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Figure 6.1 Graphs of the scaled Schoenfeld residuals ar}d their lowess smooth
obtained from main effects model in Table 6.1. Zero line is drawn for reference.
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Table 6.2 Estimated Coefficients, Standard Errors, z-Scores,
Two-Tailed p-Values and 95% Confidence Intervals for Models
with a Nonproportional Hazard Function in the Continuous
Covariate, x (r_= 100 _with 30% Censoring)

Variable  Coeff.  Std. Err. 4 P>zl 95% CIE
d 0.561 0.256 2.19 0.028 0.059, 1.062
X 0.444 0.050 8.83 <0.001 0.343, 0.539
d 0.540 0.267 2.02 0.043 0.015, 1.063
x 0.539 0.070 7.68 <0.001 0.401, 0.676

axin(f)  0.498 5.149 0.10 0923 -9.594, 10.590

xXin(®) 2337 1.037 2.25 0.024 0.304, 4.368

ficient for d x In(¢). The Wald test for the coefficient for the x x In(z)
term is not significant, suggesting that the model has a proportional
hazard in the continuous covariate. The value of the partial likelihood
ratio test for the addition of the two interaction variables is G =11.355
and, with 2 degrees-of-freedom, the p-value is 0.003. The polygon
connecting the smoothed scaled Schoenfeld residuals in Figure 6.3a
shows a strong initial positive slope that levels off. The shape of this
plot suggests that the dichotomous covariate may be an important de-
terminant of survival initially, but not later in the follow-up period. The
polygon of the smoothed scaled Schoenfeld residuals for the continu-
ous covariate essentially has a zero slope, supporting the lack of signifi-
cance of the interaction with time that was seen in Table 6.3.

These examples demonstrate the utility of the two-step procedure
for assessing the proportional hazards assumption: (1) add the covariate
by log-time interactions to the model and assess their significance using
the partial likelihood ratio test, score test or Wald test and (2) plot the
scaled and smoothed scaled Schoenfeld residuals obtained from the
model without the interactions terms. The results of the two steps
should support each other. Procedures for modeling in the presence of
nonproportional hazards are discussed in Chapter 7, when extensions of
the proportional hazards model are considered. We now turn to evalu-
ating the model developed in Chapter 5 for the UIS, shown in Table
5.11. We leave evaluation of the model in Table 5.13 as an exercise.

The model shown in Table 5.11 for the UIS is relatively complex in
that it contains 10 terms, two of which are interactions and two of which
model nonlinear effects of a continuous covariate. As a first step in as-
sessing the proportional hazards assumption, interactions of each main
effect with log-time were added to the model, using only NDRUGFP1
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Table 6.3 Estimated Coefficients, Standard Errors, z-Scores,
Two-tailed p-Values and 95% Confidence Intervals for Models
with a Nonproportional Hazard Function in the Dichotomous
Covariate, d (n = 100 with 30% Censoring)

Variable  Cocft.  Std. Err. z P>zl 95% CIE
d 4.238  0.608 6.98 <0.001 3.046, 5.430
X 0.171 0.032 5.40 <0.001 0.009, 0.133
d 8.977 1.884 4.77 <0.001 5.285, 12.669
X 0.185 0.034 5.54 <0.001 0.120, 0.251
dxlIn(ry 2709 0.837 3.24 0.001 1.069, 4.350
xxIn( 0009 0.018 0.53 0.598 —0.025, 0.044

for number of drug treatments. Table 6.4 presents the estimated coeffi-
cients, standard errors, Wald statistics and p-values for the Wald statistics
for the interactions with log-time. The value of the partial likelihood
ratio test comparing the model in Table 5.11 to the 17 term model
containing the seven interactions with log-time is G =5.538 which, with
7 degrees-of-freedom, yields p=0.595. These results suggests that the
model may have proportional hazards in each of the seven covariates.
The next step is to examine a plot, similar to those in Figures 6.1—
6.3, for each of the 10 terms in the model. The plots of the scaled
Schoenfeld residuals and the lowess smooths shown in Figure 6.4 sup-
port the assumption of proportional hazards for each of the eight
covariates shown. That is, each subplot in the figure has slope essen-
tially equal to zero. The only possible exception is for the covariate

Table 6.4 Estimated Coefficients, Standard Errors, z-Scores
and Two-Tailed p-Values for the Seven Interactions with

Log-Time Added to the Model in Table 5.11 for the UIS
(n = 575)

