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The coefficient of z; in this model can then be interpreted as the logarithm of
a hazard ratio. Now consider the ratio of the hazard of death for an individual
for whom the value z+11s recorded on X, relative to one for whom the value
z is obtained. This is
exp{Bz+1)} _ 3
i 0 VS M R A
exp(fz)

and so 3 in the fitted proportional hazards model is the estimated change in
the logarithm of the hazard ratio when the value of X is increased by one
unit.

Using a similar argument, the estimated change in the log-hazard ratio when
the value of the variable X is increased by 7 units is 3, and the corresponding
estimate of the hazard ratio is exp(r8). The standard error of the estimated
log-hazard ratio will be rse (B), from which confidence intervals for the true
hazard ratio can be derived.

The above argument shows that when a continuous variable X is included
in a proportional hazards model, the hazard ratio when the value of X is
changed by r units does not depend on the actual value of X. For example, if
X refers to the age of an individual, the hazard ratio for an individual aged
70, relative to one aged 65, would be the same as that for an individual aged
20, relative to one aged 15. This feature is a direct result of fitting X as a
linear term in the proportional hazards model. If there is doubt about the
assumption of linearity, a factor whose levels correspond to different sets of
values of X can be fitted. The linearity assumption can then be checked using

the procedure described in Section 3.6.2.

3.7.2 Models with a factor

When individuals fall into one of m groups, m = 2, which correspond to cat-
egories of an explanatory variable, the groups can be indexed by the levels
of a factor. Under a proportional hazards model, the hazard function for an

individual in the jth group, j =1, 2,...,m, is given by
hj(t) = exp(75)ho(t),

where 1; is the effect due to the jth level of the factor, and hg(t) is the baseline
hazard function. This model is overparameterised, and so, as in Section 3.2.2,
we take 4, = 0. The baseline hazard function then corresponds to the hazard
of death at time t for an individual in the first group. The ratio of the hazards
at time t for an individual in the jth group, j = 2, relative to an individual
in the first group, is then exp(v;)- Consequently, the parameter 7; is the
logarithm of this relative hazard, that is,

~; = log{h;(t)/ho(t)}-

A model that contains the terms vj, j=12,...,m, with 7 = 0, can
be fitted by defining m — 1 indicator variables, X2, X3, ..., X, as shown in
Y . e e dal Tande +n actimates Yo. 83, ..« Ymo and their
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standard errors. The estimated 1 i
andar 5. ogarithm of the relative ha: indi
vxiual in group 7, relative to an individual in group 1, is theznarf”;i for an ind
PR TN H ' A
o 190( 1—a)% (/(on{)idence interval for the true log-hazard ratio i]s the interval
1Y — Zagese () t0 Ay + 24 ¥ i

, ) /28€ (7;), where z, /5 is the upper a/2-poi
;))}f1 et}}lle s‘tagdar(.l 1}orma.l distribution. A corresponding COIlﬁdeIII)(I‘,)e in‘cérvapiloétl)lltr

azard ratio itself is obtained by exponentiating these confidence limits

Ezample 3.8 Treatment of hypernephroma

?:ttje c:)))n3 tllle s§rvival times of patients with hypernephroma were given in
Lo Who.m. an t 1sh exagnple, 1xlive will only consider the data from those patients
nephrectomy has been performed, gi i
. ' : , given in columns 4 to 6
;l:)atgf 73.3. The survival times of this set of patients are classified accgrdino f
i elnr2 a§e tiroup. If the effect due to the jth age group is denoted by ag
= 1,2,3, the proportional hazards model for th i "
patient in the jth age group is such that © hosard at time ¢ for a

hj(t) = exp(a;)ho(t).

