Highlights / Key Concepts in NKNW4 Chapter 2.1-2.6

[See also "Notes on M\&M Chapters 2 and 9", "Bridge" from 607" \& "Chapter 5" under Chapter 5 of webpage for course 678]

- Parameters of Interest: β_{1}, β_{0} and derivatives of them; Estimators of these: b_{0}, b_{1} and derivatives of them
- The following are all based on the assumption of Gaussian Error Regression Model
- Inferences based on t distrn. [non-Gaussian errors $=>t$-based inferences not entirely accurate, but 'close' if n large]
- Reason for $t: \quad-b_{0}, b_{1}$, and estimates derived from them are all linear combinations of Y 's and so all have Gaussian variation
- variances of b_{0}, b_{1} and estimates derived from them all involve σ^{2};
- if σ^{2} known, all inferences would be based on Gaussian distribution
but σ^{2} has to be estimated, so must use a slightly wider distribution (t) instead
- $\S 2.1$ Inference concerning β_{1} [β_{1} usually of far greater interest than β_{0}]
- $\beta_{1}=0$ <==> "No linear association $\mathrm{b} / \mathrm{w} Y$ and X " (Distrn of $\mathrm{Y} \mid X$ identical for all X
- $\beta_{1} \neq 0<==>$ "Linear association b/w Y and X"
- b_{1} is linear combination of Gaussian random variables -- each has a different mean if $\beta_{1} \neq 0$
- $E\left\{b_{1}\right\}=\beta_{1}$ so b_{1} is an unbiased estimator of β_{1}
$\cdot \operatorname{var}\left\{\mathrm{b}_{1}\right\}=\frac{\sigma^{2}}{\sum[\mathrm{X}-\overline{\mathrm{X}}]^{2}}$
See "Notes on M\&M Chapters 2 and 9" (under chapter 5 in 678 www page) for discussion of alternative forms for $\operatorname{var}\left\{\mathrm{b}_{1}\right\}$ and for the factors that affect $\operatorname{var}\left\{\mathrm{b}_{1}\right\}$
- $\mathrm{b}_{1} \sim \operatorname{Gaussian}\left(\beta_{1}, \operatorname{var}\left\{\mathrm{~b}_{1}\right\}\right) \Rightarrow>\frac{\mathrm{b}_{1}-\beta_{1}}{\sqrt{\operatorname{var}\left\{\mathrm{~b}_{1}\right\}}} \sim \operatorname{Gaussian}(0,1)$

BUT $\operatorname{var}\left\{\mathrm{b}_{1}\right\}$ involves $\sigma^{2} \ldots$ and σ^{2} is typically unknown and so must be ESTIMATED... by MSE $=\frac{\sum[\mathrm{Y}-\hat{\mathrm{Y}}]^{2}}{\mathrm{n}-2}$
so, we have instead: $\quad \frac{\mathrm{b}_{1}-\beta_{1}}{\sqrt{\text { ESTIMATED } \operatorname{var}\left\{\mathrm{b}_{1}\right\}}} \sim \mathrm{t}($ with $\mathrm{n}-2$ degrees of freedom $)$
THIS IS THE BASIS FOR INFERENCES CONCERNING β_{1}

This is the same concept as when in a first course in statistics, we wished to make inference concerning μ on the basis of n independent observations from a single Gaussian $\left(\mu, \sigma^{2}\right)$. In that case... $\overline{\mathrm{Y}}$ is a linear combination of i.i.d. Gaussian random variables -- with mean $\mu ; \mathrm{E}\{\overline{\mathrm{Y}}\}=\mu$ so $\overline{\mathrm{Y}}$ is an unbiased estimator of $\mu ; \operatorname{var}\{\overline{\mathrm{Y}}\}=\frac{\sigma^{2}}{\mathrm{n}}$
$\Rightarrow \overline{\mathrm{Y}} \sim \operatorname{Gaussian}(\mu, \operatorname{var}\{\overline{\mathrm{Y}}\}) \Rightarrow \frac{\overline{\mathrm{Y}}-\mu}{\sqrt{\operatorname{var}\{\overline{\mathrm{Y}}\}}} \sim \operatorname{Gaussian}(0,1)$
$\operatorname{BUT} \operatorname{var}\{\overline{\mathrm{Y}}\}$ involves $\sigma^{2} \ldots$ but if σ^{2} is unknown and must be ESTIMATED... by MSE $=\frac{\sum[\mathrm{Y}-\overline{\mathrm{Y}}]^{2}}{\mathrm{n}-1}$ then, we have instead: $\quad \frac{\overline{\mathrm{Y}}-\mu}{\sqrt{\text { ESTIMATED } \operatorname{var}\{\overline{\mathrm{Y}}\}}} \sim \mathrm{t}(\mathrm{n}-1$ degrees of freedom $)$

