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Highlights / Key Concepts in NKNW4 Chapter  9

MULTIPLE REGRESSION II: DIAGNOSTICS

9.1 Model Adequacy - Partial Regression Plots

9.2 Outlying Y Observations

√ residuals e

√ semistudentized residuals e* = e / RMSE

new studentizedresiduals r   = e / {(1-h)1/2 RMSE }

new studentized deleted residuals ti    = di /  RMSE[-i]{1-h)1/2

9.3  Outlying X observations

leverage

9.4  Influential cases

DF Fits

DF betas

Cooks Distance (aggregate effect) on

9.5  Collinearity Diagnostics - Variance Inflation Factors
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9.1  Model Adequacy

Plotting e(Y|X1,X2) vs. X2 may be misleading / inaccurate

- it ignores fact that X2 is already (partially) used via X1.

PARTIAL REGn.  PLOTS

also called "ADDED VARIABLE" or "ADJUSTED VARIABLE" PLOTS

• Marginal relation for Xk given other X's already in model

Y vs. other X's 

=>

e[ Y | other X's]

X vs. other X's  => e[ X | other X's]

0

0

0

0

0

0

RECALL:

 beta_k = slope of e(Y | other X's) on   e[ X_k | other X's]

2 Examples

1. Wrong impression if plot e(Y|X1,X2) vs X2 and vs X1

- ok if plot e(Y| X2) vs e(X1|X2)

e(Y| X1) vs e(X2|X1)  (Fig 9.3)

- also note outlier in " e(x1/x2)" space

2. one of the 2 X's matters; other doesn't

- wouldn't know just from e(Y|X1, X2)  vs X1 or vs X2 (Fig 9.4)

(high r between X1and X2)
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9.2 Outlying Y Observations  Studentized Residuals  and Studentized Deleted  Residuals

Observation can be outlying in Y or X or both  (Fig 9.5)

Y outliers

residual:  e= Y - Ŷ

Semi-studentized residual: e* = e / RMSE

Why e* not always enough...

Residuals (e's) may have substantially different variances

Should scale each e by its own SD, rather than by just one SD̂ = RMSE for all e's

How So?

 Ŷ = X(XTX)-1   XTY =       H Y H : "hat" matrix
n × 1    n × n        n × 1 n × 1  see e.g. Table 9.2

e = Y -  Ŷ  = Y - HY

= (I - H) Y
n × n

Var (e) = σ2 (I -H)

Var (ei) = σ2 (1 - hii  ) Covar (ei, ej) = σ2 (1 - hij  )

Var^  (ei) = MSE (1 - hii)

Why is var (e) = σ2 (1 - hii  ) ?

- the more "outlying" the X, the more it affects e (makes it smaller on ave.)

NOTE: Notice difference between unobservable e ~ N(0, σ2) and calculable e= Y - Ŷ,
whose variability is determined by design matrix (X) and where the X (associated with Y)
is relative to other individual X's.  (e.g. "3 point" regression)
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Refined Residuals

(1) First Refinement  Scale each e by SD(e)  i.e.

 ri = ei / { RMSE (1 - hii)1/2 }

Then r's have same variance

( "INTERNALLY STUDENTIZED"... MSE from entire dataset incl. Yi )

(2) Second Refinement  (TO BE MORE SENSITIVE)

If Yi an outlier, it will make (R)MSE artificially large and thus ri artificially small.

Solution: : exclude Yi from calculation of MSE

1)   use di = yi - Ŷ[-i] where Ŷ[-i] is calculated form other n-1 observations.

2)   use MSE from dataset that excludes Yi

ti = di / ( var[di] )1/2 (" Studentized deleted residuals " )

Computationally: di= ei  / (1 - hii) (" hii"  influence)

Var (di) = σ2 [-i] / (1 -hii  )

ti =   di / ( var[di] )1/2    = 
ei /  (1  -  h ii)

MSE[-i] / (1 - hii)  

=   
ei

MSE[-i] / (1 - hii)  
         "Externally studentized"

ti ~  tn-1-p ...but not independent

How to obtain MSE[ - i ]  without n separate "refits"

ti = ei
n -  1  -  p

SSE(1-hii)  -  e i2
   So just need  e's SSE hii     <-- key.

Largest |ti | ...n tests ( Bonferroni)
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