Fall 1999 Course 513-697: Applied Linear Models
 Highlights / Key Concepts in NKNW4 Chapter 9

MULTIPLE REGRESSION II: DIAGNOSTICS

9.1 Model Adequacy - Partial Regression Plots

9.2 Outlying Y Observations

\checkmark residuals
\checkmark semistudentized residuals
$\mathrm{e}^{*}=\mathrm{e} / \mathrm{RMSE}$ new studentizedresiduals new studentized deleted residuals
$\mathrm{r}=\mathrm{e} /\left\{(1-\mathrm{h})^{1 / 2} \mathrm{RMSE}\right\}$
$\mathrm{t}_{\mathrm{i}}=\mathrm{d}_{\mathrm{i}} / \operatorname{RMSE}_{[-\mathrm{i}]}\{1-\mathrm{h})^{1 / 2}$

9.3 Outlying X observations

leverage

9.4 Influential cases

DF Fits
DF betas
Cooks Distance (aggregate effect) on
9.5 Collinearity Diagnostics - Variance Inflation Factors

9.1 Model Adequacy

Plotting e($\mathrm{Y} \mid \mathrm{X} 1, \mathrm{X} 2)$ vs. X 2 may be misleading / inaccurate

- it ignores fact that X 2 is already (partially) used via X 1.

PARTIAL REGn. PLOTS
also called "ADDED VARIABLE" or "ADJUSTED VARIABLE" PLOTS

- Marginal relation for X_{k} given other X 's already in model

RECALL:

beta_k = slope of $e\left(Y \mid\right.$ other X 's) on $e\left[X _k \mid\right.$ other $\left.X ' s\right]$
2 Examples

1. Wrong impression if plot $\mathrm{e}(\mathrm{Y} \mid \mathrm{X} 1, \mathrm{X} 2)$ vs X 2 and vs X 1

- ok if plot $\quad e(Y \mid X 2)$ vs $e(X 1 \mid X 2)$

$$
\begin{equation*}
\mathrm{e}(\mathrm{Y} \mid \mathrm{X} 1) \text { vs e(X2|X1) } \tag{Fig9.3}
\end{equation*}
$$

- also note outlier in "e(x1/x2)" space

2. one of the 2 X 's matters; other doesn't

- wouldn't know just from e(Y|X1, X2) vs X1 or vs X2
(Fig 9.4)
(high r between X1and X2)
9.2 Outlying Y Observations Studentized Residuals and Studentized Deleted Residuals

Observation can be outlying in Y or X or both (Fig 9.5)

Y outliers

residual:

$$
\mathrm{e}=\mathrm{Y}-\hat{\mathrm{Y}}
$$

Semi-studentized residual: $\quad e^{*}=e / R M S E$
Why e* not always enough...
Residuals (e's) may have substantially different variances
Should scale each e by its own SD, rather than by just one $\widehat{S D}=$ RMSE for all e's How So?

$$
\begin{aligned}
\underset{\mathrm{n} \times 1}{\hat{\mathbf{Y}}} & = & \underset{\mathrm{n} \times \mathrm{n}}{\mathrm{X}\left(\mathrm{X}^{\mathrm{T}} \mathrm{X}\right)^{-1}} \underset{\mathrm{n} \times 1}{\mathrm{X}^{\mathrm{T}} \mathrm{Y}=} & \underset{\mathrm{n} \times 1}{\mathrm{H} \mathbf{Y}}
\end{aligned} \begin{aligned}
\mathrm{H}: \text { "hat" matrix } \\
\text { see e.g. Table } 9.2
\end{aligned}
$$

- the more "outlying" the X, the more it affects e (makes it smaller on ave.)

NOTE: Notice difference between unobservable e $\sim \mathrm{N}\left(0, \sigma^{2}\right)$ and calculable $\mathrm{e}=\mathrm{Y}-\hat{\mathrm{Y}}$, whose variability is determined by design matrix (X) and where the X (associated with Y) is relative to other individual X's. (e.g. "3 point" regression)

Fall 1999 Course 513-697: Applied Linear Models

Refined Residuals

(1) First Refinement Scale each e by $\operatorname{SD}(\mathrm{e})$ i.e.

$$
\mathrm{r}_{\mathrm{i}}=\mathrm{e}_{\mathrm{i}} /\left\{\operatorname{RMSE}\left(1-\mathrm{h}_{\mathrm{ii}}\right)^{1 / 2}\right\}
$$

Then r's have same variance
("INTERNALLY STUDENTIZED"... MSE from entire dataset incl. Y_{i})

(2) Second Refinement (TO BE MORE SENSITIVE)

If Y_{i} an outlier, it will make (R)MSE artificially large and thus r_{i} artificially small. Solution: : exclude Y_{i} from calculation of MSE

1) use $d_{i}=y_{i}-\hat{Y}_{[-i]}$ where $\hat{Y}_{[-i]}$ is calculated form other $n-1$ observations.
2) use MSE from dataset that excludes Y_{i}

$$
\mathrm{t}_{\mathrm{i}}=\mathrm{d}_{\mathrm{i}} /\left(\operatorname{var}\left[\mathrm{d}_{\mathrm{i}}\right]\right)^{1 / 2} \quad(" \text { Studentized deleted residuals " })
$$

Computationally: $\mathrm{d}_{\mathrm{i}}=\mathrm{e}_{\mathrm{i}} /\left(1-\mathrm{h}_{\mathrm{ii}}\right) \quad\left(" \mathrm{~h}_{\mathrm{ii}}\right.$ " influence $)$

$$
\begin{aligned}
\operatorname{Var}\left(\mathrm{d}_{\mathrm{i}}\right) & =\sigma^{2}[-\mathrm{i}] /\left(1-\mathrm{h}_{\mathrm{ii}}\right) \\
& =\mathrm{d}_{\mathrm{i}} /\left(\operatorname{var}\left[\mathrm{d}_{\mathrm{i}}\right]\right)^{1 / 2}=\frac{\mathrm{e}_{\mathrm{i}} /\left(1-\mathrm{h}_{\mathrm{ii}}\right)}{\sqrt{\mathrm{MSE}[-\mathrm{i}] /\left(1-\mathrm{h}_{\mathrm{ii}}\right)}} \\
& =\frac{\mathrm{e}_{\mathrm{i}}}{\sqrt{\mathrm{MSE}[-\mathrm{i}] /\left(1-\mathrm{h}_{\mathrm{ii}}\right)}} \quad \text { "Externally studentized" }
\end{aligned}
$$

$t_{i} \sim t_{n-1-p} \ldots$ but not independent

How to obtain MSE $_{[-i]}$ without n separate "refits"

$t_{i}=e_{i} \sqrt{\frac{n-1-p}{\operatorname{SSE}\left(1-h_{i i}\right)-e_{i}^{2}}}$ So just need \quad e's \quad SSE $\quad h_{i i} \quad$ <-- key.

Largest $\left|\mathbf{t}_{\mathbf{i}}\right| \ldots \mathrm{n}$ tests (Bonferroni)

