EXAMPLE (continued)

Cox model formulae not specified
Analvsis strategy and methods for Cox

model analogous to those for logistic and
classical linear models.

EXAMPLE (continued)

Adjusted survival curves | KM curves

Adjusted for covariates No covariates
Use fitted Cox model No Cox model
fitted
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Our analysis of the output for the three models has led
us to conclude that model 2 is the best of the three
models and that, using model 2, we get a statistically
significant hazard ratio of 3.648 for the effect of the
treatment, with a 95% confidence interval ranging
between 1.5 and 8.3.

Note that we were able to carry out this analysis with-
out actually specifying the formulae for the Cox PH
models being fit. Also, the strategy and methods used
with the output provided have been completely analo-
gous to the strategy and methods one uses when fitting
logistic regression models (see Kleinbaum, Logistic
Regression, Chapters 6 and 7, 1994), and very similar to
carrying out a classical linear regression analysis (see
Kleinbaum et al., Applied Regression Analysis, 2d ed.,
Chapter 16, 1987).

In addition to the above analysis of this data, we can
also obtain survival curves for each treatment group,
adjusted for the effects of log WBC and based on the
mode] 2 output. Such curves, sketched here at the left,
give additional information to that provided by esti-
mates and tests about the hazard ratio. In particular,
these curves describe how the treatment groups com-
pare over the time period of the study.

For these data, the survival curves show that the treat-
ment group consistently has higher survival probabili-
ties than the placebo group after adjusting for log
WBC. Moreover, the difference between the two
groups appears to widen over time.

Note that adjusted survival curves are mathematically
different from Kaplan-Meier (KM) curves. KM curves
do not adjust for covariates and, therefore, are not
computed using results from a fitted Cox PH model.

Nevertheless, for these data, the plotted KM curves
(which were described in Chapter 2) are similar in
appearance to the adjusted survival curves.
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P(PH) OUTPUT

P(PH): gives p-value for evaluating PH
assumption for each variable in

model: derived from N(0,1) statistic

P(PH) large _, prr satisfied
(e.g., P> 0.10)

P(PH) small _, prr 1ot satisfied
(e.g., P <0.05)

EXAPLE (continued)

£

Three approaches for evaluating PH
(Chapter 4)

Procedures when PH not satisfied
{Chapters 5 and 6)

Remainder: -

s Cox model formula

e basic characteristics of Cox model
¢ meaning of PH assumption

Before concluding this section, we point out one other
piece of information provided in the output that we
have not mentioned until now. We refer to the P(PH)
values provided in the last column of the printout, as
shown here for model 2.

The P(PH) information allows one to evaluate the pro-
portional hazards (PH) assumption. The value given is
a p-value derived from a standard normal statistic
computed from the model output. A nonsignificant
(i.e., large) p-value, say greater than 0.10, indicates
that the PH assumption is satisfied, whereas a small
p-value, say less than 0.05, indicates that the variable
being tested does not satisfy this assumption. We dis-
cuss the PH assumption in more detail later in this pre-
sentation.

The P(PH) output for model 2 yields nonsignificant
p-values for both variables, thus indicating that the PH
assumption is satisfied for both variables.

The P(PH) information provides one of three ap-
proaches for evaluating the PH assumption. All three
approaches will be discussed and compared in Chapter
4. In addition, Chapters 5 and 6 describe procedures to
use when the PH assumption is not satisfied.

In the remainder of this presentation, we describe the
Cox PH formula and its basic characteristics, including
what is the meaning of the PH assumption.

1. The Formula for the
Cox PH Model

i

7
h(e,X) = (1) e

X = (X],Xz,.“,Xp)
explanatory/predictor variables

The Cox PH model is usually written in terms of the
hazard model formula shown here at the left. This
model gives an expression for the hazard at time ¢ for
an individual with a given specification of a set of
explanatory variables denoted by the bold X. That is,
the bold X represents a collection (sometimes called a
“vector”) of predictor variables that is being modeled
to predict an individual's hazard.
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Baseline hazard

Involves ¢ but
not X's

Exponential
Involves X’s but
not ¢ (X’s are time-
independent)

X’s involving t: time-dependent

Requires extended Cox model (no PH)

Time-dependent variables: Chapter 6

Time-independent variable:

Values for a given individual do not change

over time; e.g., SEX and SMK

Assumed not to change
once measured

AGE and WGT values do not change much,

or effect on survival depends on one mea-

surement.
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The Cox model formula says that the hazard at time ¢
is the product of two quantities. The first of these,
hy(1), is called the baseline hazard function. The sec-
ond quantity is the exponential expression e to the lin-
ear sum of B;X;, where the sum is over the p explana-
tory X variables.

