EXAMPLE 3 (continued)

General rule for (0,1) exposure variables
when there are product terms:

HR :exp[{§+28iwj]

where
A
B=coefficient of E
A
szcoefﬁcient of £ X W]

(HR does not contain coefficients of non-
product terms)
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To obtain the hazard ratio for the effect of Rx adjusted
for log WBC using model 3, we consider X* and X vec-
tors which have three components, one for each vari-
able in the model. The X* vector, which denotes a
treated subject, has components X, = 1, X, =log WBC
and X5 = 1 times log WBC. The X vector, which denotes
a placebo subject, has components X, = 0, X, = log
WBC and X; = 0 times log WBC. Note again that, as
with the previous example, the value for log WBC is
treated as fixed, though unspecified.

Using the general formula for the hazard ratio, we
must now compute the exponential of the sum of three
quantities, corresponding to the three variables in the
model. Substituting the values from the printout and
the values of the vectors X* and X into this formula, we
obtain the exponential expression shown here. Using
algebra, this expression simplifies to the exponential of
2.355 minus 0.342 times log WBC.

In order to get a numerical value for the hazard ratio, we
must specify a value for log WBC. For instance, if log
WBC = 2, the estimated hazard ratio becomes 5.32,
whereas if log WBC = 4, the estimated hazard ratio
becomes 2.68. Thus, we get different hazard ratio values
for different values of log WBC, which should make
sense since log WBC is an effect modifier in model 3.

The example we have just described using model 3
illustrates a general rule which states that the hazard
ratio for the effect of a (0,1) exposure variable in a
model which contains product terms involving this
exposure with other X’s can be written as shown here.
Note that § “hat” denotes the coefficient of the expo-
sure variable and the & “hats” are coefficients of prod-
uct terms in the model of the form ExW,. Also note that
this formula does not contain coefficients of nonprod-
uct terms other than E.
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EXAM PLE

For model 3, B “hat” is the coefficient of the Rx vari-
able, and there is only one & “hat” in the sum, which is
the coefficient of the product term Rx X log WBC.
Thus, there is only one W, namely W, = log WBC. The
hazard ratio formula for the effect of exposure is then
given by exponentiating § “hat” plus 3; “hat” times log
WBC. Substituting the estimates from the printout
into this formula yields the expression obtained previ-
ously, namely the exponential of 2.355 minus 0.342
times log WBC.

VI. Adjusted Survival Curves
Using the Cox PH Model

Two primary quantities:
1. estimated hazard ratios
2. estimated survival curves

No model: use KM curves

.0
é(t)l Treatment

group

0.5

Placebo
group

10 20
t in weeks

Cox model: adjusted survival curves (also
step functions).

The two primary quantities desired from a survival
analysis point of view are estimated hazard ratios and
estimated survival curves. Having just described how
to compute hazard ratios, we now turn to estimation of
survival curves using the Cox model.

Recall that if no model is used to fit survival data, a
survival curve can be estimated using a Kaplan-Meier
method. Such KM curves are plotted as step functions
as shown here for the remission data example.

When a Cox model is used to fit survival data, survival
curves can be obtained that adjust for the explanatory
variables used as predictors. These are called adjusted
survival curves, and, like KM curves, these are also
plotted as step functions.



\

Cox model hazard function:

n
. ZBIX’I
(1, X) = hy(tye™

Cox model survival function:

2BiX;
S,X) =[S(1)]f

Estimated survival function:
28.%
. . v
S, X) = [So(t)]

A A

So(t) and B; are provided by the computer
program. The X; must be specified by the
investigator.

EXAMPLE: Model 2 Remission
Data
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The hazard function formula for the Cox PH model,
shown here again, can be converted to a corresponding
survival function formula as shown below. This sur-
vival function formula is the basis for determining
adjusted survival curves. Note that this formula says
that the survival function at time ¢ for a subject with
vector X as predictors is given by a baseline survival
function S(t) raised to a power equal to the exponen-
tial of the sum of B, times X;.

The expression for the estimated survival function can
then be written with the usual “hat” notation as shown
here.

The estimates of go(t) and ﬁ‘i are provided by the com-
puter program that fits the Cox model. The X’s, how-
ever, must first be specified by the investigator before
the computer program can compute the estimated sur-
vival curve.

For example, if we consider model 2 for the remission
data, the fitted model written in terms of both the haz-
ard function and corresponding survival function is
given here.