iiuissn:&cil:; c;;n;}?e ﬁtt?d by defining two indicator variables, A; and As, where
. e patient is aged between 60 and 70 d, Ag i ity i
patient is more than 70 years of i 4. This o o et
ot o e years of age, as in Example 3.4. This corresponds to
N ;1‘;153 zlrah}lle of —2log L. for the null model is 128.901, and when the term o
: ;f, t e'val.ue of this statistic reduces to 122.501. This reduction of 6 48(3)
2)}111 . £ is mgmf}can‘c at the 5% level (P = 0.041), and so we conclude £h t
eT hazard fupctlon does depend on which age group the patient is in )
e coefficients of the indicator variables Ay and As are estimate‘.s of &
2

and ag, respectively, and are given i
7 o . .
e given in Table 3.7. Since the constraint o = 0

Table 3.7 Parameter estimates
and their standard errors on fit-
ting a proportional hazards model
to data from Ezample 3.4.

Parameter Estimate s.e.

az —0.065  0.498
Qas 1.824  0.682

Th i i
6 isee}i%?&rsd ra(§1g4for }zi.lpaglentfaged 60--70, relative to one aged less than
, 18 = 0.94, while that for a patient whose age i
z(;lljtﬁve t(zi one aged less than 60, is e!82¢ = 6.20. Thesierlessil;zasir telzlsintlzofz
o %az usft }(11:32}}11 at {mir glivegl time is greatest for patients Whogire oldgr
: , ere is little diffe i i i
in the other tre aes oo rence in the hazard functions for patients

Th
e standard error of the parameter estimates in Table 3.7 can be used to
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obtain confidence intervals for the true hazard ratios. A 95% confidence inter-
val for the log-hazard ratio for a patient whose age is between 60 and 70, rela-
tive to one aged less than 60, is the interval with limits —0.0654(1.96 X 0.498),
that is, the interval (—1.041, 0.912). The corresponding 95% confidence inter-
val for the hazard ratio itself is (0.35, 2.49). This confidence interval includes
unity, which suggests that the hazard function for an individual whose age is
between 60 and 70 is similar to that of a patient aged less than 60. Similarly,
a 95% confidence interval for the hazard for a patient aged greater than 70,
relative to one aged less than 60, is found to be (1.63,23.59). This interval
does not include unity, and so an individual whose age is greater than 70 has
a significantly greater hazard of death, at any given time, than patients aged
less than 60.

In some applications, the hazard ratio relative to the level of a factor other
than the first may be required. In these circumstances, the levels of the factor,
and associated indicator variables, could be redefined so that some other level
of the factor corresponds to the required baseline level, and the model re-
fitted. The required estimates can also be found directly from the estimates
obtained when the first level of the original factor is taken as the baseline,
although this is more difficult.

The hazard functions for individuals at levels j and j' of the factor are
exp(a;)ho(t) and exp(ay )ho(t), respectively, and so the hazard ratio for an
individual at level j, relative to one at level j', is exp(a; — a;r). The log-hazard
ratio is then a; — oy, which is estimated by é; ~ &;r.

To obtain the standard error of this estimate, we use the result that the
variance of the difference &; — &/ is given by

var (& — 6y7) = var (&) + var (dy7) = 2eov (&,8y).

In view of this, an estimate of the covariance between &; and &;r, as well
as estimates of their variance, will be needed to compute se (&, — G; /). The
calculations are illustrated in Example 3.9.

Ezample 8.9 Treatment of hypernephroma

Consider again the subset of the data from Example 3.4, corresponding to
those patients who have had a nephrectomy. Suppose that an estimate of
the hazard ratio for an individual aged greater than 70, relative to one aged
between 60 and 70, is required. Using the estimates in Table 3.7, the estimated
log-hazard ratio is G — Qg = 1.824 + 0.065 = 1.889, and so the estimated
hazard ratio is ¢!'®%° = 6.61. This suggests that the hazard of death at any
given time for someone aged greater than 70 is more than six and a half times
that for someone aged between 60 and 70.

