Assignment 3 hand in on Monday September 18

1 NWNW4 Problems 2.1, 2.2, 2.4*, 2.6(parts a-d)* 2.9, 2.10, 2.11, 2.12, 2.13*

0.259

RESIDUAL

 \ast data in www.epi.mcgill.ca/hanley/c697/ ; to save time, program & output given below.

2 Analysis of Rates of Fatal Crashes on rural interstate highways in New Mexico in the 5 years 1982-1986 (55 mph limit) and in 1987 (65 mph limit). Data from Oct. 27 article in JAMA by Gallaher et al. 1989;262:2243-2245.

						!	55 mph				65 mph	
YEAR					1982	1983	1984	1985	1986	11	1987	
Rate	per10 ⁸	vehicle	e mil	es	2.8	2.0	2.1	1.7	1.9		2.9	
		1	J OF	YEARS		5					1	
	MEAN(Rate) VARIANCE(Rate)			2.100					2.9			
				0	.175				0.0			

The authors argued that it was inappropriate to compare the 1987 rate with the average of the 1982-1986 rates, since rates seem to have been falling over the 5 years. The authors first fitted a regression line to the rates for 5 years before the change, then predicted within what range the rate would be for 1987 if the downward trend continued. The following is output from Systat.

DEP VAR: R	ate N:5	MULTIPLE	R:0.7	794 MULT	TIPLE R	² : 0.630		
STANDARD E (This "STA the averag	RROR OF ES NDARD ERRO Ne squared	TIMATE: R OF EST residual	0.2 IMATE" <i>and n</i>	94 ' is a mi night be	snomer called	; It is th the "aver	he square rage resid	root of lual")
VARIABLE	COEFF.	STD ER	ROR	Т	P(2	TAIL)		
CONSTANT	418.740	184.3	45	2.272	0	.108		
YEAR	-0.210	0.0	93	-2.260	0	.109		
SOURCE	SUM-OF-S	QUARES	DF	MEAN-SQ	UARE	F-RATIO	P	
REGRESSI	ON 0.4	41	1	0.44	1	5.108	0.109	

3

a Interpret the fitted "constant" of 418.740. Why does it have such a large standard error? Rewrite the fitted model using a more appropriate "beginning of time" (don't worry about being Y2K compliant! you could even use the Microsoft definition of the "beginning of time").

0.086

- b Interpret the -0.210 and its standard error 0.093 [for parts a and b use your parents in law as your intended readership]
- c Scientists often interpret an absolute value of "b / SE(b)" of 2.0 or more as "P<0.05(2-sided)". Here b/SE(b) is -2.26, but P(2 tail) is 0.109!! Explain.
- d Use equations 2.4 and 2.4a (p46) to quickly hand-calculate the b₁. What weights do the 5 different rates receive in the calculation? Why are these weights appropriate?
- e Obtain the 5 fitted values and thus verify by hand that the 0.294 is in fact the square root of the "average" squared residual.

Fall 2000Course 513-697: Applied Linear ModelsAssignment 3hand in on Monday September 18

3 Analysis of Rates of Fatal Crashes: fill in the _____ 's and 's:

"fitted" (predicted) rate for 1987 = _____ - ____ × ____ = 1.47
(slightly different from authors' because of rounding)
range of variation for 1987 rate:
1.47 ± t_____,95 × _____ × √1 + 1/(....) + (1987 - 1984]²/(year[year - 1984]²)) =
1.47 ± ______ × √1 + 1/(....) + (....) =
1.47 ± ______ = 0.14 to 2.80.

The observed value of 2.9 is just outside the 95% range of random variation predicted for 1987. In fact, using the SD of 1.45 [the 0.4205 obtained by multiplying the 0.294 by the radical, the 2.9 is t = (2.9 - 1.47)/0.4205 = 3.40 SD's above expected, and since the estimated SD is based on only 3 df, this deviate is somewhere between the 97.5% and the 99% ile. It is not clear whether the p-value in the article is 1- or 2-sided, or indeed whether the authors calculated it in the same way as here.

