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Table 4.5 Values of the approzi-
mate likelihood displacement, LD;,
and the elements of [lmax|-

Observation LD; [Lmax|
1 0.033 0.161
2 0.339 0.309
3 0.005 0.068
4 0.338 0.621
5 0.050 0.104
6 0.019 0.058
7 0.136 0.291
8 0.027 0.054
9 0.133 0.124

10 0.035 0.193
11 0.061 0.264
12 0.043 0.224
13 0.219 0.464

pair of parameter estimates. The elements corresp(?nding to patients 2 and 13
are also large relative to the other values, suggesting that the data for these
patients are also influential. The sum of the squares of elements ?, 4 and 13
of I ,ax 18 0.70. The total of the sums of squares of the elements 1s‘1.QO., agd
so cases 2, 4 and 13 account for nearly three-quarters of the ve?rlablhty in
the elements of l,,,. Note that the analysis of the delta—betas‘ in Example
4.6 showed that the observations from patients 2 and 4 most influence the
parameter estimate for Sex, while the observation for patient 13 has a greater
t on the estimate for Age.

eﬁ?ﬁ summary, the observations from patients 2, 4 and 13 affect the form of
the hazard function to the greatest extent. Omitting each of these in t.urn
gives the following estimates of the linear component in the hazard functions
for the ith individual:

Omitting patient number 2: 0.031 Age; — 3.530 Sez;,

Omitting patient number 4: 0.045 Age; — 3.529 Sez;,

Omitting patient number 13:  0.011 Age, — 2.234 Sex;.

For comparison, the linear component for the full data set is
0.030 Age,; — 2.711 Sez;.

To illustrate the magnitude of the change in estimated hazard ratios, consiqer
the relative hazard of infection at time ¢ for a patient aged 50 years relatn{e
to one aged 40 years. For the full data set, this is €939 = 1.355. This value is
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increased to 1.365 and 1.564 when patients 2 and 4, respectively, are omitted,
and decreased to 1.114 when patient 13 is omitted. The effect on the haz-
ard function of removing these patients from the data base is therefore not
particularly marked.

In the same way, the hazard of infection at time # for a male patient (Sez =
1) relative to a female (Sex = 2) is €711 that is, 5.041 for the full data
set. When observations 2, 4, and 13 are omitted in turn, the hazard for males
relative to females is 4.138, 4.097 and 9.334, respectively. Omission of the data
from patient number 13 appears to have a great effect on the estimated hazard
ratio. However, some caution is needed in interpreting this result. Since there
are very few males in the data set, the estimated hazard ratio is imprecisely
estimated. In fact, a 95% confidence interval for the hazard ratio, when the
data from patient 13 are omitted, ranges from 0.012 to 82.96!

4.3.3 Treatment of influential observations

Once observations have been found to be unduly influential, it is difficult to
offer any firm advice on what should be done about them. So much depends
on the scientific background to the study.

When possible, the origin of influential observations should be checked. Er-
rors in transcribing and recording categorical and numerical data frequently
occur. If any mistakes are found, the data need to be corrected and the anal-
ysis repeated. If the observed value of a survival time, or other explanatory
variables, is impossible, and correction is not possible, the corresponding ob-
servation should be omitted from the data base before repeating the analysis.

In many situations it will not be possible to confirm that the data cor-
responding to an influential observation are valid. Certainly, influential ob-
servations should not then be rejected outright. In these circumstances, the
most appropriate course of action will be to establish the actual effect on the
inferences to be drawn from the analysis. For example, if a relative hazard
or median survival time is being used in quantifying the size of a treatment
effect, the values of these statistics with and without the influential values can
be contrasted. If the difference between the results is so small as to not be of
practical importance, the queried observations can be retained. On the other
hand, if the effect of removing the influential observations is large enough to
be of practical importance, analyses based on both the full and reduced data
sets will need to be reported. The outcome of consultations with the scientists
involved in the study will then be a vital ingredient in the process of deciding
on the course of future action.