The variance of &3 — @2 18

var (d3) + var (dg) — 2cov (@3, a3),

and the variance-covariance matrix of the parameter estimates gives the re-
. . Min wntriv ran he ohtained from statistical
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packages used to fit the Cox regression model, and is found to be

Az [0.2484 0.0832
Az \ 0.0832 0.4649 /°
Ay Az

from which var (&2) = 0.2484, var (&3) = 0.4649, and cov (&2, &3) = 0.0832.

Of course, the variances are sim
ply the squares of the stand i
Table 3.7. It then follows that andard errors in

var (G — éi2) = 0.4649 + 0.2484 — (2 x 0.0832) = 0.5469,

ffnld S0 lt}fle s;}alm(]iardherror of &g — é&3 is 0.740. Consequently a 95% confidence
interval for the log-hazard ratio is (0.440, 3.338) and i

e e ( ) and that for the hazard ratio
. An. eagier way of obtaining the estimated value of the hazard ratio for an
individual who is aged greater than 70, relative to one aged between 60 and
70, and the' standa'rd error of the estimate, is to redefine the levels of the
factor associated with age group. Suppose that the data are now arranged so
that the first level ‘of the factor corresponds to the age range 60-70, level 2
corresponds to .patlfents aged greater than 70 and level 3 to those a,ged less
than 60. Choosing indicator variables to be such that the effect due to the

first level of the redefined factor is set e
qual to zero leads t i
and Bj defined in the table below. eads to the variables B2

Age group B; Bs

<60 0 1
60-70 0 0
>70 1 0

The festimated log-hazard ratio is now simply the estimated coefficient of Bs
and its standard error can be read directly from standard computer output 7

Tl'le manner in which the coefficients of indicator variables are interpreted is
crucially dependent upon the coding that has been used for them. This means
that when a proportional hazards model is fitted using a statistical package
tha.t enables factors to be fitted directly, it is essential to know how irf)d' tg
variables used within the package have been defined. e

As a further illgstration, suppose that individuals fall into one of m groups
'and that the coding used for the m — 1 indicator variables, X», X3 X
is such that the sum of the main effects of 4, } -, a;, is equal t sero. The
values of the indicat i ing to an . e e

icator variables corresponding to an m-level factor A, are
)

then as shown in the following table.
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Levelof A X2 Xs L. Xon
1 -1 -1 -1
1 0 0
3 0 1 0
m 0 0 1

With this choice of indicator variables, A proportional hazards model that
contains this factor can be expressed in the form

h;(t) = exp(agzy + 033 + + amTm)ho(t),
where z; is the value of X; for an individual for whom the factor A is at

the jth level, j = 2,3,..., M. The hazard of death at a given time for an
individual at the first level of the factor is

exp{—(az +azg+-+ am)}s
while that for an individual at the jth level of the factor is
exp(ay),

for j > 2. The ratio of the hazard for an individual in group j, j 2 2, relative
to that of an individual in the first group, is then

exp(o; +ag+azt o+ am)

For example, if m =4 and j = 3, the hazard ratio is exp(a? + 203 + ay), and
the variance of the corresponding estimated log-hazard ratio is

var (&) + 4 var (&3) + var (&4) + 4 cov (&2, G3)
+ 4cov (G, Ga) + 2cov (G2, A4).

Each of the terms in this expression can be fougd from the -va,nance-
covariance matrix of the parameter estimates after ﬁttlr.xg a prqportlonal haz-
ards model, and a confidence interval for the hazard r-a,tlo obtau.led.. Althoug.h
this is reasonably straightforward, this particular coding of f;he 'm.dlcator vari-
ables does make it much more complicated to interpret the individual param-
eter estimates in a fitted model.