- t variable with v degrees of freedom $=\frac{\text { Gaussian }[0 ; 1] \text { variable }}{\sqrt{\frac{\text { Independent } \chi^{2} \text { variable with } v \text { degrees of freedom }}{v}}}$

Highlights / Key Concepts in NKNW4 Chapter 2.1-2.6

- $100(1-\alpha) \%$ 2-sided CI for $\beta_{1}: \quad \mathrm{b}_{1} \pm \mathrm{t}(1-\alpha / 2, \mathrm{n}-2) \sqrt{\text { ESTIMATED var }\left\{\mathrm{b}_{1}\right\}}$
- $\sqrt{\text { ESTIMATED } \operatorname{var}\left\{\mathrm{b}_{1}\right\}}$ is often called the Standard Error or "SE" of b_{1}.
- Test of hypothesis $\mathrm{H}_{0}: \beta_{1}=$ specified value [not necessarily zero]
vs. $\quad H_{a}: \quad \beta_{1} \neq$ specified value [2-sided] \quad or say $\beta_{1}>$ specified value [1-sided]
based on test statistic $\mathrm{t}^{*}=\frac{\mathrm{b}_{1}-\text { specified value }}{\sqrt{\text { ESTIMATED var }\left\{\mathrm{b}_{1}\right\}}}$ vis-a-vis $\mathrm{t}(\mathrm{n}-2)$
NOTE the link between 2-sided tests and 2-sided CI's (cf example 1 p 51, next line after 2.16)
INSTEAD OF "CONCLUDING H_{0} " (in 2.18 p 51), PREFERABLE TO SAY "DID NOT REJECT H_{0} "
(there's a big difference between 'concluding' and 'not ruling out' : if we took the author's wording, then a great way to never conclude anything but H_{0} would be to not collect much data, so that the power to detect H_{a}, even if it were true, was minimal; there is a big difference between "evidence of no relation" and "no evidence of a relation")
- 2.2 Inference concerning β_{0} [β_{0} usually of lesser interest -- might not even be any data close to $X=0$]

Inference via $b_{0}=\bar{Y}-b_{1} \bar{X}$
Can rewrite b_{0} as a linear combination of Y's, so if errors (and thus Y's) are Gaussian, so will be behaviour of b_{0}.
$\operatorname{var}\left\{\mathrm{b}_{0}\right\}=\frac{\sigma^{2}}{\mathrm{n}}+\sigma^{2} \frac{\overline{\mathrm{X}}^{2}}{\sum[\mathrm{X}-\overline{\mathrm{X}}]^{2}}=\sigma^{2}\left[\frac{1}{\mathrm{n}}+\frac{\bar{X}^{2}}{\sum[\mathrm{X}-\overline{\mathrm{X}}]^{2}}\right]$
note that the further the data are from $\mathrm{X}=0$, the larger the uncertainty in the estimate of the intercept.

$$
\text { inference via fact that } \quad \frac{\mathrm{b}_{0}-\beta_{0}}{\sqrt{\text { ESTIMATED } \operatorname{var}\left\{\mathrm{b}_{0}\right\}}} \sim \mathrm{t}(\text { with } \mathrm{n}-2 \text { degrees of freedom })
$$

- 2.3 Notes:

- Asymptotic normality: akin to Central Limit Theorem and the fact that a linear combination of a large number of nonidentical but INDEPENDENTLY distributed [a key assumption] random variables will have close to a Gaussian distribution even if the random variables do not themselves have Gaussian distributions. A little more complicated here since dealing with ratio of a linear combination of random variables to a separate estimate of variance.
- Spacing of X levels: see "factors that affect SE of estimate of slope" in other handout (from course 607).
- Power of Tests... skip for now
- 2.4 Inference concerning $\mathbf{E}\{Y \mid$ specified level of $\mathbf{X}\} \quad$ [don't know why authors used h in X_{h}]:

