4.1 Joint C.I.'s for $\beta_0 \& \beta_1$

Conservative: For confidence 1- for Joint Interval...

use (1 - /2) C.I. for each one

e.g. if want 95% CI's for each, use 97.5% CI's for each (true coverage >= 1-)

More realistic (not mentioned in text): use Confidence Eclipse

From $covar(b_0, b_1)$, given by software, can calculate:

4.2 Simultaneous Interval Estimates of $E(Y | X_1), E(Y | X_2), ...$ (*means*)

1. Use confidence band for line .. with W= rather than t $_{n-2}$ [W²= 2F_(1-;2,n-2)],

i.e. $\stackrel{\wedge}{Y}$ +/- $W\times SE(\stackrel{\wedge}{Y}$) rather than $\stackrel{\wedge}{Y}$ +/- $t\times SE(\stackrel{\wedge}{Y}$)

"W" -- named after Working-Hotelling -- uses one "universal" W, designed for a correct CI for true regression line from X = - to X = +, no matter how many/few X values one is actually interested in.

Remember $\mathbf{t} = \sqrt{F_{(1-; \underline{1}, n-2)}}$, whereas $\mathbf{W} = \sqrt{2}\sqrt{F_{(1-; \underline{2}, n-2)}}$,

2. Use Bonferroni procedure i.e. use g CI's, each with confidence level 1- /g

See comments on section 4.23, pages 157-158.

4.3 Simultaneous Prediction Intervals for "New" Observations

[estimates of Y / \underline{X}_{h1} , Y / \underline{X}_{h2} , Y / \underline{X}_{h3} ... (<u>individual</u> Y's)] use $\hat{Y} +/-$ multiple \times SE(\hat{Y}): multiple based on F (Scheffé) or t (Bonferroni) [both incorporate # of X's in question] Highlights / Key Concepts in NKNW4 Chapter 4

4.4 Regression through Origin: $Y | X = {}_{1}X + {}_{;} E(Y | X) = {}_{1}X ;$

 $Y | X \sim ??(-1X, -2)$ for Least Squares (LS) Estimation

 $Y | X \sim \text{Gaussian}(1X, 2)$ (or Central Limit Theorem) for t-based inferences

LS estimates { or ML under Gaussian 's }

$$b_{1} = \stackrel{n}{_{1}} = \frac{xy}{x^{2}} = \frac{slope \times x^{2}}{x^{2}}$$

$$= \frac{\frac{y}{x}x^{2}}{x^{2}} = \frac{slope \times x^{2}}{x^{2}}$$

$$= \frac{slope \times weight}{weight} \quad with slope = \frac{y}{x}, weight = x^{2}.$$

$$Var(slope_{i}) = Var(\frac{y_{i}}{x_{i}}) = \frac{Var[y_{i}]}{x_{i}^{2}} = \frac{2}{x_{i}^{2}}.$$

$$b_{1} \text{ is a weighted average of individual slope estimates,}$$
with weights that are *inversely proportional to their variances*, i.e.,
weight_{i} = \frac{x_{i}^{2}}{x_{i}^{2}} = \frac{2}{n \times average[x^{2}]} \text{ so } SE(b_{1}) = \frac{RMSE}{\sqrt{n} \times \sqrt{average[x^{2}]}}
$$Cautions$$
Formula for b_{1} is different from one for E(Y | X) = 0 + 1X model
(force 0 to 0 before estimating 1)
$$(see p \ 163...)$$

To $\beta_0 = 0$ or NOT TO $\beta_0 = 0$??

(force $_0$ to 0 before estimating $_1$)

Do not force line through intercept unless very clear physical model to justify it ...

usually, one does not loose much by allowing a non-zero incercept when in fact it is zero.

A more serious issue is whether here (and also in the non-zero intercept model) the assumption of the constant variance σ^2 in the Y | X ~ ??(function of X, σ^2) model is appropriate.