Ezample 4.8 Survival of multiple myeloma patients

The effect of individual observations on the estimated values of the parameters
of a Cox regression model fitted to the data from Example 1.3 will now be
investigated. Plots of the approximate unstandardised delta-betas for Hb and

Bun against the rank order of the survival times are shown in Figures 4.12
and 4.13.
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Figure 4.12 PpPjot of the delta-betas for Hp against rank order of survival time.
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Figure 4.13 Piot of the delta-betas for Bun against rank order of survival time.
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From Figure 4.12, no one observation stands out as having a delta-beta for
Hb that is different from the rest. However, Figure 4.13 shows that the two
observations with the shortest survival times have relatively large positive or
large negative delta-betas for Bun. These correspond to patients 32 and 38 in
the data given in Table 1.3. Patient 32 has a survival time of just one month,
and the second largest value of Bun. Deletion of this observation from the
data base decreases the parameter estimate for Bun, Patient number 38 also
survived for just one month after trial entry, but has a value of Bun that is
rather low for someone surviving for such a short time. If the data, from this
patient are omitted, the coefficient of Bun in the model is increased.

To identify observations that influence the set of parameter estimates, a
plot of the absolute values of the elements of the diagnostic 1,y against the
rank order of the survival times is shown in Figure 4.14.
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Figure 4.14 Plot of the absolute values of the elements of lmax against rank order
of survival time.

The observation with the largest value of [{max| corresponds to patient 13.
This patient has an unusually small value of Hb, and a value of Bun that
is a little high, for someone who has survived as long as 65 months. If this
observation is omitted from the data set, the coefficient of Bun remains the
same, but that of Hb is reduced from —0.134 to —0.157. The effect of Hb on
the hazard of death is then a little more significant. In summary, the record
for patient 13 has little effect on the form of the estimated hazard function.

4.4 Testing the assumption of proportional hazards

So far in this chapter we have concentrated on how the adequacy of the
linear component of a survival model can be examined. A crucial assumption
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made when using the Cox regression model is that of broportional hazards,
If hazards are not, proportional, this means that the linear component of the

4-4.1 The log-cumulative hazard plot

According to the Cox regression model, the hazard of death at any time ¢ for
the 7th individual is given by

hi(t) = exp(8'a;)hq ), (4.16)

where x; is the vector of values of explanatory variables for that individual,
B is the corresponding vector of coefficients, and ho(t) is the baseline hazard
function. Integrating both sides of this equation over ¢ gives

t t
| tw)au = exp(g'a [ hotwa,
0 0
and so, using equation (1.6),

H(t) = exp(ﬁ/ivi)Ho(t),

where H;(t) and H, (t) are the cumulative hazard functions. Taking logarithms
of each side of this equation, we get

log Hy(t) = B'z; + log Hy(t ,
g

from which it follows that differences in the log-cumulative hazard functions
do not depend on time. This means that if the log-cumulative hazard functions
for individuals with different values of their explanatory variables are plotted
against time, the curves so formed will be parallel if the proportional hazards
model in equation (4.16) is valid. This provides the basis of a widely used
diagnostic for assessing the validity of the proportional hazards assumption.
It turns out that plotting the log-cumulative hazard functions against the log-
arithm of ¢, rather than ¢ itself, is a useful diagnostic in parametric modelling,
and so this form of plot is generally used; see Section 5.4.1 of Chapter 5 for
further details on the use of this log-cumulative hazard plot.

To use this plot, the survival data are first grouped according to the levels of
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each level. On the other hand, the plot will be based on very few observationg
at the later survival times, and in more highly structured data sets, a different
approach needs to be taken.

Ezample 4.9 Survival of multiple myeloma patients

We again use the data op the survival times of 48 patients with multiple
myeloma, to illustrate the log-cumulative hazard plot. In particular we wi]j
investigate whether the assumption of proportional hazards is valid in respect
of the variable Hb, which is associated with the serum haemoglobin level,

grouped according to their haemoglobin level, and the Kaplan-Meier estimate
of the survivor function is obtained for each of the four groups. From this
estimate, the estimated log-cumulative hazard is formed using the relation
H(t) = —log$(t), from equation (1.7) of Chapter 1, and plotted against
the values of log ¢. The resulting log-cumulative hazard plot is shown in Fig-
ure 4.15.

