CHAPTER 4

Model checking in the Cox regression
model

After a model has been fitted to an observed set of survival data, the ade-
quacy of the fitted model needs to be assessed. Indeed, the use of diagnostic
procedures for model checking is an essential part of the modelling process.

In some situations, careful inspection of an observed set of data may leads to
the identification of certain features, such as individuals with unusually large
or small survival times. However, unless there are only one or two explana-
tory variables, a visual examination of the data may not be very revealing.
The situation is further complicated by censoring, in that the occurrence of
censored survival times make it difficult to judge aspects of model adequacy,
even in the simplest of situations. Visual inspection of the data has therefore
to be supplemented by diagnostic procedures for detecting inadequacies in
a fitted model. Because methods used in assessing the adequacy of survival
models have to cope with the occurrence of censored survival times, they are
a little more complicated than the corresponding methods used in linear re-
gression modelling. However, many of the procedures are easily carried out
using computer software for survival analysis.

Once a model has been fitted, there are a number of aspects of the fit
of a model that need to be studied. For example, the model must include an
appropriate set of explanatory variables from those measured in the study, and
we will need to check that the correct functional form of these variables has
been used. It might be important to identify observed survival times that are
greater than would have been anticipated, or individuals whose explanatory
variables have an undue impact on particular hazard ratios. Also, some means
of checking the assumption of proportional hazards might be required.

Many model-checking procedures are based on quantities known as residu-
als. These are values that can be calculated for each individual in the study,
and have the feature that their behaviour is known, at least approximately,
when the fitted model is satisfactory. A number of residuals have been pro-
posed for use in connection with the Cox regression model, and this chapter
begins with a review of some of these. The use of residuals in assessing specific
aspects of model adequacy is then discussed in subsequent sections.

4.1 Residuals for the Cox regression model

Throughout this section, we will suppose that the survival times of n individ-
uals are available, where r of these are death times and the remaining n — r
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are right-censored. We further suppose that a ('ox regression model has been
fitted to the survival times, and that the lincar component of the model con-
tains p explanatory variables, X1, X;,...,.X,,. The fitted hazard function for
the ith individual, 1 = 1,2,...,n, is therefore

hi(t) = eXP(B/ivl)iL<J(f)~

where ﬁ/wi = Bm:u + le’gi +-- 4+ ﬁpxpi is the value of the fitted component,
or linear predictor, of the model for that individual and ho(t) is the estimated
baseline hazard function.

4.1.1 Coz-Snell residuals

The residual that is most widely used in the analysis of survival data is the
Coz-Snell residual, so called because it is a particular example of the general
definition of residuals given by Cox and Snell (1968).

The Cox-Snell residual for the ith individual, ¢ = 1,2,.. . n, is given by

rei = exp(B ;) Ho (1), (4.1)

where Hy(t;) is an estimate of the baseline cumulative hazard function at time
t;, the observed survival time of that individual. In practice, the Nelson-Aalen
estimate given in equation (3.25) is generally used. Note that from equa-
tion (3.21), the Cox-Snell residual, r¢;, is the value of Hi(t;) = —log S(ty),
where ﬁi(ti) and S; (t;) are the estimated values of the cumulative hazard and
survivor functions of the ith individual at t;.

This residual can be derived from a general result in mathematical statistics
on the distribution of a function of a random variable. According to this result,
if 7" is the random variable associated with the survival time of an individual,
and S(t) is the corresponding survivor function, then the random variable
Y = —log S(T) has an exponential distribution with unit mean, irrespective of
the form of §(¢). The proof of this result is outlined in the following paragraph,
which can be omitted without loss of continuity.