For example, if in the zero-intercept model, the variance is proportional to X, then the slope *estimator* $b_1 = y / x = x(y/x) / x$ (i.e., weight of x for individual slope estimate y/x) is more efficient than the (also unbiased) estimator derived from the constant variance model above.

4.5 Measurement Errors and their effects

a) Measurement Errors in Y

They get absorbed into residuals

$$Y = _0 + _1 X + _m$$

biologic/real/unexplained

measurement error

 $var(Y \mid X) = \frac{2}{m} + \frac{2}{m^2}$

m

Can average several (k) measurements on same individual to reduce effect of measurement error

$$\operatorname{var}(Y|X) = \frac{2}{k} + \frac{m^2}{k}.$$

b) Measurement Errors in X

- X real/"true" X
- X* observed/recorded value

2 situations (difference is quite subtle!!)

- "Classical" Error Model

 $X^* = X +$

(X,Y[X]) chosen but $(X^*,Y[X])$ recorded; E[] = 0; uncorrelated with X

so that $var(X^*) = var(X) + Var() \#$

- ''Berkson'' Error Model

 $X^* = X +$

 $(X^*, Y[X^*])$ targetted but $(X^*, Y[X])$ recorded; E[] = 0; uncorrelated with X* (but necessarily correlated with X:- if told , would know X)

Interpreting Var(X) as <u>observed</u> var; Var () in sampling variance (repeatable) sense.

4.5 Measurement Errors ... b) Measurement Errors in X ...

-''Classical'' Error Model

True regression model : $Y = _0 + _1X + _1$

<u>BUT</u> the "X" values we record are not correct . i.e.

although X generated Y, we record it as $X^* = X +$

X: true value ; E[] = 0; uncorrelated with X

If use naive LS estimator b_1 to estimate β_1 from the X*'s ... then b_1 <u>biased towards null</u> (zero) ("ATTENUATION") $E[b_1] = \beta_1 \frac{var(X)}{var(X^*)} = \frac{var(X)}{var(X) + var(\delta)} < \beta_1 \text{ if } var(\delta) > 0.$

 $\frac{var(X)}{var(X^*)} = \frac{var(X)}{var(X) + var(\delta)} = \frac{variation in "true" X values}{variation in observed values} \le 1$

alias: "Intra-Class Correlation Coefficient" or "Reliability Coefficient" is the "ATTENUATION" factor

If pilot studies or literature can furnish an estimate of ICC... one can DE-ATTENUATE:

"bias-corrected" estimator of β_1 : $b_{1[LS]} \times \frac{1}{ICC}$

EXAMPLE OF "FLAT" SLOPE ("classical" measurement error model)

These 40 students 13 years later ... in 1999

Highlights / Key Concepts in NKNW4 Chapter 4

How much, and at what rate, did they age in these 13 years?

▶	AGE99	=	AGE86
Re	sponse	Distribution:	Normal
Li	nk Funo	ction: Ide	entity

		Mode	Equation	on			
AGE99	= 1	3	+	1.0	AGE86		
A G E 9 9	50 45 40 35						
			25		30	35	40
					AGE86	;	

What if these 40 students had given their ages as true age +/- 5 years (with the + or - determined at random, without regard to true age)?

Age86____ = Age86 +/- 5

-	Age86	Age99	Age86
Mean	30.0	$43.0 \\ 4.9 \\ 24.4$	28.5
Std Dev	4.9		6.5
Variance	24.4		41.9
Minimum	22	35	17
Maximum	42	55	47

change__ = Age99 - Age86___;

Fall 1999 Course 513-697: Applied Linear Models

	Analysis of Variance				
Source	DF	Sum of Squares	Mean Square	F Stat	Prob > F
Model	1.00	430.76	430.76	31.35	0.0001
Error	38.00	522.21	13.74		
C Total	39.00	952.98			

4.5 Measurement Errors ... b) Measurement Errors in X ...

-''Berkson'' Error Model

True regression model : $Y = _0 + _1X + _1$

<u>BUT</u> the "X" values we record are not correct . i.e.

we targetted (and recorded) X^* (e.g. thermometer set to $X^* = 22$ C) but actual X is different from targetted/recorded X^* i.e. true value $X = X^* + ; E[] = 0;$ uncorrelated with X^*

If use naive LS estimator b_1 to estimate β_1 from the X*'s $\ ...$

then **b**₁ un<u>biased</u>

The "Classical" vs. "Berkson" difference ...