An important feature of this formula, which concerns
the proportional hazards (PH) assumption, is that the
baseline hazard is a function of ¢, but does not involve
the X's. In contrast, the exponential expression shown
here, involves the X’s, but does not involve 7. The X’s
here are called time-independent X’s.

It is possible, nevertheless, to consider X’s which do
involve 7. Such X’s are called time-dependent vari-
ables. If time-dependent variables are considered, the
Cox model form may still be used, but such a model no
longer satisfies the PH assumption, and is called the
extended Cox model.

The use of time-dependent variables is discussed in
Chapter 6. For the remainder of this presentation, we
will consider time-independent X’s only.

A time-independent variable is defined to be any vari-
able whose values for a given individual do not change
over time. Examples are SEX and smoking status
(SMK). Note, however, that a person’s smoking status
may actually change over time, but for purposes of the
analysis, the SMK variable is assumed not to change
once it is measured, so that only one value per individ-
ual is used.

Also note that although variables like AGE and weight
(WGT) change over time, it may be appropriate to treat
such variables as time-independent in the analysis if
their values do not change much over time or if the
effect of such variables on survival risk depends essen-
tially on the value at only one measurement.
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SBX,
h(t,X) = ho(t) e™!

= ho(t)°
= hy(t)

Baseline hazard

No X's in model: h(1,X) = hy(1).

ho(t) is unspecified.

Cox model: nonparametric

EXAMPLE: Parame_[:riﬁc Mdel

Nonparametric property

Popularity of the Cox model

The Cox model formula has the property that if all the
X’s are equal to zero, the formula reduces 1o the base-
line hazard function. That is, the exponential part of
the formula becomes e to the zero, which is 1. This
property of the Cox model is the reason why h(1) is
called the baseline function.

Or, from a slightly different perspective, the Cox model
reduces to the baseline hazard when no X’s are in the
model. Thus, ky(t) may be considered as a starting or
“baseline” version of the hazard function, prior to con-
sidering any of the Xs.

Another important property of the Cox model is that
the baseline hazard, 4y(1), is an unspecified function. It
is this property that makes the Cox model a nonpara-
metric model.

In contrast, a parametric model is one whose func-
tional form is completely specified, except for the val-
ues of the unknown parameters. For example, the
Weibull hazard model is a parametric model and has
the form shown here, where the unknown parameters
are \, o, and the B;'s. Note that for the Weibull model,
hgft) is given by a1

One of the reasons why the Cox model is so popular is
that it is nonparametric. We discuss this and other rea-
sons in the next section (11I) concerning why the Cox
model is so widely used.

111. Why the Cox PH Model
Is Popular

Cox PH model is “robust™
Wwill closely approximate correct
parametric model

A key reason for the popularity of the Cox model is
that, even though the baseline hazard is not specified,
reasonably good estimates of regression coefficients,
hazard ratios of interest, and adjusted survival curves
can be obtained for a wide variety of data situations.
Another way of saying this is that the Cox PH model is
a “robust” model, so that the results from using the
Cox model will closely approximate the results for the
correct parametric model.
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For example, if the correct parametric model is
Weibull, then use of the Cox model typically will give
results comparable to those obtained using a Weibull
model. Or, if the correct model is exponential, then the
Cox model results will closely approximate the results
from fitting an exponential model.

We would prefer to use a parametric model if we were
sure of the correct model. Although there are various
methods for assessing goodness of fit of a parametric
model (for example, see Lee, Statistical Methods for
Survival Data Analysis, 1982), we may not be com-
pletely certain that a given parametric model is appro-
priate.

Thus, when in doubt, as is typically the case, the Cox
model will give reliable enough results so that it is a
“safe” choice of model, and the user does not need to
worry about whether the wrong parametric model is
chosen.

In addition to the general “robustness” of the Cox
model, the specific form of the model is attractive for
several reasons.

As described previously, the specific form of the Cox
model gives the hazard function as a product of a base-
line hazard involving f and an exponential expression
involving the X’s without ¢. The exponential part of this
product is appealing because it ensures that the fitted
model will always give estimated hazards that are non-
negative.

We want such nonnegative estimates because, by defi-
nition, the values of any hazard function must range
between zero and plus infinity, that is, a hazard is
always nonnegative. If, instead of an exponential
expression, the X part of the model were, for example,
linear in the X’s, we might obtain negative hazard esti-
mates, which are not allowed.
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Even though /() is unspecified, we can
estimate the B’s.

Measure of effect: hazard ratio (HR)
involves only B’s, without estimating ho(t).

