MULTIPLE REGRESSION II: DIAGNOSTICS

9.1 Model Adequacy - Partial Regression Plots

9.2 Outlying Y Observations

residuals	e
semistudentized residuals	$e^* = e / RMSE$
new studentizedresiduals	$r = e / \{ (1-h)^{1/2} RMSE \}$
new studentized deleted residuals	$t_i = d_i / RMSE_{[-i]} \{1-h\}^{1/2}$

9.3 Outlying X observations

leverage

9.4 Influential cases

DF Fits

DF betas

Cooks Distance (aggregate effect) on

9.5 Collinearity Diagnostics - Variance Inflation Factors

9.1 Model Adequacy

Plotting e(Y|X1,X2) vs. X2 may be misleading / inaccurate

- it ignores fact that X2 is already (partially) used via X1.

PARTIAL REGⁿ. PLOTS

also called "ADDED VARIABLE" or "ADJUSTED VARIABLE" PLOTS

• Marginal relation for Xk given other X's already in model

RECALL:

2 Examples

1. Wrong impression if plot e(Y|X1,X2) vs X2 and vs X1

	- ok if plot	e(Y X2) vs e(X1 X2)	
		e(Y X1) vs e(X2 X1)	(Fig 9.3)
- also note outlier in " $e(x1/x2)$ " space			

- 2. one of the 2 X's matters; other doesn't
 - wouldn't know just from e(Y|X1, X2) vs X1 or vs X2 (Fig 9.4)

(high r between X1and X2)

9.2 Outlying Y Observations Studentized Residuals and Studentized Deleted Residuals

Observation can be outlying **in Y** or X or **both** (Fig 9.5)

Y outliers

residual:	$e = Y - \hat{Y}$
Semi-studentized residual:	$e^* = e / RMSE$

Why e* not always enough...

Residuals (e's) may have substantially different variances

Should scale each e by its own SD, rather than by just one $\hat{SD} = RMSE$ for all e's

How So?

Ŷ $= X(X^TX)^{-1} X^TY =$ $n \times n n \times 1$ ΗY H : "hat" matrix n × 1 n × 1 see e.g. Table 9.2 = **Y** - $\hat{\mathbf{Y}}$ = **Y** - H**Y** e (I - H) **Y** = $n \times n$ $Var(\mathbf{e}) =$ ² (I -H) Var $(e_i) = {}^2 (1 - h_{ii})$ Covar $(e_i, e_i) = {}^2 (1 - h_{ii})$ $\hat{Var}(e_i) = MSE(1 - h_{ii})$ $= 2(1 - h_{ii})?$ Why is var (e)

- the more "outlying" the X, the more it affects e (makes it smaller on ave.)

NOTE: Notice difference between unobservable $e \sim N(0, 2)$ and calculable $e = Y - \hat{Y}$, whose variability is determined by design matrix (X) and where the X (associated with Y) is relative to other individual X's. (e.g. "3 point" regression)

Refined Residuals

(1) First Refinement Scale each e by SD(e) i.e.

 $r_i = e_i \; / \; \{ \; \text{RMSE} \; (1 \; \text{--} \; h_{ii})^{1/2} \; \}$

Then r's have same variance

("INTERNALLY STUDENTIZED"... MSE from entire dataset incl. $Y_i\)$

(2) Second Refinement (TO BE MORE SENSITIVE)

If Y_i an outlier, it will make (R)MSE artificially large and thus r_i artificially small. Solution: : exclude Y_i from calculation of MSE

- 1) use $d_i = y_i \hat{Y}_{[-i]}$ where $\hat{Y}_{[-i]}$ is calculated form other n-1 observations.
- 2) use MSE from dataset that excludes Y_i

$$t_i = d_i / (var[d_i])^{1/2}$$
 ("Studentized deleted residuals ")

Computationally: $d_i = e_i / (1 - h_{ii})$ (" h_{ii} " influence)

$$Var (d_{i}) = {}^{2} [-i] / (1 - h_{ii})$$

$$t_{i} = d_{i} / (var[d_{i}])^{1/2} = \frac{e_{i} / (1 - h_{ii})}{\sqrt{MSE[-i] / (1 - h_{ii})}}$$

$$= \frac{e_{i}}{\sqrt{MSE[-i] / (1 - h_{ii})}} \quad "Externally studentized"$$

 $t_i \sim t_{n-1-p}$...but not independent

How to obtain MSE_[-i] without n separate "refits"

$$t_i = e_i \sqrt{\frac{n - 1 - p}{SSE(1-h_{ii}) - e_i^2}}$$
 So just need e's SSE h_{ii} <-- key.

Largest $|t_i|$...n tests (Bonferroni)