We can obtain a specific survival curve by specifving
values for the vector X, whose component variables are
Rx and log WBC.

For instance, if Rx = 1 and log WBC = 2.93, the esti-
mated survival curve is obtained by substituting these
values in the formula as shown here, and carrying out
the algebra to obtain the expression circled. Note that
the value 2.93 is the overall mean log WBC for the
entire dataset of 42 subjects.

Also, if Rx = 0 and log WBC = 2.93, the estimated sur-
vival curve is obtained as shown here.
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EXAMPLE (con

nued)

Typically, use X=X or X dian-

Computer uses X.

EXAMPLE (continued)

General formulae for adjusted survival
curves comparing two groups:

Exposed subjects:
~ - eﬁl(l)‘*’zﬁz}?z
S, X)) = [SO([)] i#l .

Unexposed subjects:

R R eﬁ1(0)+2ﬁiii
81, X ) =[So )] =

General formula for adjusted survival curve
for all covariates in the model:

N R ez ﬁi}i
$,X) =[S0 ()]

Each of the circled expressions gives adjusted survival
curves, where the adjustment is for the values specified
for the X’s. Note that for each expression, a survival
probability can be obtained for any value of 1.

The two formulae just obtained, again shown here,
allow us to compare survival curves for different treat-
ment groups adjusted for the covariate log WBC. Both
curves describe estimated survival probabilities over
time assuming the same value of log WBC, in this case,
the value 2.93.

Typically, when computing adjusted survival curves,
the value chosen for a covariate being adjusted is an
average value like an arithmetic mean or a median. In
fact, most computer programs for the Cox model auto-
matically use the mean value over all subjects for each
covariate being adjusted.

In our example, the mean log WBC for all 42 subjects
in the remission data set is 2.93. That is why we chose
this value for log WBC in the formulae for the adjusted
survival curve.

More generally, if we want to compare survival curves
for two levels of an exposure variable, and we want to
adjust for several covariates, we can write the formula
for each curve as shown here. Note that we are assum-
ing that the exposure variable is variable X, whose
estimated coefficient is B, “hat,” and the value of X is
1 for exposed and 0 for unexposed subjects.

Also, if we want to obtain an adjusted survival curve
which adjusts for all covariates in the model, the gen-
eral formula which uses the mean value for each
covariate is given as shown here. This formula will give
a single adjusted survival curve rather than different
curves for each exposure group.
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EXAMPLE”(continued)

Compute survival probgbility by specifying
value forz in §(t,X) = [SO(Z)]210-6

Computer uses ¢’s which are failure times.

EXAMPLE

To illustrate this formula, suppose we again consider
the remission data, and we wish to obtain a single sur-
vival curve that adjusts for both Rx and log WBC in the
fitted Cox model containing these two variables. Using
the mean value of each covariate, we find that the
mean value for Rx is 0.5 and the mean value for log
WBC is 2.93, as before.

To obtain the single survival curve that adjusts for Rx
and log WBC, we then substitute the mean values in
the formula for the adjusted survival curve for the
model fitted. The formula and the resulting expression
for the adjusted survival curve are shown here. (Note
that for the remission data, where it is of interest to
compare two exposure groups, the use of a single sur-
vival curve is not appropriate.)

From this expression for the survival curve, a survival
probability can be computed for any value of ¢ that is
specitied. When graphing this survival curve using a
computer package, the values of ¢ that are chosen are
the failure times of all persons in the study who got the
event. This process is automatically carried out by the
computer without having the user specify each failure
time.

The graph of adjusted survival curves obtained from
titting a Cox model is usually plotted as a step func-
tion. For example, we show here the step functions for
the two adjusted survival curves obtained by specifying
either 1 or 0 for treatment status and letting log WBC
be the mean value 2.93.
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Next section: PH assumption
e explain meaning
e when PH not satisfied

Later presentations:
e how to evaluate PH
e analysis when PH not met

We now turn to the concept of the proportional hazard
(PH) assumption. In the next section, we explain the
meaning of this assumption and we give an example of
when this assumption is not satisfied.

In later presentations, we expand on this subject,
describing how to evaluate statistically whether the
assumption is met and how to carry out the analysis
when the assumption is not met.

VIii. The Meaning of the
PH Assumption

PH: HR is constant over time, i.e.,
A A
h(t,X*) = constant X h(,X)

« P .
ho(t) ey B X;

7R = (1, X*) _

T hX)

—exp| S0 (X; X))

i=1

where X* = (X’{,X;,...,X;)
and X = (X, X5, Xp)
denote the set of X’s for two individuals.

h(t,X) i

does not involve r.