According to a general result, if fx(z) is the probability density function
of the random variable X, the density of the random variable ¥ — g9(X) is
given by

Fr(w) = fxts™ | 2],
where fx{g~!(y)} is the density of X expressed in terms of y. Using this
result, the probability density function of the random variable ¥ = — log S(T)
is given by

1 dy
Pl = gr{s e /|2, (12
where fr(t) is the probability density function of T. Now,

dy _ d{-logS(t)} _ fr(t)
dt dt IOK
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and when the absolute value of this function is expressed in terms of Y, the
derivative becomes

fr {S_I(B_y)} _fr {Sql(eiy)}
S{S e} — e

Finally, on substituting for the derivative in equation (4.2), we find that
fY (y) = eky)

which, from equation (5.6), is the probability density function of an exponen-
tial random variable with unit mean. ,

The next and crucial step in the argument is as follows. If the model fitted to
the observed data is satisfactory, then a model-based estimate of the survivor
function for the ith individual at t;, the survival time of that individual,
will be close to the corresponding true value Si(t;). This suggests that if the
correct model has been fitted, the values S; (t:) will have properties similar
to those of S,v(tl). Then, the negative logarithms of the estimated survivor
functions, — log Si(t), 1 = 1,2,... »7, will behave as n observations from a
unit exponential distribution. These estimates are the Cox-Snell residuals.

If the observed survival time for an individual is right-censored, then the
corresponding value of the residual is also right-censored. The residuals will
therefore be a censored sample from the unit exponential distribution, and s
test of this assumption provides a test of model adequacy, to which we return
in Section 4.2.1.

The Cox-Snell residuals, r¢o;, have properties that are quite dissimilar to
those of residuals used in linear regression analysis, for example. In particular,
they will not be symmetrically distributed about zero, and in fact they cannot
be negative. Furthermore, since the Cox-Snell residuals are assumed to have
an exponential distribution when an appropriate model has been fitted, they
have a highly skew distribution and the mean and variance of the ith residual
will both be unity.

4-1.2 Modified Coz-Snell residuals

Censored observations lead to residuals that cannot be regarded on the same
footing as residuals derived from uncensored observations. We might therefore
seek to modify the Cox-Snell residuals so that explicit account can be taken
of censoring.

Suppose that the ith survival time is a censored observation, ¢}, and let
ti be the actual, but unknown, survival time, so that ¢; > t;. The Cox-Snell
residual for this individual, evaluated at the censored survival time, is then
given by A A

rei = Hi(t]) = —log 8;(t7),
where H,(t?) and Si(ty) are the estimated cumulative hazard and survivor
functions, respectively, for the ith individual at the censored survival time.

If the fitted model is correct, then the values r¢; can be taken to have a unit
exponential distribution. The ctmnlative hamand foomation ~0atr. 1e o o s
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increases linearly with time, and so the greater the value of the survival time
t; for the ith individual, the greater the value of the Cox-Snell residual for that
individual. It then follows that the residual for the 7th individual at the actual
(unknown) failure time, Hi(t,), will be greater than the residual evaluated at
the observed censored survival time.

To take account of this, Cox-Snell residuals can be modified by the addition
of a positive constant A, which can be called the ezcess residual. Modified
Cox-Snell residuals are therefore of the form

/ s for uncensored observations,
Toy = .
ci roi + A for censored observations,

where r¢; is the Cox-Snell residual for the ith observation, defined in equa-
tion (4.1). It now remains to identify a suitable value for A. For this, we use
the lack of memory property of the exponential distribution.

To demonstrate this property, suppose that the random variable T has an
exponential distribution with mean A~!, and consider the probability that
T exceeds tp + t1, t1 2 0, conditional on T being at least equal to ty. From
the standard result for conditional probability given in Section 3.3.1, this
probability is

P(T 2 t() +t1 and T 2 to)
P(T > tg)

P(T2to+t |T >t) =

The numerator of this expression is simply P(T > to+t1), and so the required
probability is the ratio of the probability of survival beyond #y+t; to the prob-
ability of survival beyond £y, that is S(to + ¢1)/S(ts). The survivor function
for the exponential distribution is given by S(t) = e, as in equation (5.5)
of Chapter 5, and so
P(T=to+t | T 2t) = w :e—/\tl,
exp(—Atg)

which is the survivor function of an exponential random variable at time ¢,
that is P(T > t1). This result means that, conditional on survival to time to,
the excess survival time beyond ¢, also has an exponential distribution with
mean A1 In other words, the probability of survival beyond time tq is not
affected by the knowledge that the individual has already survived to time to.