Can estimate 71(2,X) and S(¢X) for Cox
model using a minimum of assumptions.

Cox model preferred to logistic model.
Uses survival Uses (0,1) outcome;
ignores survival times
and censoring

times and
censoring

Another appealing property of the Cox model is that,
even though the baseline hazard part of the model is
unspecified, it is still possible to estimate the B’s in the
exponential part of the model. As we will show later, all
we need are estimates of the B’s to assess the effect of
explanatory variables of interest. The measure of effect,
which is called a hazard ratio, is calculated without
having to estimate the baseline hazard function.

Note that the hazard function h(1,X) and its corre-
sponding survival curves S(t,X) can be estimated for
the Cox model even though the baseline hazard func-
tion is not specified. Thus, with the Cox model, using a
minimum of assumptions, we can obtain the primary
information desired from a survival analysis, namely, a
hazard ratio and a survival curve.

One last point about the popularity of the Cox model is
that it is preferred over the logistic model when sur-
vival time information is available and there is censor-
ing. That is, the Cox model uses more information—
the survival times——than the logistic model, which
considers a (0,1) outcome and ignores survival times
and censoring.

IV. ML Estimation of the
Cox PH Model

Zp BIXI
hir X =hglt)ye™ "

A
ML estimates: B; .

Column name Coeff StErr p-value HR

Rx 0.422 0.002 3.648
log WBC 0.329 0.000 4.975
n:42 %Cen: 28.571 -2 log L: 144.559
Model 2:

h(1,X) = hg(t)eP1Rx * Balog WBC

Estimated model:
Ji(2.X) = Ig(p)e! 294+ 1.604 log WBC

We now describe how estimates are obtained for the
parameters of the Cox model. The parameters are the
p’s in the general Cox model formula shown here. The
corresponding estimates of these parameters arc called
maximum likelihood (ML) estimates and are denoted
as B; “hat.”

As an example of ML estimates, we consider once
again the computer output for one of the models
(model 2) fitted previously from remission data on 42
leukemia patients.

The Cox model for this example involves two parame-
ters, one being the coefficient of the treatment variable
(denoted here as Rx) and the other being the coeffi-
cient of the log WBC variable. The expression for this
model is shown at the left, and below this formula we
show the estimated model, which contains the esti-
mated coefficients 1.294 for Rx and 1.604 for log white
blood cell count.
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seeing formula

L is a partial likelihood:
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As with logistic regression, the ML estimates of the Cox
model parameters are derived by maximizing a likeli-
hood function, usually denoted as L. The likelihood
function is a mathematical expression which describes
the joint probability of obtaining the data actually
observed on the subjects in the study as a function of the
unknown parameters (the B’s) in the model being con-
sidered. L is sometimes written notationally as L(B)
where B denotes the collection of unknown parameters.

We will not show you here the explicit mathematical
expression for L for the Cox model. This expression is
quite complicated mathematically; moreover, in prac-
tice, the formula for L is built into the computer pro-
gram you will be using, so you never have to see it in
order to obtain the ML estimates.

The formula for the Cox model likelihood function is
actually called a “partial” likelihood function rather
than a (complete) likelihood function. The term “par-
tial” likelihood is used because the likelihood formula
considers probabilities only for those subjects who fail,
and does not explicitly consider probabilities for those
subjects who are censored. Thus the likelihood for the
Cox model does not consider probabilities for all sub-
jects, and so it is called a “partial” likelihood.

In particular, the partial likelihood can be written as
the product of several likelihoods, one for each of, say,
k tailure times. Thus, at the jth failure time, Li denotes
the likelihood of failing at this time, given survival up
to this time. Note that the set of individuals at risk at
the jth failure time is called the “risk set,” R(t(j)), and
this set will change—actually get smaller in size—as
the failure time increases.

Thus, although the partial likelihood focuses on sub-
jects who fail, survival time information prior to cen-
sorship is used for those subjects who are censored.
That is, a person who is censored after the jth failure
time is part of the risk set used to compute L]-, even
though this person is censored later.
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Steps for obtaining ML estimates:
¢ form L from model
» maximize In L by solving

oL _ 0, i=1,..., p(#0of parameters)

op;

Solution by iteration:

e guess at solution

* modity guess in successive steps
« stop when solution is obtained

Statistical inferences for hazard ratios:
(See Section 1, pages 84-92)

Test hvpotheses | Confidence intervals

Wald test Large sample 95% CI

LR test

AR = eé for a {0,1) exposure variable

(no interaction)

Once the likelihood function is formed for a given
model, the next step for the computer is to maximize
this function. This is generally done by maximizing the
natural log of I, which is computationally easier.