Variable Coeff. Std. Err. 4 P>zl
AGEXIn(z) 0.002 0.009 0.20 0.838
BECKTOFAXIn(r)  -0.007 0.005 1.38 0.166
NDRUGFP1xIn(z) -0.016 0.018 0.89 0.375
IVHX 3xin(s)  -0.030 0.113 0.27 0.791
RACEXIn(r) 0.113 0.125 0.91 0.364
TREATXIn(z) 0.128 0.100 1.28 0.201
SITExIn(t)  -0.023 0.114 0.20 0.842
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Figure 6.3 Graphs of the scaled Schoenfeld residuals and their lowess smooth
RACEXSITE. The zero line is drawn for reference.

obtained from the main effects model in Table 6.3. Zero line is drawn for refer-

ence.
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TREAT (third row, right plot). This plot could be interpreted to mean
that the effect of the longer treatment (TREAT=1) is most pronounced
in the earlier and later periods of follow-up. However, we will not con-
sider the possible departure from proportional hazards to be significant,
since the Wald test of the treatment by log-time interaction is not sig-
nificant, p = 0.201. We reexamine the effect of treatment in Chapter 7,
when covariates that vary with time are discussed in detail. The plots for
NDRUGFP?2 and AGEXSITE (the two terms in the model in Table 5.11
that are not shown in Figure 6.4), also support the proportional hazards
assumption.

The two-step procedure for assessing proportional hazards yields
results that support this assumption for the 10-term model for the UIS
shown in Table 5.11. We now consider the evaluation of the subject-
specific diagnostic statistics for leverage and influence.

6.4 IDENTIFICATION OF INFLUENTIAL AND POORLY
FIT SUBJECTS

Another important aspect of model evaluation is a thorough examina-
tion of regression diagnostic statistics to identify which, if any, subjects:
(1) have an unusual configuration of covariates, (2) exert an undue in-
fluence on the estimates of the parameters, and/or (3) have an undue
influence on the fit of the model. Statistics similar to those used in lin-
ear and logistic regression are available to perform these tasks with a
fitted proportional hazards model. There are some differences in the
types of statistics used in linear and logistic regression and proportional
hazards regression, but the essential ideas are the same in all three set-
tings.

Leverage is a diagnostic statistic that measures how “unusual” the
values of the covariates are for an individual. In some sense it is a re-
sidual in the covariates. In linear and logistic regression leverage [see
Hosmer and Lemeshow (1989), Kleinbaum, Kupper, Muller and Nizam
(1998), and Ryan (1997)] is calculated as the distance of the value of
the covariates for a subject to the overall mean of the covariates. It is
proportional to (x—)?)z. The leverage values in these settings have nice
properties in that they are always positive and sum over the sample to
the number of parameters in the model. While it is technically possible
to break the leverage into values for each covariate, this is rarely done in
linear and logistic regression. Leverage is not quite so easily defined
nor does it have the same nice properties in proportional hazards regres-
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sion. This is due to the fact that subjects may appear in multiple risk
sets and thus may be present in multiple terms in the partial likelihood.

The score residuals defined in (6.16) and (6.17) form the nucleus
of t‘he proportional hazards diagnostics. The score residual for the ith
subject on the kth covariate, see (6.14), is a weighted average of the dis-
tance of the value, x,, to the risk set means, x,, ., where the weights are
the cfhange in the martingale residual, am;\z;). "The net effect is that, for
continuous covariates, the score residuals have the linear regression ,lev-
erage property that the further the value is from the mean the larger the
score residual is, but “large” may be either positive or negative. Thus
the score residuals are sometimes referred to as the leverage or partiai
leverage residuals.

The graphs of the score residuals for the covariates AGE
BECKTOTA, NDRUGFP1 and the AGE x SITE interaction obtaineci
from the fitted model in Table 5.11 are shown in Figure 6.5. These
fgur terms were chosen because they are the continuous variables in the
f{tted model and are therefore most amenable to having their score re-
siduals examined graphically. The graphs for the dichotomous covari-

ates are less interesting in that all the values fall on two vertical bands at
zero and one, the two covariate values.

w
=4
=3
=S
L
w
1
2
N

Score Residuals

Score Residuals

-26.26+1 -54.25+4

0 T T T L3 v T
T ) BECKTOTA 4
(b) Score Residuals for BECKTOTA

8514

w
>
15}

il

Score Residuals
Score Residuals

-15.204 . -68.624

T T T -
1
NDRUGTX %o %o AGE N %6
(c) Score Residuals for NDRUGFP1 (d) Score Residuals for AGE by SITE Interaction