From this result, since r¢; has a unit exponential distribution, the excess
residual, A, will also have a unit exponential distribution. The expected value
of A is therefore unity, suggesting that A may be taken to"be unity, and this
leads to modified Cox-Snell residuals, given by

for uncensored observations,

reg =14 ' Ci . (4.3)
t rc; + 1 for censored observations.

The ith modified Cox-Snell residual can be expressed in an alternative form
by introducing an event indicator, §;, which takes the value zero if the observed
survival time of the ith individual is censored and unity if it is uncensored.
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Then the modified Cox-Snell residual is given by
ros =1— 6+ 1. (4.4)

Note that from the definition of this type of residual, Tlci must be greater
than unity for a censored observation. Also, as for the unmodified residuals,
the rlcl- can take any value between zero and infinity, and they will have a
skew distribution.

On the basis of empirical evidence, Crowley and Hu (1977) found that the
addition of unity to a Cox-Snell residual for a censored observation inflated the
residual to too great an extent. They therefore suggested that the median value
of the excess residual be used rather than the mean. For the unit exponential
distribution, the survivor function is S(t) = e, and so the median, t(50), is
such that e=*% = 0.5, whence #(50) = log 2 = 0.693. Thus a second version
of the modified Cox-Snell residual has

for uncensored observations,

" _ T‘C‘L
fci = { rci + 0.693 for censored observations. (4.5)

However, if the proportion of censored observations is not too great, the set
of residuals obtained from each of these two forms of modification will not
appear too different.

4.1.8 Martingale residuals

The modified residuals rlCi defined in equation (4.4) have a mean of unity for
uncensored observqtions. Accordingly, these residuals might be further refined
by relocating the r,; so that they have a mean of zero when an observation is
uncensored. If in addition the resulting values are multiplied by —1, we obtain
the residuals
TMi = (51 —Trci. (46)

These residuals are known as martingale residuals, since they can also be de-
rived using what are known as martingale methods. In this derivation, the
r¢i are based on the Nelson-Aalen estimate of the cumulative hazard func-
tion. Because these methods rely heavily on probability theory and stochastic
processes, this approach will not be discussed in this book. However, a com-
prehensive account of the martingale approach to the analysis of survival data.
has been presented by a number of authors, including Andersen et al. (1993)
Fleming and Harrington (1991) and Therneau and Grambsch (2000).

Martingale residuals take values between —oo and unity, with the residuals
for censored observations, where §; = 0, being negative. It can also be shown
that these residuals sum to zero and, in large samples, the martingale resid-
uals are uncorrelated with one another and have an expected value of zero.
In this respect, they have properties similar to those possessed by residuals
encountered in linear regression analysis.

Another way of looking at the martingale residuals is to note that the
quantity rps; in equation (4.6) is the difference between the observed number
of deaths for the ith individual in the interval (0.t;) and the corresponding

’
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estimated expected number on the basis of the fitted model. To see this,
note that the observed number of deaths is unity if the survival time t; is
uncensored, and zero if censored, that is 8;. The second term in equation (4.6)
is an estimate of H,(t;), the cumulative hazard or cumulative probability of
death for the ith individual over the interval (0, ;). Since we are dealing with
just one individual, this can be viewed as the expected number of deaths ip
that interval. This shows another similarity between the martingale residualg
and residuals from other areas of data analysis.

4.1.4 Deviance residuals

Although martingale residuals share many of the properties possessed by resid-
uals encountered in other situations, such as in linear regression analysis, they
are not symmetrically distributed about zero, even when the fitted model is
correct. This skewness makes plots based on the residuals difficult to interpret.
The deviance residuals, which were introduced by Therneau et al, (1990), are
much more symmetrically distributed about zero. They are defined by

Tpi = sgn(ran) [~2 {ras; + 6 log(6; — rMi)}]% , wn

where 7y, is the martingale residual for the ith individual, and the function
sgn(-) is the sign function. This is the function that takes the value +1 if
its argument is positive and —1 if negative. Thus sgn(rps;) ensures that the
deviance residuals have the same sign as the martingale residuals.

