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en by
N N . .
H;(t) = exp(B ;) Ho(t)- (3.21)
1 multiplying each side of equation (3.20) by —1 and exponentiating, and
iking use of equation (1.5), we find that the estimated survivor function for

3 7th individual is _,

X . exp(3 1)

S:(t) = {So()} , (3.22)
sty ST < Bty k=1,2,...,r — 1. Note that once the estimated sur-

vor function, S; (t), has been obtained, an estimate of the cumulative hazard

nction is simply —log S (t).

8.1 The special case of no covariates

"hen there are no covariates, so that we have just a single sample of survival
mes, equation (3.16) becomes

om which

‘hen, the estimated baseline hazard function at time t¢; is 1 — éj, which
3 dj/n;. The corresponding estimate of the survivor function from equa-

ion (3.18) is [}—, &, that is,
k
H 'I”Lj — dj
T ’

j=1
vhich is the Kaplan-Meier estimate of the survivor function given earlier in
squation (2.4). This shows that the estimate of the survivor function given in
squation (3.22) generalises the Kaplan-Meier estimate to the case where the
sazard function depends on explanatory variables.
Furthermore, the estimate of the hazard function in equation (3.17) reduces
w dj/{n;(ti+1) —ta)h which is the estimate of the hazard function given

in equation (2.16) of Chapter 2.

2.8.2 Some approzimations to estimates of the baseline functions

When there are tied survival times, the estimated baseline hazard can only
be found by using an iterative method to solve equation (3.16). This iterative
process can be avoided by using an approximation to the summation on the
Jeft-hand side of equation (3.16).

The term .,
gexpB
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in the denominator of the left-hand side of equation (3.16), can be written as
-

and taking the first two terms in the expansion of the exponent gives
exp {eﬁ T logfj} ~14eBT logé;.

Writing 1 — &; for the estimated baseline hazard at time ¢;), obtained using

this approximation, and substituting 1 + Az logé; for € oxp(B'@:) in equa-
tion (3.16), we find that ¢; is such that ’

1 s
- Z = Z exp(8 x).

leD(t) log¢; LER(t(;)

Therefore,
—d;

Z eXP(ﬁlwz),

SCEINE )

since dj is the number of deaths at the jth ordered death time, ¢(;), and so
gj = €xp 4 =7

ZleR(t(j)) exp(ﬁ ml)

(3.23)

( ) ?
IiOIn eq uation 3.18 , an eS(lnlat;e ()f the SUrvivor functl()n based on ‘lle Va.llles

k
So(t) = Hexp —d; -
=1 2leR(t,)) exP(B =)

for t'(k) <t < .t(kﬂ), k =1,2,...,7 — 1. From this definition, the estimated
survivor ft}nctlon is not necessarily zero at the longest survi’val time, when
that time is uncensored, unlike the estimate in equation (3.18). The es,tim t

of the baseline cumulative hazard function derived from Sy(t) .is e

: (3.24)

. . k .
Hy(t) = —log So(t) = Z d; —
=1 2leR(t,,) e*P(B )

f - .
or (k) < t < t(k+]), k = 1, 2, e, T — 1. Ihls estlnla'te l.S Oﬂell IefeIIed to as
the Melson—Aalen estimate or tlle B" ele’w [ t.ﬂl e v
] ] E . S ate Of the baselln Cumulatl €
VV hen ‘ h a. O covar iates t i
) v he eStHIla d I)asel €S V'V() tio i
( EIe) re 1 y ‘e 11 Urvl T funC 101 In

(3.25)

k
[ ] exo(=ds/ns), (3.26)

=1
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since n; is the pumber of individuals at risk ajc time t(.j>' T hi.s 1sftg(}>, Athle)l-;_
Aalen estimate of the survivor function given in equatlc?rl (2.6) o 1apter
and the corresponding estimate of the baseline cumulative hazard function is
% _, d;/n;, as in Section 2.3.3 of Chapter 2.

5& further approximation is found from noting that the expression

—d;
~t ’
Sier(,,) P8 x)

in the exponent of equation (3.23), will tend to be small, unless there are 1ar1gle
numbers of ties at particular death times. Taking the ﬁrgt CW.O terms otf) % (i
expansion of this exponent, and denoting this new approximation to &; by &

gives

d;
_ S
Sieris,,) P8 1)

Adapting equation (3.17), the estimated baseline hazard function in the in-
terval from t(;) to t(j+1) 18 then given by

g =1

S N (3.27)
(ten) — L) Tiera,, PP @)

for t(n <t <ty J = 1,2,...,r — 1. Using § in place of §j‘in equa-
tion ((]?3.18) the corresponding estimated baseline survivor function 18