Constant
Let
~ 14 ~ *
6 =exp EBi(Xz‘ - Xi)
i=1
then
h(t, X*)

. =9
h(t,X)

~ Do,
ho(t) ey B X;

The PH assumption requires that the HR is constant
over time, or equivalently, that the hazard for one indi-
vidual is proportional to the hazard for any other indi-
vidual, where the proportionality constant is indepen-
dent of time.

To understand the PH assumption, we need to recon-
sider the formula for the HR that compares two differ-
ent specifications X* and X for the explanatory vari-
ables used in the Cox model. We derived this formula
previously in Section V, page 99, and we show this
derivation again here. Notice that the baseline hazard
function hy(t) appears in both the numerator and
denominator of the hazard ratio and cancels out of the
formula.

The final expression for the hazard ratio therefore
involves the estimated coefficients B, “hat” and the val-
ues of X* and X for each variable. However, because
the baseline hazard has canceled out, the final expres-
sion does not involve time 7.

Thus, once the model is fitted and the values for X*
and X are specified, the value of the exponential
expression for the estimated hazard ratio is a constant,
which does not depend on time. If we denote this con-
stant by 8 “hat,” then we can write the hazard ratio as
shown here. This is a mathematical expression which
states the proportional hazards assumption.



HR (X* versus X)

1
i

(1, X*) = glAz(z,X)

>

Proportionality constant (not dependent on time)

EXAMPLE: Remission Data
SR :
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Graphically, this expression says that the estimated
hazard ratio comparing any two individuals, plots as a
constant over time.

Another way to write the proportional hazards
assumption mathematically expresses the hazard func-
tion for individual X* as 6 “hat” times the hazard func-
tion for individual X, as shown here. This expression
says that the hazard function for one individual is pro-
portional to the hazard function for another individ-
ual, where the proportionality constant is 6 “hat,”
which does not depend on time.

To illustrate the proportional hazard assumption, we
again consider the Cox model for the remission data
involving the two variables Rx and log WBC. For this
model, the estimated hazard ratio that compares
placebo (Rx = 1) with treated (Rx = 0) subjects control-
ling for log WBC is given by e to the 1.294, which is
3.65, a constant.

Thus, the hazard for placebo group (Rx = 1) is 3.65 times
the hazard for the treatment group (Rx = 0), and the
value, 3.65, is the same regardless of time. In other
words, using the above model, the hazard for the placebo
group is proportional to the hazard for the treatment
group, and the proportionality constant is 3.65.

To further illustrate the concept of proportional hazards,
we now provide an example of a situation for which the
proportional hazards assumption is not s~tisfied.

For our example, we consider a study in which cancer
patients are randomized to either surgery or radiation
therapy without surgery. Thus, we have a (0,1) expo-
sure variable denoting surgery status, with 0 if a
patient receives surgery and 1 if not. Suppose further
that this exposure variable is the only variable of inter-
est, so that a Cox PH model for the analysis of this
data, as shown here, will contain only the one variable
E, denoting exposure.
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EXAMPLE (continued)

Now the question we consider here is whether the
above Cox model containing the variable E is an appro-
priate model to use for this situation. To answer this
question we note that when a patient undergoes seri-
ous surgery, as when removing a cancerous tumor,
there is usually a high risk for complications from
surgery or perhaps even death early in the recovery
process, and once the patient gets past this early criti-
cal period, the benefits of surgery, if any, can then be
observed.

Thus, in a study that compares surgery to no surgery,
we might expect to see hazard functions for each
group that appear as shown here. Notice that these two
functions cross at about three days, and that prior to
three days the hazard for the surgery group is higher
than the hazard for the no surgery group, whereas
after three days, the hazard for the surgery group is
lower than the hazard for the no surgery group.

Looking at the above graph more closely, we can see
that at 2 days, when t = 2, the hazard ratio of non-
surgery (E = 1) to surgery (E = 0) patients yields a value
less than 1. In contrast, at ¢ = 5 days, the hazard ratio
of nonsurgery to surgery yields a value greater than 1.

Thus, if the above description of the hazard functions
for each group is accurate, the hazard ratios are not
constant over time. That is, the hazard ratio is some
number less than 1 before three days and greater than
1 after three days.