The original motivation for these residuals is that they are components of
the deviance. The deviance is a statistic that is used to summarise the extent
to which the fit of a model of current interest deviates from that of a model
which is a perfect fit to the data. This latter model is called the saturated

or full model, and is a model in which the B-coeflicients are allowed to be
different for each individual. The statistic is given by

D=-2 {logﬁc — logI:f} )

where ic is the maximised partial likelihood under the current model and
L # is the maximised partial likelihood under the full model. The smaller the
- value of the deviance, the better the model. The deviance can be regarded as a
generalisation of the residual sum of squares used in modelling normal data to
the analysis of non-normal data, and features prominently in generalised linear
modelling. Note that differences in deviance between two alternative models
are the same as differences in the values of the statistic —2log L introduced
in Chapter 3. The deviance residuals are then such that D — > rd,, so that
observations that correspond to relatively large deviance residuals are those
that are not well fitted by the model.

Another way of viewing the deviance residuals is that they are martingale
residuals that have been transformed to produce values that are symmetric
about zero when the fitted model is appropriate. To see this, first recall that
the martingale residuals 75y, can take any value in the interval (—oo,1). For
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likelihood function with respect to Bj, which, from equation (3.5), is given by

M = Z(Si {.’L‘ji —aj}, (4'10)
95; i=1

where
_ Zz Tji eXP(ﬂ/ml)
Zz exp(ﬁ’ml)

The ith term in this summation, evaluated at B, is then the Schoenfeld residua]
for X;, given in equation (4.8). Since the estimates of the B’s are such that

Jdlog L(B) =0
a5, -

the Schoenfeld residuals must sum to zero. These residuals also have the prop-
erty that, in large samples, the expected value of rpj; is zero, and they are
uncorrelated with one another.

It turns out that a scaled version of the Schoenfeld residuals, proposed
by Grambsch and Therneau (1994), is more effective in detecting departures
from the assumed model. Let the vector of Schoenfeld residuals for the ith
individual be denoted rp; = (rP1i, P21, . .. y7ppi)’. The scaled, or weighted,
Schoenfeld residuals, TPji> are then the components of the vector

Qji

(4.11)

Th = rvar (B)rp;,

where 7 is the number of deaths among the n individuals, and var (B) is the
variance-covariance matrix of the parameter estimates in the fitted Cox re-
gression model. These scaled Schoenfeld residuals are therefore quite straight-
forward to compute.

4.1.6* Score residuals

There is one other type of residual that is useful in some aspects of model
checking, and which, like the Schoenfeld residual, is obtained from the first
derivative of the logarithm of the partial likelihood function with respect to
the parameter 3;, j = 1,2, ... , 0. However, the derivative in equation (4.10)
is now expressed in a quite different. form, namely

Olog L(B) & , (ajr — z;:)6,
—QG5a = 0i(zji — aj:) + exp(B'z;) T ,
08 ; n tr\gti 2ieres,) P (8'z))

(4.12)
where z;; is the ith value of the Jjth explanatory variable, §; is the event
indicator which is zero for censored observations and unity otherwise, aj; is
given in equation (4.11), and R(t;) is the risk set at time ¢,. In this formu-
lation, the contribution of the jth observation to the derivative only depends
on information up to time t;. In other words, if the study was actually con-
cluded at time ¢;, the ith component of the derivative would be unaffected.
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Residuals are then obtained as the estimated value of the n components of
the derivative. From Appendix A, the first derivative of the logarithm of the
partial likelihood function, with respect to 3}, is the efficient score for B;, and
so these residuals are known as score residuals.

