• §3.1 Dx for Predictor Variable

Spread of x's ... range of validity ; efficiency (if have choice at design stage)

Time sequence of measurements ... "drift", learning effect etc

• §3.2 Residuals

<u>Definition</u>: $e = Y - \hat{Y}$ [e's observed; there is not a 1:1 correspondence with <u>unobservable</u> = Y - E(Y)]

[if model correct and 's follow N(0,) distribution, can expect certain patterns in e's]

Even without any distributional assumptions, i.e. simply from their construction/calculation...

- ave of n e's = 0
- Variance of n e's = $\frac{1}{n-2}$ e² = SSE / (n-2) = Mean Square Error (average squared residual)
 - n-2 "degrees of freedom" = n-2 indpendent assessments of 2 [if model correct]

(no internal estimate of 2 if n=2, since 2 y's define the fitted line)

- e's (almost) independent of each other (if n-2 reasonably large)

2 constraints

-- e's sum to zero

-- x-weighted average of e's = 0 xe = 0 ==> e's "orthogonal" to x's

Semi-studentized Residuals -- making the residuals independent of Y scale (akin to Z scores)

$$\frac{e - 0}{estimate of} = \frac{e}{MSE^{1/2}} = \frac{e}{Root Mean Square Error} = \frac{e}{RMSE}$$

Why "Semi-studentized" ... Even if var() = $\frac{2}{100}$ for all X, that does not mean that the e's have equal variability

e's at X extremes vary less that e's at X centre [see the EMS spreadsheet] so e/RMSE somewhat crude.

• Departures from model and §3.3 Diagnostics for Residuals

<u>Plots</u>							
	e's vs X	e's vs Ŷ	e's vs Time	e distribution	QQplot	(e's vs other X)	
$\mu_{Y X}$ not linear in X	×	×					
$^{2}_{Y X}$ not constant over X	×						
's not Gaussian distribution				×	×		
's (serially/otherwise) correlated			×				
outlier observations	×	×					
omitted predictors						×	

NON-CONSTANCY OF ERROR VARIANCE (common ; seldom critical*)

1) Compare absolute deviations of e's from their medians categorized according to high/low x -- 2 sample t test (modified Levine test)

2) More quantitaive -- regress e-squared on X -- test for non-zero slope.

TX: IF NON-CONSTANCY OF VARIANCE IS ONLY "PROBLEM" ...

use Weighted Least Squares for more efficient estimates of regression coefficients

* if using for individual variation (e.g growth charts) model ($|X\rangle$ as function of X

NON-NORMALITY CHECKS

Informallly (Visually) Histogram

QQ Plot (Normal Probability Plot)

Expected Value of residual under Normality

 $\mathsf{MSE} \times \mathsf{Z}_i$

use Z's to approximate the expected values of the n order statistics from N(0,1) distrn.

compute Z's corresponding to
$$p = \frac{5/8}{n + 1/4}$$
 $\frac{15/8}{n + 1/4}$... $\frac{(n-1) + 5/8}{n + 1/4}$

if n = 40, the 40 order statistics are at <u>approx</u>. 2.5% ile, 5% ile, 7.5% ile, ... 97.5% ile. (Could omit MSE from both and use studentized residual on vertical axis).

FORMALLY

Correlation of e's and Expected e's -- Looney & Gulledge Table -- want high correlation

Kolmogorov - Smirnoff ...

• §3.4 - §3.6 Formal tests involving residuals [I don't use them]

• §3.7 TEST OF LACK OF FIT (WHEN HAVE REPLICATE Y'S AT SOME X'S) (say at c unique X values)

Linear Regression Model Saturated Model $Y_{ij} = 0 + 1X_i + ij$ $Y_{ij} = \mu_i + ij$ estimate c separate means estimate c means via single line (2 df) use n-c df to estimate "pure" have n-2 df which we can split up into (within X) variation of Y SS pure error n - c df (*) SSLack of fit c-2 df **SSpure error** n-c df [from *] SS residual n-2 df $\frac{SS_{Lack of fit} / \{c-2\}}{SS_{pure error} / \{n-c\}}$ ===> Lack of Fit Large F = ybar(2) ybar(i) pure Error ybar(1) ack of Fit component.

To compute SS_{lack of fit}...

- obtain ss residual from lin. reg. model (includes 2 components)

- obtain ss "pure-error" fron ANOVA program	eg. in SAS PROC GLM; CLASS X; (X as categoriacl variable) MODEL Y =X; (1-way ANOVA)
- subtract the two	SourceSSBetween{Model}Within{Error } <- pure error.

Idea in <u>Lack of Fit</u> Test i.e. <u>Saturated</u> Model vs <u>Reduced</u> Model is a prototype for similar tests in multiple regression

Model with p parameters	n-p	df for error
Model with p + k parameters	n-p-k	df
S [SS _{residual} smaller model	- SS _{residual}	larger model] / k
F = SS _{residual} large	r model / ((n-p-k)