 2.3 | 4.8 |
| 3.0 | 4.7 |
| 1.9 | 3.9 |
| 2.5 | 4.5 |
| 3.7 | 6.2 |
| 3.4 | 6.0 |
| 2.6 | 5.2 |
| 2.8 | 4.7 |
| 1.6 | 4.3 |
| 2.0 | 4.9 |
| 2.9 | 5.4 |
| 2.3 | 5.0 |
| 3.2 | 6.3 |
| 1.8 | 4.6 |
| 1.4 | 4.3 |
| 2.0 | 5.0 |
| 3.8 | 5.9 |
| 2.2 | 4.1 |
| 1.5 | 4.7 |

;
PROC MEANS;
PROC REG; MODEL gpa = entrance;
RUN;

| Variable | N | Mean | Std Dev | Minimum | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: |
| GPA | 20 | 2.5000000 | 0.7196490 | 1.4000000 | 3.8000000 |
| ENTRANCE | 20 | 5.0000000 | 0.6928203 | 3.9000000 | 6.3000000 |

Dependent Variable: GPA

> Analysis of Variance

|  | DF | Sum of <br> Squares | Mean <br> Square | F Value | Prob>F |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Source |  |  |  |  |  |
| Model | 1 | 6.43373 | 6.43373 | 33.998 | 0.0001 |
| Error | 18 | 3.40627 | 0.18924 |  |  |
| C Total | 19 | 9.84000 |  |  |  |


| Root MSE | 0.43501 | R-square | 0.6538 |
| :--- | ---: | :--- | :--- |
| Dep Mean | 2.50000 | Adj R-sq | 0.6346 |


| Parameter Estimates |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | DF | Parameter Estimate | Standard Error | T for HO: Parameter=0 | Prob > $\mid$ T |
| INTERCEP | 1 | -1.699561 | 0.72677682 | -2.338 | 0.0311 |
| ENTRANCE | 1 | 0.839912 | 0.14404759 | 5.831 | 0.0001 |

```
NKNW Problem 2.6
DATA prob121;
INPUT broken transfer;
LINES;
        16.0 1.0
        9.0 0.0
        17.0 2.0
        12.0 0.0
        22.0 3.0
        13.0 1.0
        8.0 0.0
        15.0 1.0
        19.0 2.0
        11.0 0.0
;
proc means;
proc reg;
    model broken = transfer;
run;
```

| Variable | N | Mean | Std Dev | Minimum | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BROKEN | 10 | 14.2000000 | 4.4422217 | 8.0000000 | 22.0000000 |
| TRANSFER | 10 | 1.0000000 | 1.0540926 | 0 | 3.0000000 |

Dependent Variable: BROKEN


## 1. Least Squares and the Combination of Observations



Adrien Marie Legendre (1752-1833)

THE METHOD of least squares was the dominant theme - the leitmotif - of nineteenth-century mathematical statistics. In several respects it was to statistics what the calculus had been to mathematics a century earlier. "Proofs" of the method gave direction to the development of statistical theory, handbooks explaining its use guided the application of the higher methods, and disputes on the priority of its discovery signaled the intellectual community's recognition of the method's value. Like the calculus of mathematics, this "calculus of observations" did not spring into existence without antecedents, and the exploration of its subtleties and potential took over a century. Throughout much of this time statistical methods were commonly referred to as "the combination of observations." This phrase captures a key ingredient of the method of least


[^0]:    1 NWNW4 Problems 2.1, 2.2, 2.4*, 2.6(parts a-d)* 2.9, 2.10, 2.11, 2.12, 2.13*

    * data in www.epi.mcgill.ca/hanley/c697/ ; to save time, program \& output given below.