From equation (4.12), the sth score residual, 4 = 1,2,... n, for the jth
explanatory variable in the model, X 4, is given by

~ N Ajy — Tz o
TS = 571(17_7'1' - aj;) + exp(8 x;) Z ( J ”)A/ .
tr <t ZleR(tr) exp(8 x;)

Using equation (4.8), this may be written in the form

~ a ir — L5 6r
TSji = TPji + exp(,B/:ci) Z ( J I ) (413)

al y
t < t; ZleR(tr) exp(8 x;)

which shows that the score residuals are modifications of the Schoenfeld resid-
uals. As for the Schoenfeld residuals, the score residuals sum to zero, but will
not necessarily be zero when an observation is censored.

. In this section, a number of residuals have been defined. We conclude with
an example that illustrates the calculation of these different types of residual
and that shows similarities and differences between them. This example will
be used in many illustrations in this chapter, mainly because the relatively
small number of observations allows the values of the residuals and other
diagnostics to be readily tabulated. However, the methods of this chapter are
generally more informative in larger data sets.

Ezample 4.1 Infection in patients on, dialysis
In the treatment of certain disorders of the kidney, dialysis may be used
to remove waste materials from the blood. One problem that can occur in
patients on dialysis is the occurrence of an infection at the site at which
the catheter is inserted. If any such infection occurs, the catheter must be
removed, and the infection cleared up. In a study to investigate the incidence
of infection, the time from insertion of the catheter until infection was recorded
for a group of kidney patients. Sometimes, the catheter has to be removed for
reasons other than infection, giving rise to right-censored observations. The
data in Table 4.1 give the number of days from insertion of the catheter until
its removal following the first occurrence of an infection. The data set includes
the values of a variable that indicates the infection status of an individual,
which takes the value zero if the catheter was removed for a reason other
than the occurrence of an infection, and unity otherwise. Also given is the age
of each patient in years and a variable that denotes the sex of each patient
(1 = male, 2 = female). These data are taken from McGilchrist and Aisbett
(1991), and relate to the 13 patients suffering from diseases of the kidney
coded as type 3 in their paper.

When a Cox regression model is fitted these data. the fitted hazard finctinn
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Table 4.1 Times to removal of a
catheter following a kidney infection.

Patient Time Status Age Sex

1 8 1 28 1
2 15 1 44 2
3 22 1 32 1
4 24 1 16 2
5 30 1 10 1
6 54 0 42 2
7 119 1 22 2
8 141 1 34 2
9 185 1 60 2
10 292 1 43 2
11 402 1 30 2
12 447 1 31 2
13 536 1 17 2
for the 7th patient, 1 = 1,2,...,13, is found to be
hi(t) = exp {0.030 Age; — 2.711 Sex;} ho(2), (4.14)

where Age; and Sez, refer to the age and sex of the ith patient.

The variable Sex is certainly important, since when Sex is added to the
model that contains Age alone, the decrease in the value of the statistic
—2log L is 6.445 on 1 d.f. This change is highly significant (P = 0.011).
On the other hand, there is no statistical evidence for including the variable
Age in the model, since the change in the value of the statistic —2log L on
adding Age to the model that contains Ser is 1.320 on 1 d.f. (P = 0.251).
However, it can be argued that from the clinical viewpoint, the hazard of in-
fection may well depend on age. Consequently, both variables will be retained
in the model.

The values of different types of residual for the model in equation (4.14)
are displayed in Table 4.2. In this table, r¢;, 7ar; and rp; are the Cox-Snell
residuals, martingale residuals and deviance residuals, respectively. Also 7p1;
and rpo; are the values of Schoenfeld residuals for the variables Age and Sez,
respectively, 75;; and 75,, are the corresponding scaled Schoenfeld residuals,
and rg1;, Tgo; are the score residuals. N

The values in this table were computed using the Nelson-Aalen estimate
of the baseline cumulative hazard function given in equation (3.25). Had the
estimate Hy(t), in equation (3.19), been used, different values for all but the
Schoenfeld residuals would be obtained. In addition, because the correspond-
ing estimate of the survivor function is zero at the longest removal time, which
is that for patient number 13, values of the Cox-Snell, martingale and deviance
residuals would not then be defined for this patient, and the martingale resid-
uals would no longer sum to zero.
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Table 4.2 Different types of residual after fitting a Cox regression model.