Figure 6.5 Graphs of the score residuals com i
puted from the model in Table 5.11
for (a) AGE, (b) BECKTOTA, (c) NDRUGFP1 and (d) AGE x SITE Interaction.
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The score residuals for AGE in Figure 6.5a display the fan shape
expected, being smallest near the mean age of 32 and increasing n ab-
solute value for ages increasingly older or younger than 32. The pur-
pose of the plot is to see whether there are subjects whose ages yield un-
expectedly large values. This would be seen in the graph as a point ly-
ing well away from the others in the plot. In Figure 6.5a there is one
point in the top left and there are two in the bottom right that fall a bit
away from the rest of the points. However, the distance between these
points and the others is not striking. The two oldest subjects, ages 353
and 56, have score residuals that are well within the observed range of
values. Thus, we conclude that there are no high leverage values for
age.
The score residual values for BECKTOTA are plotted in Figure
6.5b. Recall that when we examined the scale of this covariate in Chap-
ter 5 there was evidence in one of the plots, Figure 5.3, of some non-
linearity, but it was attributed to a few high values. These same values
appear in the bottom right corner of Figure 6.5b as high leverage points
that fall well away from all the other points. For the moment we do
nothing more than note this fact.

The covariate, NDRUGTX, entered the model non-linearly with two
terms. The plot of the score residuals for the first term, NDRUGFP]I, is
shown in Figure 6.5¢c. The plot of the score residuals for the second
term, NDRUGFP2, is nearly identical in appearance to Figure 6.5c and
is not presented. The fan shape is not quite as apparent because the
mean number of drug treatments is about 5 while the maximum number
is 40. We chose to plot the score residuals versus the number of drug
treatments, rather than the transformation, NDRUGFP1, in order to more
easily identify values associated with large residuals. The plot of the
residuals versus NDRUGFP1 is essentially the mirror image of this plot
since the transformation is the inverse of the variable. The vertical line
of values at the left of the plot corresponds to the residuals for subjects
with zero previous treatments. The only possible high leverage point is
the one on the bottom left for a subject with zero previous treatments,
but this value is not too distant from the other values. Thus, we con-
clude that none of the score residuals for NDRUGFP1 are abnormally
large.

The score residuals for the AGE X SITE interaction covariate are
plotted versus AGE in Figure 6.5d. The plot does not have the fan
shape seen in Figure 6.5a since, at any age, there is a mix of subjects
from the two sites. There are a few points in the bottom of the plot that
fall a bit away from the others. However, the plot tends to drift down
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with no distinct break, so we conclude that none of the points have |
residuals. P v

In summary, the plots in Figure 6.5 have shown that, except for the
two subjects with the highest values for BECKTOTA, there are no strik-
ingly large score residuals. Graphs and histograms, not shown 0% the
score residuals for the dichotomous covariates in the model ’did not
yield any strikingly large values.

In .linear and logistic regression, high leverage is not necessarily
something to be concerned about. How high leverage contributes to a
measure of the influence that a covariate value has on the estimate of a
coefﬁcient is of concern. The same is true in proportional hazards re-
gression. To examine influence in the proportional hazards setting, we
need statistics analogous to Cook’s distance in linear regression :I’he
purpose of Cook’s distance is to obtain an easily computed statisiic that
approximates the change in the value of the estimated coefficients if a
subject is deleted from the data. This is denoted as

ABy =B~ By, (6.22)

where f, denotes the partial likelihood estimator of the coefficient
computed using the entire sample of size n and 3k(_i) denotes the value

of the estimator if the ith subject is removed. Cain and Lange (1984)

show that an approximate estimator of (6.22) is the kth element of the
vector of coefficient changes

aB, =(B-B, )= VarB)L,, (6.23)

where L; is the vector of score residuals, (6.17), and Vﬁr(ﬁ) is the esti-
mator of the covariance matrix of the estimated coefficients. These are
commonly referred to as the scaled score residuals and their values may
be obtained from some software packages, for example, SAS and S-
PLUS. w ’

Graphs of the scaled score residuals, (6.23), are presented in Figure
6.6 for the‘ covariates whose score residuals were graphed in Figure 6.5.
The'plots in Figures 6.5 and 6.6 are quite similar in appearance, but the
sgalmg has enhanced the fan shape. The points seen in the top left of
Figure 6.5a and the bottom right of Figure 6.5b are more noticeable in

Figures 6.6a and 6.6b, confirming that they may exert an undue influ-
ence on the estimates of the coefficients.
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Figure 6.6 Graphs of the scaled score residuals computed from the model in Ta—
ble 5.11 for (a) AGE, (b) BECKTOTA, (c) NDRUGFP1 and (d) AGE x SITE in-
teraction.