Log —cumulative hazarg
|

1 2 3 4 5
Log of survival time

Figure 4.15 Log-cumulative hazard plot for multiple myeloma patients in four
groups defined by Hp < 7 (), 7 < Hb <10 (w), 10 < Hp <13 (a) and Hb > 13
(x).

This figure indicates that the plots for Hp <7, 7< Hb< 10, and Hb > 13
are roughly parallel. The plot for 10 < Hp < 13 is not in line with the oth-
ers, although this impression results from relatively large cumulative hazard
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could be that the survival times of the individuals in the third Hb group have
been affected by their Bun values. Overall, there is little reason to doubt the
proportional hazards assumption.

4.4.2* Use of Schoenfeld residuals

Hazards are said to be proportional if ratios of hazards are independent of
time. If there are one or more explanatory variables in the model whose co-
efficients vary with time, or if there are explanatory variables that are time-
dependent, the proportional hazards assumption will be violated. We there-
fore require a method that can be used to detect whether there is some form
of time dependency in particular covariates, after allowing for the effects of
explanatory variables that are known, or expected to be, independent of time.

The Schoenfeld residuals, defined in Section 4.1.5, are particularly useful in
evaluating the assumption of proportional hazards after fitting a Cox regres-
sion model. Grambsch and Therneau (1994) have shown that the expected
value of the ith scaled Schoenfeld residual, for the Jjth explanatory variable,
X, in the model, Tpj» 18 given by E (rpj:) = B;(t;) — B;, where B;(t) is taken
to be a time-varying coefficient of X, B;(t:) is the value of the coefficient at
the ¢th death time, ¢;, and Bj is the estimated value of B; in the fitted Cox
regression model. Consequently, a plot of the values of Tpji + Bj against the
death times should give information about the form of the time-dependent
coefficient of X;, 8;(t). In particular, a horizontal line will suggest that the
coefficient of X; is constant, and the proportional hazards assumption is satis-
fied. A smoothed curve can be superimposed on this plot to aid interpretation,
as in the plots of martingale residuals against the values of explanatory vari-
ables in Section 4.2.3. This plot can also be supplemented by fitting a straight
line, and formally testing if the slope of this line is zero. However, this proce-
dure has its limitations, since a slope that is not significantly different from
zero may be found when there is, in fact, a non-linear relationship between
the coefficient and time.

Example 4.10 Infection in patients on dialysis

The data on catheter removal times for patients on dialysis is now used to illus-
trate the use of the scaled Schoenfeld residuals in assessing non-proportional
hazards. The scaled Schoenfeld residuals for the variables Age and Sez were
given in Table 4.2. Adding the values of the estimated coefficients of these two
variables, that is 0.030 and —2.711, respectively, to these twt sets of residuals,
and plotting their values against time, gives the graphs shown in Figures 4.16
and 4.17.

In neither plot is there any suggestion of non-proportional hazards. In fact,
on fitting a straight line relationship between the values of Tpji+ ,@j and time,
using simple linear regression, the P-values for testing whether the estimated
slope is significantly different from zero are 0.391 and 0.694 for Age and Ser,
respectively.
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Figure 4.16 Plot of values of T+ B against time for Age with a smoothed curve
superimposed.
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Figure 4.17 Plot of values of rpy, + Bo against time for Sex with a smoothed curve
superimposed.
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4.4.8" Adding a time-dependent variable

To examine the assumption of proportional hazards in the Cox regression
model, a time-dependent variable can be added to the model. Fuller details
on the use of time-dependent variables in modelling survival data are given
in Chapter 8, but in this section, the procedure is described in a particular
context.