Patient 7¢; TMi TDi TP1i TP2i Thii Tho; TS1i rs2i
1 0.280 0.720 1.052 —1.085 ~0.242 0.033 —3.295 —0.781 —0.174
2 0072 0928 1.843 14.493 0.664 0.005 7.069 13.432 0.614
3 1.214 —-0.214 —0.200 3.129 —0.306 0.079 —4.958 -—-0.322 0.058
4 0084 0916 1.765 —~10.222 0.434 —0.159 8.023 —-9.214 0.384
5 1506 —0.506 —0.439 —16.588 —0.550 —0.042 —5.064 9.833 0.130
6 0.265 —0.265 —0.728 - - - - —3.826 —0.145
7 0235 0.765 1.168 —17.829 0.000 —0.147 3.083 —15.401 —0.079
8§ 0484 0.516 0.648 —7.620 0.000 —0.063 1.318 —7.091 —0.114
9 1438 —-0.438 —-0.387 17.091 0.000 0.141 —2.955 —15.811 —0.251
10 1.212 --0.212 —-0.199 10.239 0.000 0.085 —1.770 1.564 —0.150
11 1.187 --0.187 —-0.176 2.857 0.000 0.024 —0.494 6.575 —0.101
12 1.828 —0.828 —0.670 5.534 0.000 0.046 —0.957 4.797 -0.104
13 2.195 —1.195 —0.904 0.000 0.000 0.000 0.000 16.246 —0.068

In this data set, there is just one censored observation, which is for patient
number 6. Therefore, the modified Cox-Snell residuals will be the same as
the Cox-Snell residuals for all patients except number 6. For this patient, the
values of the two forms of modified residuals are 7 = 1.265 and r¢g = 0.958.
Also, the Schoenfeld residuals are not defined for the patient with a censored
removal time, and are zero for the patient that has the longest period of time
before removal of the catheter.

The skewness of the Cox-Snell and martingale residuals is clearly shown in
Table 4.2, as is the fact that the Cox-Snell residuals are centred on unity while
the martingale and deviance residuals are centred on zero. Note also that the
martingale, Schoenfeld and score residuals sum to zero, as they should do.
One unusual feature about the residuals in Table 4.2 is the large number
of zeros for the values of the Schoenfeld residual corresponding to Sex. The
reason for this is that for infection times greater than 30 days, the value of
the variable Ser is always equal to 2. This means that the value of the term
a;; for this variable, given in equation (4.9), is equal to 2 for a survival time
greater than 30 days, and so the corresponding Schoenfeld residual defined in
equation (4.8) is zero.

We now consider how residuals obtained after fitting a Cox regression model
can be used to throw light on the extent to which the fitted model provides
an appropriate description of the observed data. We will then be in a position
to study the residuals obtained in Example 4.1 in greater detail.

4.2 Assessment of model fit

A number of plots based on residuals can be used in the graphical assessment
of the adequacy of a fitted model. Unfortunately, many graphical procedures
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that are analogues of residual plots used in linear regression analysis have not
proved to be very helpful. This is because plots of residuals against quantitieg
such as the observed survival times, or the rank order of these times, often
exhibit a definite pattern, even when the correct model has been fitted. Tra-
ditionally, plots of residuals have been based on the Cox-Snell residuals, or
adjusted versions of them described in Section 4.1.2. The use of these residuals
is therefore reviewed in the next section, and this is followed by a description
of how some other types of residuals may be used in the graphical assessment
of the fit of a model.

4.2.1 Plots based on the Coz-Snell residuals

In Section 4.1.1, the Cox-Snell residuals were shown to have an exponential
distribution with unit mean, if the fitted model is correct. They therefore
have a mean and variance of unity, and are asymmetrically distributed about
the mean. This means that simple plots of the residuals, such as plots of the
residuals against the observation number, known as index plots, will not lead
to a symmetric display. The residuals are also correlated with the survival
times, and so plots of these residuals against quantities such as the observed
survival times, or the rank order of these times are also unhelpful.