Point Estimator of $E\left\{Y \mid\right.$ specified level, X_{h}, of $\left.X\right\}: \hat{Y}_{h}=b_{0}+b_{1} X_{h}$ Note : $\mathbf{b}_{\boldsymbol{0}} \boldsymbol{\&} \quad \mathbf{b}_{\mathbf{1}}$ negatively correlated*

- This is a linear combination of the Y 's and so has a Gaussian distribution with

Highlights / Key Concepts in NKNW4 Chapter 2.1-2.6

$$
\mathrm{E}\left\{\hat{\mathrm{Y}}_{\mathrm{h}}\right\}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{h}}
$$

$$
\operatorname{Var}\left\{\hat{\mathrm{Y}}_{\mathrm{h}}\right\}=\sigma^{2}\left[\frac{1}{\mathrm{n}}+\frac{\left[\mathrm{X}_{\mathrm{h}}-\overline{\mathrm{X}}\right]^{2}}{\sum[\mathrm{X}-\overline{\mathrm{X}}]^{2}}\right]
$$

* var more easily derived if rewrite $\hat{\mathbf{Y}}_{\mathrm{h}}=\overline{\mathbf{Y}}+\mathrm{b}_{1}\left[\mathrm{X}_{\mathrm{h}}-\overline{\mathbf{X}}\right] \ldots 2$ components uncorrelated $>$
- Again, as in 2.1 and 2.2, we must usually ESTIMATE σ^{2} by MSE, so that we instead have

$$
\frac{\left.\hat{Y}_{h}-\left\{\beta_{0}+\beta_{1} X_{h}\right\}\right]}{\sqrt{\text { ESTIMATED } \operatorname{Var}\left\{\hat{Y}_{h}\right\}}} \sim t(\mathrm{n}-2 \text { degrees of freedom })
$$

CI's and tests are as in $\S 2.1$ or $\S 2.2$.
As can be seen from variance formula, Cl's are wider further away from the center, $\overline{\mathrm{X}}$, of the X points.
Note also that if $X_{h}=\bar{X}$, then $\hat{\mathrm{Y}}_{\mathrm{h}}=\overline{\mathrm{Y}}$ and $\operatorname{Var}\left\{\hat{\mathrm{Y}}_{\mathrm{h}}\right\}$ reduces to the familiar $\operatorname{var}\{\overline{\mathrm{Y}}\}=\sigma^{2}\left[\frac{1}{\mathrm{n}}\right]$.

- 2.5 Inference (prediction) concerning a new Y at a specified level of X \}:

Have to approach in two steps:
1 estimate what the mean (center) of all possible observations would be at $\mathrm{X}=\mathrm{X}_{\mathrm{h}}$.
2 Overlay the distribution of individual Y's on this estimated mean. Having lots of data to estimate the center quite precisely will not alter the fact that the individuality of the Y values remains unaltered; mind you, we will have to estimate --via the MSE -- this individuality.

The uncertainty about a new individual now contains two components 1 . the precision (or lack of it) associated with getting the middle correct and 2. the (unalterable) individuality or individuals

$$
\begin{aligned}
& \text { pred observation on individual }=\text { true mean }+ \text { error in estimating this mean }+ \text { individuality } \\
& \operatorname{var}\{\text { pred observation on individual }\}=\operatorname{var}\{\text { estimate of mean }\} \quad+\operatorname{var}\{\text { individuals about true mean }\}
\end{aligned}
$$

$$
\begin{aligned}
& =\sigma^{2}\left[\frac{1}{n}+\frac{\left[X_{h}-\bar{X}\right]^{2}}{\sum[X-\bar{X}]^{2}}\right]+ \\
& =\sigma^{2}\left[1+\frac{1}{n}+\frac{\left[X_{h}-\bar{X}\right]^{2}}{\sum[X-\bar{X}]^{2}}\right]
\end{aligned}
$$

CI for individual based on $\mathrm{t}(\mathrm{n}-2)$ rather than Z , since σ^{2} has to be estimated by MSE.

- 2.6 Confidence Band for ENTIRE Regression Line:

- This is different from what is usually output, namely the CI given in §2.5
- See especially notes 3 and 4 p69