Consider a survival study in which each patient has been allocated to one
of two groups, corresponding to a standard treatment and a new treatment,
Interest may then centre on whether the ratio of the hazard of death at time ¢
in one treatment group, relative to the other, is independent of survival time,
A proportional hazards model for the hazard function of the ith individual in
the study is then

hl(t) = exp(ﬁlzli)ho(t), (417)

where x1; is the value of an indicator variable X that is zero for the standard
treatment and unity for the new treatment. The relative hazard of death at
any time for a patient on the new treatment, relative to one on the standard,
is then €% which is independent of the survival time.

Now define a time-dependent explanatory variable X, where Xy = X ¢t. If
this variable is added to the model in equation (4.17), the hazard of death at
time ¢ for the ith individual becomes

hi(t) = exp(Br1z1; + Bawai)hol(t), (4.18)

where z2; = x1;t is the value of X 1t for the ith individual. The relative hazard
at time t is now

exp(f1 + Bat), (4.19)

since X, = ¢ under the new treatment, and zero otherwise. This hazard ratio
depends on ¢, and the model in equation (4.18) is no longer a proportional
hazards model. In particular, if B2 < 0, the relative hazard decreases with
time. This means that the hazard of death on the new treatment, relative to
that on the standard, decreases with time. If 8; < 0, the interpretation of this
would be that the superiority of the new treatment becomes more apparent
as time goes on. On the other hand, if B2 > 0, the relative hazard of death on
the new treatment increases with time, reflecting an increasing risk of death
on the new treatment relative to the standard. In the particular case where
B2 = 0, the relative hazard is constant at €71, This means that a test of the
hypothesis that 8, = 0 is a test of the assumption of proportional hazards.
The situation is illustrated in Figure 4.18.

In order to aid in both the computation and interpretation of the parameters
in the model of equation (4.18), the variable X 2 can be defined in terms of the
deviation from some time, ty. The estimated values of 1 and By will then tend
to be less highly correlated, and maximisation of the appropriate likelihood
function will be less difficult. If X3 is taken to be such that X, = X (¢t — to),
the value of X, is t — ¢, for the new treatment and zero for the standard. The
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Figure 4.18 Plot of the relative hazard, exp{B1+05at}, against t, for different values
of B2.

relative hazard now becomes

exp{f1 + Ba(t — to)}.

In the model of equation (4.18), the quantity e is the hazard of death at
time £ for an individual on the new treatment relative to one on the standard.
In practical applications, ¢, will generally be chosen to provide a convenient
interpretation for the time at which this relative hazard is applicable. For
example, taking ¢y to be the mean or median survival time means that exp(ﬁl)
is the estimated relative hazard of death at this time.

A similar model can be used to detect whether the coefficient of a contin-
uous variate has a coefficient that depends on time. Suppose that X is such
a variate, and we wish to examine whether there is any evidence that the
coefficient of X is linearly dependent on time. To do this, the term Xt is
added to the model that includes X. The hazard of death at time ¢ for the
tth individual is then

hi(t) = exp(Biz; + Boxit)ho(t),

where z; is the value of X for that individual. The hazard of death at time
t for an individual for whom X = x; + 1, relative to an individual for whom
X = x;, is then exp(8; + Bz2t), as in equation (4.19).

The time-dependent variables considered in this section are such that their
coeflicients are linearly dependent on time. A similar approach can be used
when a coefficient that is a non-linear function of time is anticipated. For ex-
ample, log t might be used in place of t in the definition of the time-dependent
variable X, used in equation (4.18). In this version of the model, a test of the
hypothesis that 8, = 0 is a test of proportional hazards, where the alternative
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hypothesis is that the hazard ratio is dependent on the logarithm of time.
Using logt in the definition of a time-dependent variable is also helpful when
the numerical values of the survival times are large, such as when survival in a
long-term study is measured in days. There may then be computational prob-
lems associated with calculating the value of exp(f8272;) in equation (4.18),
which are resolved by using logt in place of ¢ in the definition of X5.