(1) =

d;
=7
ZleR(tm) exp(3 x1)

and a further approximate estimate of the baseline cu.mulative hazard.fun.c-

tion is Hg(t) = —log S5 (t). Notice that the cumulative hazard function in
0 .

equation (3.25) at time ¢ can be expressed in the form

b

k
sso =1L\ 1~

k
Ho(t) = > (tg+n) — t))ho(t):

i=1

where hj(t) is given in equation (3.27). Conseguently, differen(:fas in S‘LCCEZ__
sive values of the estimated baseline cumulatw.e hazard functlpn 1nt tiqrnes
tion (3.25) provide an approximat;on to thetbgsehne hazard function, a

can easily be computed. .
t(li;lt(tzl)u’e"p;ri(i::)\;l;}rlazase whereythere are no covariates, the estin}ates .ho.(t),
55 (t) and HE(t) are the same as those given in Se(.:tion 3.8.1. Equalutlt(.mS t;l;nzif.g
to equations (3.21) and (3.22) can be used to estimate the cumulative

ivi ¢ iables
and survivor functions for an individual whose vector of explanatory varia

is ;. ' B
Iri practice, it will often be computationally advantagegus t(? use e.nther 151'0 (tl)1
or SZ(t) in place of So(t). When the number of tied survival times is small, a

O ienatee will tend to be very similar. Moreover, since the estimates are
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generally used as descriptive summaries of the survival data, small differences
between the estimates are unlikely to be of practical importance.

Once an estimate of the survivor function has been obtained, the median
and other percentiles of the survival time distribution can be found from tab-
ular or graphical displays of the function for individuals with particular values
of explanatory variables. The method used is very similar to that described
in Section 2.4, and is illustrated in the following example.

Ezample 3.12 Treatment of hypernephroma

In Example 3.4, a proportional hazards model was fitted to the data on the
survival times of patients with hypernephroma. The hazard function was found
to depend on the age group of a patient, and whether or not a nephrectomy

had been performed. The estimated hazard function for the ith patient was
found to be

hi(t) = exp{0.013 Ag; + 1.342 Az; — 1.412 N; tho(2),

where Aj; is unity if the patient is aged between 60 and 70 and zero otherwise,
As; is unity if the patient is aged over 70 and zero otherwise, and V; is unity if
the patient has had a nephrectomy and zero otherwise. The estimated baseline
hazard function is therefore the estimated hazard of death at time ¢, for an
individual whose age is less than 60 and who has not had a nephrectomy.

In Table 3.10, the estimated baseline hazard function, ﬁo(t), cumulative
hazard function, Ho(t), and survivor function, Sg(t), obtained using equa-
tions (3.15), (3.19) and (3.18), respectively, are tabulated.

From this table, we see that the general trend is for the estimated baseline
hazard function to increase with time. From the manner in which the esti-
mated baseline hazard function has been computed, the estimates only apply
at the death times of the patients in the study. However, if the assumption
of a constant hazard in each time interval is made, by dividing the estimated
hazard by the corresponding time interval, the risk of death per unit time
can be found. This leads to the estimate in equation (3.17). A graph of this
hazard function is shown in Figure 3.2.

This graph shows that the risk of death per unit time is roughly constant
over the duration of the study. Table 3.10, also shows that the values of fbo(t)
are very similar to differences in the values of Hy(t) between successive ob-
servations, as would be expected.

We now consider the estimation of the median survival time, which is the
smallest observed survival time for which the estimated survivor function is
less than 0.5. From Table 3.10, the estimated median survival time for patients
aged less than 60 who have not had a nephrectomy is 12 months.

By raising the estimate of the baseline survivor function to a suitable power,
the estimated survivor functions for patients in other age groups, and for pa-
tients who have had a nephrectomy, can be obtained through equation (3.22).
Thus, the estimated survivor function for the sth individual is given by

Si(t) = {

. exp{0.01345,+1.342 45, —1.412N, }
SO(t)}
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Table 3.10 Estimates of the baseline
hazard and survivor functions for the
data from Example 3.4.

Time ho(t) So(t) Ho(t)

0 0.000 1.000 0.000
5 0.050 0.950 0.051
6
8

0.104 0.852 0.161
0.113 0.755 0.281
9 0.237 0.576 0.552
10 0.073 0.534 0.628
12 0.090 0.486 0.722
14 0.108 0.433 0.836
15 0.116 0.383 0.960
17 0.132 0.333 1.101
18 0.285 0.238 1.436
21 0.185 0.194 1.641
26 0.382 0.120 2.123
35 0.232 0.092 2.387
36 0.443 0.051 2.972
38 0.279 0.037 3.299
48 0.299 0.026 3.655
52 0.560 0.011 4.476
56 0.382 0.007 4.958
68 0.421 0.004 5.504
72 0.467 0.002 6.134
84 0.599 0.001 7.045
108 0.805 0.000 8.692
115 - 0.000 -

For an individual aged less than 60 who has had a nephrectomy, Ay =0,
Az = 0, and N = 1, so that the estimated survivor function for this individual
is

{S’ © }exp{—1.412}
o .