The maximization process is carried out by taking par-
tial derivatives of L with respect to each parameter in
the model, and then solving a system of equations as
shown here. This solution is carried out using itera-
tion. That is, the solution is obtained in a stepwise
manner, which starts with a guessed value for the solu-
tion, and then successively modifies the guessed value
until a solution is finally obtained.

Once the ML estimates are obtained, we are usually
interested in carrying out statistical inferences about
hazard ratios defined in terms of these estimates. We
illustrated previously how to test hypotheses and form
confidence intervals for the hazard ratio in Section I
above. There, we described how to compute a Wald test
and a likelihood ratio (LR) test. We also illustrated how
to calculate a large sample 95% confidence interval for
2 hazard ratio. The estimated hazard ratio (HR) was
computed by exponentiating the coefficient of a (0,1)
exposure variable of interest. Note that the model con-
tained no interaction terms involving exposure.

V. Computing the Hazard Ratio

TR - /z}(z,X“’)
fir, X))
where
. X=Xy ,X2,~~-,Xp)

X =(X), Xz, Xp)

denote the set of X’s for two individuals

In general, a hazard ratio (HR) is defined as the hazard
for one individual divided by the hazard for a different
individual. The two individuals being compared can be
distinguished by their values for the set of predictors,
that is, the X’s.

We can write the hazard ratio as the estimate of
h(t,X*) divided by the estimate of h(t,X), where X*
denotes the set of predictors for one individual, and X
denotes the set of predictors for the other individual.
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Note that, as with an odds ratio, it is easier to interpret
an HR that exceeds the null value of 1 than an HR that
is less than 1. Thus, the X’s are typically coded so that
the group with the larger hazard—typically an unex-
posed or placebo group—corresponds to X*, and the
group with the smaller hazard corresponds to X. As an
example, for the remission data described previously,
the placebo group is coded as X = 1, and the treatment
group is coded as X, = 0.

We now obtain an expression for the HR formula in
terms of the regression coefficients by substituting the
Cox model formula into the numerator and denomina-
tor of the hazard ratio expression. This substitution is
shown here. Notice that the only difference in the
numerator and denominator are the X*’s versus the X's.
Notice also that the baseline hazards will cancel out.

Using algebra involving exponentials, the hazard ratio
formula simplifies to the exponential expression
shown here. Thus, the hazard ratio is computed by
exponentiating the sum of each 8; “hat” times the dif-
ference between X; and X;.

An alternative way to write this formula, using expo-
nential notation, is shown here. We will now illustrate
the use of this general formula through a few examples.

Suppose, for example, there is only one X variable of
interest, X,, which denotes (0,1) exposure status, so
that p = 1. Then, the hazard ratio comparing exposed
to unexposed persons is obtained by letting X] = 1 and
X, = 0 in the hazard ratio formula. The estimated haz-
ard ratio then becomes e to the quantity g, “hat” times
1 minus 0, which simplifies to e to the B, “hat.”
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EXAMPLE (continued)

EXAMPLE 2

General rule: If X, is a (0,1) exposure vari-
able. then

—

IR = ¢P1 (= effect of exposure adjusted
for other X’s)

provided no other X's are product terms

involving exposure.

EXAMPLE 3

Recall the remission data printout for model 1, which
contains only the Rx variable, again shown here. Then
the estimated hazard ratio is obtained by exponentiat-
ing the coefficient 1.509, which gives the value 4.523
shown in the HR column of the output.

As a second example, consider the output for model 2,
which contains two variables, the Rx variable and log
WBC. Then to obtain the hazard ratio for the effect of
the Rx variable adjusted for the log WBC variable, we
let the vectors X* and X be defined as X* = (1, log
WBC) and X = (0, log WBC). Here we assume that log
WBC is fixed, though unspecified.

The estimated hazard ratio is then obtained by expo-
nentiating the sum of two quantities, one involving the
coefficient 1.294 of the Rx variable, and the other
involving the coefficient 1.604 of the log WBC variable.
Since the log WBC value is fixed, however, this portion
of the exponential is zero, so that the resulting estimate
is simply e to the 1.294.

This second example illustrates the general rule that the
hazard ratio for the effect of a (0,1) exposure variable
which adjusts for other variables is obtained by expo-
nentiating the estimated coefficient of the exposure vari-
able. This rule has the proviso that the model does not
contain any product terms involving exposure.

We now give a third example which illustrates how to
compute a hazard ratio when the model does contain
product terms. We consider the printout for model 3 of
the remission data shown here.