Models that include the time-dependent variable X, cannot be fitted by
treating X in the same manner as other explanatory variables in the model.
The reason for this is that this variable will have different values at different
death times, complicating the calculation of the denominator of the partial
likelihood function in equation (3.4). Full details on the fitting process will be
deferred to Chapter 8. However, inferences about the effect of time-dependent
variables on the hazard function can be evaluated as for other variables. In
particular, the change in the value of the —2log [ statistic can be compared
to percentage points of the chi-squared distribution to test the significance of
the variable. This is therefore a formal test of proportional hazards.

Ezample 4.11 Infection in patients on dialysis

An informal assessment of non-proportional hazards in respect of the vari-
ables Age and Sez was given in Example 4.10. We now add variables whose
coefficients are linear functions of time in order to provide a formal test of the
proportional hazards assumption.

We begin by fitting the Cox regression model containing just Age and Set,
which leads to a value of —2log L of 34.468. We now define terms that are the
products of these variables with time, namely Tage = Age x ¢ and T'sex =
Sex x t. These variables are then added to the model. Note that we cannot
simply form these products from the observed survival times of the patients,
since the model-fitting process requires that these values be computed for
different values of ¢; see Chapter 8 for details on this.

When the variable Tage is added to the model that contains Age and Ser,
the value of —2log L reduces to 32.006, but this reduction is not significant at
the 5% level (P = 0.117). The reduction in —2log L when Tsez is added to the
model that has Age and Sez is only 0.364 (P = 0.546). This analysis confirms
that there is no reason to doubt the assumption of proportional hazards in
respect of the variables Age and Sez.

4.5 Recommendations

In this chapter, a range of diagnostics have been presented. Which should
be used on a routine basis and which are needed when a more thorough
assessment of model adequacy is required?

In terms of assessing the overall fit of a model, a plot of the deviance
residuals against the risk score gives information on observations that are
not well fitted by the model, and their relation to the set of values of the
explanatory variables. This diagnostic is generally more informative than the
cumulative, or log-cumulative, hazard plot of the Cox-Snell residuals. Plots of
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residuals against the survival times, the rank order of the survival times, or
explanatory variables may also be useful.

Plots of residuals might be supplemented by influence diagnostics. When
the inference to be drawn from a model centres on one or two particular
parameters, the delta-beta statistic for those parameters, will be the most
relevant. Plots of these values against the rank order of survival times will then
be useful. To investigate whether there are observations that have an influence
on the set of parameter estimates, or risk score, the diagnostic based on the
absolute values of the elements of 1,,,, is probably the most suitable. Plots
of these values against the rank order of survival times will be informative,
but plots against particular explanatory variables might also be revealing. An
initial assessment of the validity of the proportional hazards assumption can
be made from log-curmnulative hazard plots. However, plots based on the scaled
Schoenfeld residuals can be more helpful. Formal tests of the assumption of
proportional hazards may be based on time-dependent variables.

4.6 Further reading

General introductions to the ideas of model checking in linear models are
included in Draper and Smith (1998) and Montgomery et al. (2001). Cook
and Weisberg (1982) give a more detailed account of the theory underlying
residuals and influence diagnostics in a number of situations. Atkinson (1985)
describes model checking in linear models from a practical viewpoint, and
McCullagh and Nelder (1989) and Aitkin et al. (1989) discuss this topic in
the context of generalised linear models.

Many textbooks devoted to the analysis of survival data, and particularly
those of Cox and Oakes (1984), Hosmer and Lemeshow (1999), Lawless (2002),
and Kalbfleisch and Prentice (2002), include sections on the use of residuals.
Hinkley et al. (1991) and Hastie and Tibshirani (1990) also include brief dis-
cussions on methods for assessing the adequacy of models fitted to survival
data.

Early articles on the use of residuals in checking the adequacy of survival
models include Kay (1977) and Crowley and Hu (1977). These papers include a
discussion on the Cox-Snell residuals, which are based on the general definition
of residuals given by Cox and Snell (1968). Crowley and Storer (1983) showed
empirically that the cumulative hazard plot of the residuals is not particularly
good at identifying inadequacies in the fitted model. See also Crowley and
Storer (1983) for a practical application of the methods. Reviews of diagnostic
procedures in survival analysis were given in the mid-1980s by Kay (1984) and
Day (1985).