Assume

• No Biologic Variation (i.e. all ε 's = 0)

i.e. $Y = \beta_0 + \beta_0 X + 0$

• 2-point regression (x^*_1, y_1) and (x^*_2, y_2)

Without loss of generality, assume $\beta_0 = 0$ and $\sigma^2(\epsilon)=0$

''Classical'' Error Model	''Berkson'' Error Model		
$\frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}^*_2 - \mathbf{x}^*_1}$	$\frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}^*_2 - \mathbf{x}^*_1}$		
$\frac{\beta \{ \mathbf{x}_2 - \mathbf{x}_1 \}}{[\mathbf{x}_2 + \delta_2] - [\mathbf{x}_1 + \delta_1]}$	$\frac{\beta\{\mathbf{x}^{*}_{2}+\delta_{2}\}-\beta\{\mathbf{x}^{*}_{1}+\delta_{1}\}}{\mathbf{x}^{*}_{2}-\mathbf{x}^{*}_{1}}$		
$\frac{\beta \{\mathbf{x}_2 - \mathbf{x}_1\}}{[\mathbf{x}_2 - \mathbf{x}_1] + [\delta_2 - \delta_1]}$	$\frac{\beta \{\mathbf{x}^{*}_{2} - \mathbf{x}^{*}_{1}\} + \beta \{\delta_{2} - \delta_{1}\}}{\mathbf{x}^{*}_{2} - \mathbf{x}^{*}_{1}}$		
$\frac{\beta}{1 + \frac{\delta_2 - \delta_1}{\mathbf{x}_2 - \mathbf{x}_1}}$	$\beta \left(1 + \frac{\delta_2 - \delta_1}{\mathbf{x}^*_2 - \mathbf{x}^*_1}\right)$		
random component $\delta_2 - \delta_1$ is in denominator	random component $\delta_2 - \delta_1$ is in numerator		

Replacing subjects' ages (X) with X* = average age for subjects in an age category, generates Berkson type measurement errors.

4.6 Inverse Predictions (Use of regression for "calibration": see comments p 169) *Example:*

Estimation of Gestational Age from Ultrasound Measurements of Fetal Head Size

n (X,Y) pairs with known X's ==> (b₀, b₁, MSE, X_{bar}) $Y_h ==> \hat{X}_h = \frac{Y_h - b_0}{b_1}$

Exact Var(
$$\hat{X}_h$$
) ???

$$\hat{X}_{h} = \frac{Y_{h} - RV_{0}}{RV_{1}}$$

(Approx) est. of Var(
$$\hat{X}_h$$
): $\frac{MSE}{b_1^2} \left[1 + \frac{1}{n} + \frac{(\hat{X}_h - X_{bar})^2}{(X - X_{bar})^2} \right]$

4.7 Choice of X levels

Well explained in book, pp 169-170

Would simply emphasize a different way of viewing the terms

$$\frac{2}{(X - X_{bar})^2} ,$$

$$\frac{1}{n} + \frac{(X_h - X_{bar})^2}{(X - X_{bar})^2} , \text{ etc}$$

namely

$$\frac{2}{n \operatorname{Var}(X)} ,$$

$$\frac{1}{n} + \frac{(X_{h} - X_{bar})^{2}}{n \operatorname{Var}(X)} , \text{ etc}$$

This way, for example, $SD(b_1) = \sqrt{n SD(X)}$

Here, don't fuss about Var(X) being defined with divisor of n vs. n-1. If we have the choice of which X's to study, we are using our definiton of variance, namely

"Var"(X) =
$$\frac{1}{n}$$
 (X - X_{bar})²

as a measure of the spread of the chosen X's.