This function is plotted in Figure 3.3, together with the estimated baseline
survivor function, which is for an individual in the same age group but who
has not had a nephrectomy.

This figure shows that the probability of surviving beyond any given time is
greater for those who have had a nephrectomy, confirming that a nephrectomy
improves the prognosis for patients with hypernephroma.

Note that because of the assumption of proportional hazards, the two esti-
mated survivor functions in Figure 3.3 cannot cross. Moreover, the estimated
survivor function, for those who have had a nephrectomy, lies above that of
those on whom a nephrectomy has not been performed. This is a direct con-
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sequence of the estimated hazard ratio for those who have had the operation,
relative to those who have not, being less than unity.

An estimate of the median survival time for this type of patient can be
obtained from the tabulated values of the estimated survivor function, or
from the graph in Figure 3.3. We find that the estimated median survival
time for a patient aged less than 60 who has had a nephrectomy is 36 months.
Other percentiles of the distribution of survival times can be estimated using
a similar approach.

In a similar manner, the survivor functions for patients in the different
age groups can be compared, either for those who have had or not had a
nephrectomy. For example, for patients who have had a nephrectomy, the
estimated survivor functions for patients in the three age groups are respec-
tively {S’O(t)}exp{*l.AHZ}’ {S‘O(t)}exp{-l.412+0<013} and {S'O(t)}exp{—l.412+l.342}.
These estimated survivor functions are shown in Figure 3.4.

o

0.8 1
0.6 1

0.4

Estimated survivor function

0.21

0.0

Survival time

Figure 3.4 Estimated survivor functions for patients aged less than 60 (— ), between
60 and 70 (---) and greater than 70 (---), who have had a nephrectomy.

This figure clearly shows that patients aged over 70 have a poorer prognosis
than those in the other two age groups.

3.9* Proportional hazards modelling and the log-rank test

The proportional hazards model can be used to test the null hypothesis that
there is no difference between the hazard functions for two groups of survival
times, as illustrated in Example 3.3. This modelling approach therefore pro-
vides an alternative to the log-rank test in this situation. However, there is
a close connection between the two procedures, which is explored in greater
detail in this section.
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Following the notation used in Section 2.6.2, and summarised in Table 2.7
the two.groups will be labelled Group I and Group II, respectively. The nu1;n—,
bers Qf individuals in the two groups who die at the jth ordered death time
tiy, 3 = 1,2,...,7, will be denoted by di; and dy;, respectively. Similarly’
the numbers of individuals at risk in the two groups at time ¢y, that is thei
numbers who are alive and uncensored just prior to this time \gl)l,l be den’oted
ny; and ngj, respectively. 7

Now let X be an indicator variable that is unity when an individual is in
Group I and zero when an individual is in Group II. The proportional hazards

model for the ith individual can be written as

ha(t) = €77 ho(t),
where i is the value of X for the ith individual, i = 1,2,...,n. When there
are no tied observations, that is, when d; = dy; + dy; = 1, this model can

be ﬁtFed by finding tl.lat value 8 which maximises the likelihood function in
equation <3.4). Denoting the value of X for the individual who dies at t;y by
z(;y, the likelihood function is given by v

L(g) = - exp(Bz(;)
( ) j=1 Zl:]1 exp(ﬁxl)’

since there are n; = ny; + ny; individuals in the risk set, R(t(;)), at time ¢(;
and the corresponding log-likelihood function is o

log L(8) =) Bz~ Y log {Z exp(ﬁxz)} :
j=1 j=1 =1

Since () %s zero for individuals in Group II, the first summation in this
express1£)n is over the death times in Group I, and so is simply d,, where
=% j=1d1; s the total number of deaths in Group I. Also,

(3.28)

7
> exp(Bzr) = nyje? +nyy,
I=1

and so

-
log L(B) = 18 — Y _log {nye” +na;} . (3.29)
=1

The .maxirgum likelihood estimate of 8 can be found by maximising this
expr.essmn with respect to 3, for which a non-linear optimisation routine is
.requtl}rled. Then, the null hypotheses that 8 = 0 can be tested by compar-

ing the value of —2log L(3) with —2log L i ity is si

2 g L(0). This latt

22j21 ot (0) is latter quantity is simply
Computation of 5 can be avoided by using a score test of the null hypothesis

thtﬁ_o lhstet A 1X bae on
= uU. proc dure, thh 18 uthlled n
a lC S € 'Y O 1 ppend A, 18 S d

u (E)

i0)
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where
_ Olog L(B)
is the efficient score, and
: 9% log L{(B)
i(8) =~

is Fisher’s (observed) information function. Under the null hypothesis that
B = 0, u2(0)/4(0) has a chi-squared distribution on one degree of freedom.