Martingale residuals were proposed by Barlow and Prentice (1988). Essen-
tially the same residuals were proposed by Lagakos (1981) and their use is
discussed by Therneau, Grambsch and Fleming (1990) and Henderson and
Milner (1991). Deviance residuals were also introduced in Therneau, Gramb-
sch and Fleming (1990). The Schoenfeld residuals for the Cox model were
proposed by Schoenfeld (1982). In accounts of survival analysis based on the
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theory of counting processes, Fleming and Harrington (1991) and Therneau
and Grambsch (2000) show how different types of residual can be used, and
give detailed practical examples. Two other types of residual, introduced by
Nardi and Schemper (1999), are particularly suitable for the detection of out-
lying survival times.

Influence diagnostics for the Cox regression model have been considered by
many authors, but the major papers are those of Cain and Lange (1984), Reid
and Crépeau (1985), Storer and Crowley (1985), Pettitt and Bin Daud (1989)
and Weissfeld (1990). Pettitt and Bin Daud (1990) show how time-dependence
in the Cox proportional hazards model can be detected by smoothing the
Schoenfeld residuals. The LOWESS smoother was introduced by Cleveland
(1979), and the algorithm is also presented in Collett (2003).

Some other graphical methods for evaluating survival models, not men-
tioned in this chapter, have been proposed by Cox (1979) and Arjas (1988).
Gray (1990) describes the use of smoothed estimates of cumulative hazard
functions in evaluating the fit of a Cox model.

Most of the diagnostic procedures presented in this chapter rely on an infor-
mal evaluation of tabular or graphical presentations of particular statistics. In
addition to these procedures, a variety of significance tests have been proposed
that can be used to asses the goodness of fit of the model. Examples include
the methods of Schoenfeld (1980), Andersen (1982), Nagelkerke et al. (1984),
Ciampi and Etezadi-Amoli {1985), Moreau et al. (1985), Gill and Schumacher
(1987), O’Quigley and Pessione (1989), Quantin et al. (1996), Grgnnesby and
Borgan (1996), and Verweij et al. (1998). Reviews of some of these goodness of
fit tests for the Cox regression model are included in Lin and Wei (1991) and
Quantin et al. (1996). Many of these test involve statistics that are quite com-
plicated, and the procedures are not widely in computer software for survival
analysis. A more simple procedure for evaluating the overall fit of a model has
been proposed by May and Hosmer (1998).

CHAPTER 5

Parametric proportional hazards
models

When the Cox regression model is used in the analysis of survival data, there
is no need to assume a particular form of probability distribution for the sur-
vival times. As a result, the hazard function is not restricted to a specific
functional form, and the model has flexibility and widespread applicability.
On the other hand, if the assumption of a particular probability distribution
for the data is valid, inferences based on such an assumption will be more pre-
cise. In particular, estimates of quantities such as relative hazards and median
survival times will tend to have smaller standard errors than they would in
the absence of a distributional assumption. Models in which a specific proba-
bility distribution is assumed for the survival times are known as parametric
models, and parametric versions of the proportional hazards model, described
in Chapter 3, are the subject of this chapter.

A probability distribution that plays a central role in the analysis of survival
data is the Weibull distribution, introduced by W. Weibull in 1951 in the
context of industrial reliability testing. Indeed, this distribution is as central to
the parametric analysis of survival data as the normal distribution is in linear
modelling. Proportional hazards models based on the Weibull distribution are
therefore considered in some detail.

5.1 Models for the hazard function

Once a distributional model for survival times has been specified in terms of a

probability density function, the corresponding survivor and hazard functions
can be obtained from the relations

S(t)y=1 _/0 fu)du, (5.1)
and
ht) = £ = - S0 5, (52)

where f(t) is the probability density function of the survival times. These
relationships were derived in Section 1.3. An alternative approach is to specify
a functional form for the hazard function, from which the survivor function
and probability density functions can be determined from the equations

5(t) = exp (~H()}, (5.3)