4 Blood Alcohol and Eye Movements:

www.epi.mcgill.ca/hanley/c678/ datasets: alcohol and smooth pursuit

Questions are at end of documentation file

Assignment 3 hand in on Monday September 18

	SAS	Program	and out	put fo	or NKNW	Problem	2.4
DATA prob119; INPUT gpa entran	ce;						
3.1 5.5 2.3 4.8 3.0 4.7							
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$							
3.4 6.0 2.6 5.2 2.8 4.7							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
3.2 6.3 1.8 4.6 1.4 4.3							
2.0 5.0 3.8 5.9 2.2 4.1							
1.5 4.7 ; PROC MEANS;							
PROC REG; MODEL RUN;	gpa = ei	ntrance;					
Variable N	I	Mean	Std Dev		Minimum	Max	imum
GPA 20 ENTRANCE 20	2.50	000000 000000	0.71964	90	1.400000 3.900000	0 3.8 0 6.3	000000
Dependent Variab	le: GPA	Analy	sis of Va	riance			
Source	DF	Sum o Square	f s S	Mean Square	F Va	lue	Prob>F
Model Error C Total	1 18 19	6.4337 3.4062 9.8400	3 6. 7 0. 0	43373 18924	33.	998	0.0001
Root MSE Dep Mean C.V.	0.4 2.5 17.4	43501 50000 40057	R-square Adj R-sq	: [0.6538 0.6346		
		Param	eter Esti	mates			
Variable DF	Para Est	ameter cimate	Standa Err	rd r or Pa	T for H0: arameter=	0 Prob) > T
INTERCEP 1 ENTRANCE 1	-1.0 0.8	599561 339912	0.726776 0.144047	82 59	-2.33 5.83	8 1	0.0311 0.0001

Fall 2000 Course 513-697: Applied Linear Models Assignment 3 hand in on Monday September 18

NKNW Problem 2.6

```
DATA prob121;
INPUT broken transfer;
LINES;
   16.0
           1.0
   9.0
          0.0
   17.0
          2.0
   12.0
           0.0
   22.0
           3.0
   13.0
           1.0
   8.0
           0.0
   15.0
           1.0
   19.0
           2.0
   11.0
           0.0
;
proc means;
proc reg;
 model broken = transfer;
```

```
run;
```

Variable	Ν	Mean	Std Dev	Minimum	Maximum
BROKEN TRANSFER	10 10	14.2000000 1.0000000	4.4422217 1.0540926	8.0000000 0	22.000000 3.000000

Dependent Variable: BROKEN

Analysis of Variance

		Sum	of	Mean		
Source	DF	Squar	es	Square	F Value	Prob>F
Model	1	160.000	00	160.00000	72.727	0.0001
Error	8	17.600	00	2.20000		
C Total	9	177.600	00			
Root MSE Dep Mean C.V.	1 14 10	.48324 .20000 .44535	R- Ad	square j R-sq	0.9009 0.8885	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=O	Prob > T
INTERCEP	1	$10.200000 \\ 4.000000$	0.66332496	15.377	0.0001
TRANSFER	1		0.46904158	8.528	0.0001

Adrien Marie Legendre (1752–1833)

THE METHOD of least squares was the dominant theme — the leitmotif — of nineteenth-century mathematical statistics. In several respects it was to statistics what the calculus had been to mathematics a century earlier. "Proofs" of the method gave direction to the development of statistical theory, handbooks explaining its use guided the application of the higher methods, and disputes on the priority of its discovery signaled the intellectual community's recognition of the method's value. Like the calculus of mathematics, this "calculus of observations" did not spring into existence without antecedents, and the exploration of its subtleties and potential took over a century. Throughout much of this time statistical methods were commonly referred to as "the combination of observations." This phrase captures a key ingredient of the method of least

from Stephen Stigler's book History of Statistics