One point in the top and middle of Figure 6.6c lies well away from
the other scaled score residuals for subjects with the same number of
drug treatments. This subject has some potential for influence on the
coefficient for NDRUGFP1. We examine the effect this subject, as well
as others, have on the model later in this section.

The plot in Figure 6.6d is much more distinctly fan shaped than its
counterpart in Figure 6.5d, and none of the points seem to fall well
away from the others. There are no distinct breaks in the points, they
just slowly drift out, so nothing is noted in this plot for further exami-
nation. Plots of the scaled score residuals for the dichotomous covari-
ates in the model revealed no points of potential high influence and thus
are not shown.

Cook’s distance in linear and logistic regression may be used to
provide a single overall summary statistic of the influence a subject has
on the estimators of all the coefficients. The overall measure of influ-
ence 1s
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and using (6.23) it may be approximated using
o ] o)
)[Vaf Bvar(B] Tvar@)e.)

- (L) [Var (B)]L.) (6:24)

SO

The statistic in (6.24) has been shown by Pettitt and Bin Daud (1989) to
be an approximation to the amount of change in the log partial likeli-
hood when the ith subject is deleted. In this context the statistic is called
the likelihood displacement statistic, hence the rationale for labeling it Id
in (6.24). Thus

ld, = 2[Lp(f3)~ L, (B(_i))]. (6.25)

Another form of the likelihood displacement statistic is obtained from a
matrix form of (6.24). In particular let L denote the n by p matrix

whose ith row is I::, see (6.17), and let the n by n matrix of scaled score
residuals be

i[vﬁr(ﬁ)]t'. (6.26)

When the matrix in (6.26) is broken into its eigenvalues and associated
eigenvectors, the n elements in the eigenvector associated with the larg-
est eigenvalue are called the “l-max” statistics and are denoted Im, for
the ith subject. Since both Id; and Im; are overall summary statistics, we
feel it makes the most sense to plot them versus another summary statis-
tic. The one we like to use is the martingale residual. Other possible
choices are tHe estimated survival probability or estimated cumulative
hazard function. We feel that plots of these values against something
like a study identification code or case number may be somewhat useful
in locating large values in small data sets but provide little additional
information about the subject. An additional enhancement that aids in
the interpretation of the plot is to use a different symbol for the two val-
ues of the censoring variable.
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Plots of the values of the likelihood displacement and I-max statis-
tics versus the martingale residuals are shown in Figures 6.7a and 6.7b,
respectively. Both plots have the same asymmetric “cup” shape with
the bottom of the cup at zero. In linear and logistic regression, the in-
fluence diagnostic, Cook’s distance, is a product of a residual measure
and leverage. While the same concise representation does not hold in
proportional hazards regression, it is approximately true in the sense
that an influential subject will have a large residual and/or leverage.
Thus, the largest values of both the likelihood displacement and 1-max
statistic form the sides of the cup and correspond to poorly fit subjects
(ones with either large negative or positive martingale residuals).

Examining the plots in Figure 6.7a, we find that there is a group of
four points lying well away from the others in the top left corner of the
plot, with two other points slightly below this cluster. Five of the six
subjects have censored survival times and all have martingale residuals
less than about —2.0. Figure 6.7b is not quite as cup-shaped as Figure
6.7a, but the four points in the top left of each figure correspond to the
same subjects. The principal difference in the two figures is that the two
subjects on the right edge of Figure 6.7b correspond to a cluster with
the next largest values of the I-max statistics, whereas in Figure 6.7a
these same two subjects do not have large values of the likelihood dis-
placement statistic. Thus the two statistics, while similar for the extreme
values, do identify different subjects in the mid range. From this point
of view it makes sense, in an applied setting, to fook at both statistics to
locate those subjects with large values on both or only one of the statis-
tics.

In summary, use of the plots of the diagnostic statistics for change
in individual coefficients identified four possible subjects whose effect
on the mode! should be checked in more detail: one for AGE in Figure
6.6a, two for BECKTOTA in Figure 6.6b and one for NDRUGFPI in
Figure 6.6c. Four to six subjects were identified in Figures 6.7a and
6.7b as having extreme values for the summary change statistics, likeli-
hood displacement and I-max. These subjects are possibly different
from the ones previously identified in Figure 6.6. We emphasize
“possibly different” because the summary measures take into account
values of all the covariates. A subject extreme on only one covariate
may be near enough to the middle for the others that an extreme value
of the likelihood displacement or l-max statistic would not be generated.