One particular plot of these residuals, that can be used to assess the overall
fit of the model, leads to an assessment of whether the residuals are indeed
a plausible sample from a unit exponential distribution., This plot is based
on the fact that if a random variable T has an exponential distribution with
unit mean, then the survivor function of T is e™%; see Section 5.1.1 of Chap-
ter 5. Accordingly, a plot of the cumulative hazard function H(t) = — log S(t)

against ¢, known as a cumulative hazard plot, will give a straight line through -

the origin with unit slope.

This result can be used to examine whether the residuals have a unit expo-
nential distribution. After computing the Cox-Snell residuals, r¢;, the Kaplan-
Meier estimate of the survivor function of these values is found. This estimate
is computed in a similar manner to the Kaplan-Meier estimate of the survivor
function of survival times, except that the data on which the estimate is based
are now the residuals r¢;. Residuals obtained from censored survival times are
themselves taken to be censored. Denoting the estimate by S (rci), the values
of H (res) = —log S (rcs) are plotted against ro;. This gives a cumulative
hazard plot of the residuals. A straight line with unit slope and zero intercept
will then indicate that the fitted survival model is satisfactory. On the other
hand, a plot that displays a systematic departure from a straight line, or yields
a line that does not have approximately unit slope or zero intercept, might
suggest that the model needs to be modified in some way. Equivalently, a
log-cumulative hazard plot of the residuals, that is a plot of log H (r¢:) against
log r¢; may be used. This plot is discussed in more detail in Section 4.4.1.

Ezample 4.2 Infection in patients on dialysis
Consider again the data on the time to the occurrence of an infection in kidney
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patients, described in Example 4.1. In this example, we first examine whether
the Cox-Snell residuals are a plausible sample of observations from a unit
exponentlal distribution. For this, the Kaplan-Meier estimate of the survivor
function of the Cox-Snell residuals, S (r¢i), is obtained. The cumulative hazard
function of the residuals, H (re;), derived from — log S (rc:), is then plotted
against the corresponding residual to give a cumulative hazard plot of the
residuals. The details of this calculation are summarised in Table 4.3, and
the cumulative hazard plot is shown in Figure 4.1. The residual for patient
pumber 6 is omitted from Table 4.3 because this observation is censored.

Table 4.3 Calculation of the
cumulative hazard function of
the Coz-Snell residuals.

rei S(res) H(rc:)

0.072 0.9231 0.080
0.084 0.8462 0.167
0.235 0.7692 0.262
0.280 0.6838 0.380
0.484 0.5983 0.514
1.187 0.5128 0.668
1.212 0.4274 0.850
1.214 0.3419 1.073
1.438 0.2564 1.361
1.506 0.1709 1.767
1.828 0.0855 2.459
2.195 0.0000 -

The relatively small number of observations in this data set makes it difficult
to interpret plots of residuals. However, the plotted points in Figure 4.1 are
fairly close to a straight line through the origin, which has approximately unit
slope. This could suggest that the model fitted to the data given in Table 4.1
is satisfactory.

On the face of it, this procedure would appear to have some merit, but
cumulative hazard plots of the Cox-Snell residuals have not proved to be
very useful in practice. In an earlier section it was argued that since the val-
ues —log S(t;) have a unit exponential distribution, the Cox-Snell residuals,
which are estimates of these quantities, should have an approximate unit ex-
ponential distribution when the fitted model is correct. This result is then
used when interpreting a cumulative hazard plot of the residuals. Unfortu-
nately this approximation is not very reliable, particularly in small samples.
This is because estimates of the 3’s, and also of the baseline cumulative hazard
function, Hy(t), are needed in the computation of the r¢;. The substitution
of estimates means that the actual distribution of the residuals is not neces-
sarily unit exponential, but their exact distribution is not known. In fact, the



