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3.1 (1) Residuals are in original Y units whereas  semi-studentized residuals are scaled so their
SD is approx 1.

(2) ε's are unobservable "true" deviations of Y from hypothetical or assumed unobservable
mean [Y | X] = ß0 + ß1 X, and thus E[ε]=0. The e's are observed residuals measured about the
observed line. Their mean is (by construction) zero.

(3)  ε is the error term and e is the observed (constructed) residual.

3.2 See text.

3.9 The + + -  -  -  + + pattern of residuals suggests a quadratic relation would be better than a
simple linear one. I don't think of going to (X,X2) as a "transformation" per se [since it adds
terms to the model, rather than rescales terms] but some of you (and I think the textbook) see
it that way.

3.19 [NOT asked this year .. quirte tricky!] Plot e  vs  Ŷ  or e  vs  Y ???
e vs Ŷ won't show systematic tendencies if model fits; e vs Y will, even if fit is quite good.

e vs Y will be a positive relation. I found it helpful to experiment with the Excel spreadsheet
(EMS) to see what is happening before I worked out the following algebra.

Theoretically, to see this, without loss of generality (w.l.o.g.) ,

take X
-
 = Y

-
 = 0     => b0 = 0, 

and SD(X) = SD(Y) = 1  => b1 = corr[Y,X] = r  and  SD[e] = 1  - r2  SD(Y) = 1  - r2 

Then observed correlation of  e's and Y's is

corr[e,Y]  = ave[e × Y] / {SD[e] × SD[Y]}

= ave[{Y - b1 X} × Y]  / SD[e]

= {ave[Y2] - b1 ave[ X × Y]  = ave[Y2] - b1 r } / SD[e]

= {ave[Y2] - r2 } / SD[e]

= {1 - r2 } /  SD[e]

=  1  - r2 

Numerical Example ... Y=GPA vs X=EntryScore
                      General Linear Models Procedure

Dependent Variable: GPA
                                   Sum of          Mean
Source                  DF        Squares        Square  F Value    Pr > F
Model                    1     6.43372807    6.43372807    34.00    0.0001
Error                   18     3.40627193    0.18923733
Corrected Total         19     9.84000000

                  R-Square           C.V.      Root MSE           GPA Mean
                  0.653834       17.40057       0.43501            2.50000

 Pearson Correlation Coefficients
                                      GPA          RESIDUAL
               GPA                1.00000           0.58836
               RESIDUAL           0.58836           1.00000

Check:    1  - r2   =  1  - 0.653834   = 0.346166   = 0.58836
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Intuitively ... Y has 2 parts (1) its (fitted) expectation,  Ŷ, and (2) its (fitted) residual, e.

If we correlate e with Y, then Y still contains the e portion, i.e. Y and e have e in common.

Extreme examples;  w.l.o.g., suppose Y
-
 = 0.

(i)  Suppose b1 = 0 (so r = 0) so that Y = Ŷ + e =   Y
-
  + e  =  0 + e  = e ;

e and Y are perfectly positively correlated!

(ii) Suppose r=1; then   Ŷ  = Y, and so Y =  Ŷ + e  = Y  + 0  i.e.,  e = 0 and so

Y and e are uncorrelated.

3.20 The (vertical) distribution of Y|X does not change just because we locate Y|X over some new
X' = some transform of X. In contrast, transforming from Y|X tto Y'|X where Y' is some
function of  Y, certainly will change the vertical  distribution of these Y's. The only
transformation of Y that leaves the distribution Gaussian is a linear transform.

3.21 Rather than reverse-engineer it, it is easier to start with each (Yij  - Ŷij) and re-express it as

Yij  - Ŷij  = (Yij  - Y
-

j) + ( Y
-

j - Ŷij).

The square of this involves the squares of the two components and twice their crossproduct.

The task then reduces to showing that the sum (over i and j) of these crossproducts is zero.

The keys are that Ŷij  is the same for all i within j, and that within any j, the sum Σ(Yij  - Y
-

j) is 0

by definition of a mean.

2 Dental Caries (Y) and Fluoride (X)

a Simple "Y vs X plot shows a curvilinear relationship, a "law of diminishing returns" with
an asymptote (irreducible minimum) somewhere beyond 1.2 or 1.5 parts per million.

Residual (from linear fit) vs X (or predicted) shows the same thing:- a straight line
underestimates Y at low and high X (positive residuals), and overestimates at middle X
values (negative residuals). Some of you went to this plot first without ever plotting the Y
vs X, and somehow thought it implied u-shaped relation -- implying increasing caries at
very high F levels.

b Y vs 1/X or Y vs Y0exp[-bX] suggest themselves. By the way, do you think of the latter as
a transformation of the Y [to log] or of the X?

3 Caffeine clearance in smokers and non-smokers.

Most of you fitted log{caffeine level} to time, using the model

E[ log{caffeine} = β0 + β1 T ;   (C = Caffeine; T =  time - tmax)

log[ C] | T  ~ Gaussian[ β0 + β1 T, σ2]
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 Response Distribution:  Normal     Link Function:  Identity

LN_C   = 0.54   -   0.12  T  ; R oot MSE =  0.12

Model assumes that
 
var[ log_C]

 is Gaussian and

 constant over T

In this model, the estimation procedure does not even know that the "Y" is already a log
of something else, and it is the vertical variation in the logC that is assumed Gaussian
and constant over T. i.e. the RMSE of 0.12 is in the logC scale.

You are essentially assuming that the C's are log-normal and that logC has same
variance regardless of T.

At least one student (last year) did something that at first sight might look the same, but is
quite different conceptually

E[ C ]  = exp [ β0 + β1 T ;

i.e. log [E[ C ] ]  =  β0 + β1 T] ;

C | time  ~ Gaussian[exp [ β0 + β1 T] , σ*2]

This latter model models the log of the mean of C , whereas the former models the mean of
the log of Y. The latter is possible in this course by use of one of the generalized linear
models.. ie log link and Gaussian variance.
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Response Distribution: Normal    Link Function:  Log

Fitted model  [ Log (E [C] ) =  0.59 -  0.14  T

Mean of Response  1.03   Deviance                0.10
SCALE (MLE)          0.13   Deviance / DF       0.02

Model assumes that 

var[ C | E[C] ]

 is Gaussian and  constant over T

If we took the log[C]'s from linear model, equal variance assumptions in the former, and
then "anti-logged" them, their means on the "regular" C scale would be curvilinear in T and
their variances would be decreasing with T [constant relative errors applied to lower C levels
at large T]

Half-life estimates obtained as log[2]/b1 ;  Thus, a b1 with high SE translates into a half-life
estimate with higher SE. The highest SE's are from subjects where (i) spread of T was not
as wide,(ii) fewer observations or (iii) more variation from fitted line (larger RMSE).