Now, from equation (3.29),

r B
dlog L(B) _ _ mye )
s Z % nijef +ng; )’

i=1
and
d*log L(B) XT: (n1je? + ng;)nie’ — (n1;e%)?
32 N et (nljef’ + lej)2
_ Z n1;jN2;€
- (n1jef + ngy)?

The efficient score and information function, evaluated at § = 0, are therefore

given by

T
oMy
U(O) = Z (dl] nlj + n2J> y

=1

and

. - n1;N25

0= ; (n1j +naj)?
These are simply the expressions for UL, and Vg given in quations (2..23) and
(2.25) of Chapter 2, for the special case where there are no ties, that is, where

;= i =1,2,...,7. .

“ Wlierfloihjere are tied observations, the likelihood function in.equatl_on (.3.28)
has to be replaced by one that allows for ties. In particu.lar, it tk{e hkehhopd
function in equation (3.11) is used, the efficient score and information function
are exactly those given in equations (2.23) and (2.25). Hence, when there are
tied survival times, the log-rank test corresponds to using the score .test for
the discrete proportional hazards model due to Cox (19?2). In practice, the
P-value that results from this score test will not usually differ much from that
obtained from comparing the values of the statistic —2log L for.the models
with and without a term corresponding to the treatment effect. Th%s was noted
in the discussion of Example 3.3. Of course, one advagtage of using the Cox
regression model in the analysis of such data is that it leads directly to an

estimate of the hazard ratio.

FURTHER READING 109
3.10 Further reading

Comprehensive introductions to statistical modelling in the context of linear
regression analysis are given by Draper and Smith (1981) and Montgomery et
al. (2001). McCullagh and Nelder (1989) include a chapter on models for sur-
vival data in their encyclopaedic survey of generalised linear modelling. Aitkin
et al. (1989) illustrate the theory and practice of linear modelling through the
statistical package GLIM, and also include a chapter on the analysis of survival
data.

Model formulation and strategies for model selection are discussed in books
on linear regression analysis, and also in Chapter 5 of Chatfield (1995), Chap-
ter 4 of Cox and Snell (1981), and Appendix 2 of Cox and Snell (1989). Miller
(2002) describes a wide range of procedures for identifying suitable subsets of
variables to use in linear regression modelling. What has come to be known as
Akaike’s information criterion was introduced by Akaike (1974). It is widely
used in times series analysis and described in books on this subject, such as
Chatfield (1996) and Janacek (2001). The hierarchic principle is fully discussed
by Nelder (1977), and in Chapter 3 of McCullagh and Nelder (1989). Harrell
(2001) addresses many practical issues in model building and illustrates the
process using two extensive case studies involving survival data.

The proportional hazards model for survival data, in which the baseline
hazard function remains unspecified, was proposed by Cox (1972). This paper
introduced the notion of partial likelihood, which was subsequently considered
in greater detail by Cox (1975). See also the contributions to the discussion
of Cox (1972) by Kalbfleisch and Prentice (1972) and Breslow (1972). A de-
tailed review of the model, and extensions of it, is contained in Therneau and
Grambsch (2000).

Introductions to the proportional hazards model, intended for medical re-
searchers have been given by Christensen (1987), Elashoff (1983) and Tib-
shirani (1982). More recent accounts are given in the textbooks referenced
in Section 1.4 of Chapter 1. In particular, Hosmer and Lemeshow (1999) in-
clude a careful discussion on model development and the interpretation of
model-based parameter estimates.

A detailed treatment of ties in survival data is given in Kalbfleisch and
Prentice (2002) and Lawless (2002); see also Breslow (1972) and Peto (1972).
DeLong et al. (1994) give an equivalent expression for the exact partial likeli-
hood in the presence of ties that has computational advantages. The estimate
of the baseline survivor function, denoted by Sy(t) in Section 3.8, was intro-
duced by Kalbfleisch and Prentice (1973) and is also described in Kalbfleisch
and Prentice (2002). The estimate Sj(t) was presented by Breslow (1972,
1974), although it was derived using a different argument from that used in
Section 3.8.2.