The next step in the modeling process is to identify explicitly the
subjects with the extreme values, refit the model deleting these subjects,
and calculate the change in the individual coefficients. The final deci-
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sion on the continued use of a subject’s data to fit the model will de-
pend on the observed percent change in the coefficients that results
from deleting the subject’s data and, more importantly, the clinical
plausibility of that subject’s data.

Deleting the subjects with extreme values in the change in coeffi-
cient diagnostic for AGE and NDRUGFP1 individually did not produce
marked changes in the coefficients. However, deletion of the two sub-
jects with the extreme values of the diagnostic for change in the
BECKTOTA coefficient yielded a model in which the BECKTOTA co-
efficient was 33.5 percent larger than the coefficient in Table 5.11.

Through a process of deleting and refitting models, we determined
that deletion of the four subjects with the most extreme values of the
likelihood displacement or of the l-max statistics yielded models with
important changes in several coefficients. The deletion of the two sub-
jects with the next largest values of either statistic did not produce addi-
tional important changes in the coefficients.

Further examination of the data showed that the two subjects with
the extreme values for change in the BECKTOTA coefficient were not
among the four with the extreme values of either summary change
measure. The model obtained by deleting six subjects (four [based on
I-max] and two others [based on BECKTOTA]) had a coefficient for
BECKTOTA that increased by 60.8 percent, a coefficient for the RACE
x SITE interaction that increased by 33.6 percent, a coefficient for the
AGE x SITE interaction that increased by 20.3 percent, and a coefficient
for SITE that increased by 14.9 percent. All other coefficients changed
by less than 9 percent. In particular, the coefficient for TREAT in-
creased by only 6.3 percent. At this point we reviewed the data for
these six most influential subjects. We felt that only the value of 54 for
BECKTOTA was a bit unusual, but not too extreme. In the end, there-
fore, we decided to keep all subjects in the data set.

We leave as an exercise the fitting of the models with the specified
subjects deleted and computation of the reported percent change in co-
efficients. We remind the reader that we calculate the percent change in
a coefficiertt as

83%=100(B epeea = Bun ) Bur

where f3,, stands for the estimate of the coefficient from the model with

no subjects deleted and [i',educed stands for the estimate of the coefficient
from the model with subjects deleted.
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Figure 6.7 Graphs of the likelihood displacement or Cook’s distance statistic
and maximum eigenvalue or I-max statistic computed from the model in Table
5.11 versus the martingale residual (0 = censored, 1 = uncensored).
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In summary, we feel that it is important to examine plots of the
score residuals, scaled score residuals, the likelihood displacement statis-
tic and the l-max statistic. The first two statistics are useful for identi-
fying subjects with high leverage or who influence the value of a single
coefficient. The latter two provide useful information for assessing in-
fluence on the vector of coefficients. Each statistic portrays an impor-
tant aspect of the effect a particular subject has on the fitted model.
One always hopes that major problems are not uncovered. However, if
the model does display abnormal sensitivity to the subjects deleted, this
is a clear indication of fundamental problems in the model and we rec-
ommend going back to “square-one” and redoing each step in the
modeling process, perhaps with these subjects deleted.

The next step in the modeling process is to compute an overall
goodness-of-fit test.

6.5 OVERALL GOODNESS-OF-FIT TESTS
AND MEASURES

Until quite recently, all of the proposed tests for the overall goodness-
of-fit of a proportional hazards model were difficult to compute in most
software packages. For example, the test proposed by Schoenfeld
(1980) compares the observed number of events to a proportional haz-
ards regression model-based estimate of the expected number of events
in each of G groups that are formed by partitioning the time axis and
covariate space. Unfortunately, the covariance matrix required to form
a test statistic comparing the observed to expected number of events is
quite complex to compute. The test proposed by Lin, Wei and Ying
(1993) 1is based on the maximum absolute value of partial sums of
martingale residuals. This test requires complex and time consuming
simulations to obtain a significance level. Other tests [e.g., O’Quigley
and Pessione (1989) and Pettitt and Bin Daud (1990)] require that the
time axis be partitioned and interactions between covariates and interval-
specific, time-dependent covariates be added to the model. Overall
goodness-of- it is based on a significance test of the coefficients for the
added variables.

Grgnnesby and Borgan (1996) propose a test similar to the Hosmer-
Lemeshow test [Hosmer and Lemeshow (1989)] used in logistic regres-
stion. They suggest partitioning the data into G groups based on the

ranked values of the estimated risk score, x’ﬁ. The test i1s based on the
sum of the martingale residuals within each group, and it compares the