It is therefore inappropriate to use a Cox PH model for
this situation, because the PH model assumes a con-
stant hazard ratio across time, whereas our situation
yields a hazard ratio that varies with time.

In fact, if we use a Cox PH model, shown here again,
the estimated hazard ratio comparing exposed to
unexposed patients at any time is given by the constant
value e to the B “hat,” which does not vary over time.




General rule:
If the hazards cross, then a Cox PH model
is not appropriate.

Analysis when Cox PH model not appropri-
ate? See Chapters 5 and 6.

EXAMPLE (continued)

Different options may lead to different
conclusions.

Hazards
Cross

but

= PH not met

? = PH met

See Chapter 4: Evaluating PH Assumption
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This example illusirates the general rule that if the haz-
ards cross, then the PH assumption cannot be met, so
that a Cox PH model is inappropriate.

It is natural to ask at this point, if the Cox PH model is
inappropriate, how should we carry out the analysis?
The answer to this question is discussed in Chapters 5
and 6. However, we will give a brief reply with regard
to the surgery study example just described.

Actually, for the surgery study there are several options
available for the analysis. These include:

e analyze by stratifying on the exposure variable;
that is, do not fit any model, and, instead obtain
Kaplan-Meier curves for each exposure group
separately;

s start the analysis at three days, and use a Cox
PH model on three-day survivors;

* {it Cox model for less than three days and a differ-
ent Cox model for greater than three days to get
two different hazard ratio estimates, one for each
of these two time periods;

e fit a modified Cox model that includes a time-
dependent variable which measures the interac-
tion of exposure with time. This model is called
an extended Cox model.

Further discussion of these optiuns is beyond the scope
of this presentation. We point out, however, that differ-
ent options may lead to different conclusions, so that
the investigator may have to weigh the relative merits of
each option in light of the data actually obtained before
deciding on any particular option as best.

One final comment before concluding this section:
although we have shown that when the hazards cross,
the PH assumption is not met, we have not shown
how to decide when the PH assumption is met. This is
the subject of Chapter 4 entitled, “Evaluating the PH
Assumption.”
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VIII. Summary

Review: S(1), h(1), data layout, etc.
Computer example of Cox model:
e estimate HR

« test hypothesis about HR

e obtain confidence intervals
Cox model formula:

¥ BiX;
(e, X) = lp(t)e!

Why popular: Cox PH model is “robust”

ML cstimation: maximize a partial
likelihood
L = joint probability of observed
data = L(B)

Hazard ratio formula:

P,
AR = expl ZBi(X; ‘Xi)
i=1

Adjusted survival curves:
Comparing E groups: oor 1
T
R A eﬁl Eyy iabi%;

8(t.X) =[So ()]
Single curve:
Zﬁi)?r
P ~ e
S, X) =[S0

PH assumption:
h(t,X*)

h(t,X)

=0 (aconstant overt)

e B X#) = 0h(t,X)

Hazards cross = PH not met

In this section we briefly summarize the content cov-
ered in this presentation.

»  We began with a computer example that uses the
Cox PH model. We showed how to use the output
to estimate the HR, and how to test hypotheses and
obtain confidence intervals about the hazard ratio.

e We then provided the formula for the hazard func-
tion for the Cox PH model and described basic fea-
tures of this model. The most important feature is
that the model contains two components, namely,
a baseline hazard function of time and an expo-
nential function involving X's but not time.

e  We discussed reasons why the Cox model is popular,
the primary reason being that the model is “robust”
for many different survival analysis situations.

e  We then discussed ML estimation of the parame-
ters in the Cox model, and pointed out that the ML
procedure maximizes a “partial” likelihood that
focuses on probabilities at failure times only.

e Next, we gave a general formula for estimating a
hazard ratio that compared two specifications of
the X’s, defined as X* and X. We illustrated the
use of this formula when comparing two exposure
groups adjusted for other variables.

e We then defined an adjusted survival curve and
presented formulas for adjusted curves comparing
two groups adjusted for other variables in the
model and a formula for a single adjusted curve
that adjusts for all X’s in the model. Computer
packages for these formulae use the mean value of
each X being adjusted in the computation of the
adjusted curve.

e Finally, we described the PH assumption as mean-
ing that the hazard ratio is constant over time, or
equivalently that the hazard for one individual
is proportional to the hazard for any other indi-
vidual, where the proportionality constant is inde-
pendent of time. We also showed that for study sit-
uations in which the hazards cross, the PH
assumption is not met.