9.7.8 Models with combinations of terms

In previous sections, we have only considered the inter.pretat.ion of pararrl\xzter
estimates in proportional hazards models that contain a single term.b ore%
generally, a fitted model will contain terms corresPondlng tp a number o
variates, factors or combinations of the two. With suitable coding o_f indicator
variables corresponding to factors in the model, the parameter estimates can

in be interpreted as logarithms of hazard ratios. .
aean p‘ ' timo wmnwn +han one variable. the parameter estimate
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associated with a particular effect is said to be adjusted for the other variables
in the model, and so the estimates are log-hazard ratios, adjusted for the other
terms in the model. The proportional hazards model can therefore be used
to estimate hazard ratios, taking account of other variables included in the
model.

When interactions between factors, or mixed terms involving factors and
variates, are fitted, the estimated log-hazard ratios for a particular factor
will differ according to the level of any factor, or the value of any variate
with which it interacts. In this situation, the value of any such factor level or
variate will need to be made clear when the estimated hazard ratios for the
factor of primary interest are presented.

Instead of giving algebraic details on how hazard ratios can be estimated
after fitting models with different combinations of terms, the general approach
will be illustrated in two examples. The first of these involves both factors and
variates, while the second includes an interaction between two factors.

Ezample 8.10 Comparison of two treatments for prostatic cancer

In Example 3.6, the most important prognostic variables in the study on
the survival of prostatic cancer patients were found to be size of tumour
(Size) and the Gleason index of tumour stage (Index). The indicator variable
Treat, which represents the treatment effect, is also included in a proportional
hazards model, since the aim of the study is to quantify the treatment effect.
The model for the ith individual can then be expressed in the form

hi(t) = exp{f Size; + B2 Index; + B3 Treat;}ho(t),

for i = 1,2,...,38. Estimates of the (-coefficients and their standard errors
on fitting this model are given in Table 3.8.

Table 3.8 Estimated coefficients
of the explanatory variables on fit-
ting a proportional hazards model
to the data from Ezample 1.4.

Variable 8 se (B)
Size 0.083 0.048
Index 0.710 0.338
Treat -1.113 1.203

The estimated log-hazard ratio for an individual on the active treatment,
DES, (Treat = 1) relative to an individual on the placebo (Treat = 0), with
the same values of Size and Inder as the individual on DES, is ,5’3 = —1.113.
Consequently the estimated hazard ratio is e 1113 = 0.329. The value of this
hazard ratio is unaffected by the actual values of Size and Index. However,
since these two explanatory variables were included in the model, the esti-
mated hazard ratio is adjusted for these variables.
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For comparison, if a model that only contains Treat is fitted, the estimated
coeficient of Treatis —1.978. The estimated hazard ratio for an individual on
DES, relative to one on the placebo, unadjusted for Size and Indez, is now
¢~1.978 — (.14, This shows that unless proper account is taken of the effect of
size of tumour and index of tumour grade, the extent of the treatment effect
is overestimated.

Now consider the hazard ratio for an individual on a particular treatment
with a given value of the variable Indez and a tumour of a given size, relative
to an individual on the same treatment with the same value of Indez, but
whose size of tumour is one unit less. This is €%98 = 1.09. Since this is
greater than unity, we conclude that, other things being equal, the greater
the size of the tumour, the greater that hazard of death at any given time.
Similarly, the hazard ratio for an individual on a given treatment with a given
value of Size, relative to one on the same treatment with the same value of
Size, whose value of Indez is one unit less, is €% 710 = 2 03. This again means
that the greater the value of the Gleason index, the greater is the hazard of
death at any given time. In particular, an increase of one unit in the value of
Index doubles the hazard of death.

Ezample 3.11 Treatment of hypernephroma

Consider again the full set of data on survival times following treatment for
hypernephroma, given in Table 3.3. In Example 3.4, the most appropriate
proportional hazards model was found to contain terms oy, j = 1,2,3, corre-
sponding to age group, and terms vg, k = 1,2, corresponding to whether or
not a nephrectomy was performed. For illustrative purposes, in this example
we will consider the model that also contains the interaction between these
two factors, even though it was found not to be significant. Under this model,
the hazard function for an individual in the jth age group and the kth level
of nephrectomy status is

h(t) = exp{a; + vk + {av);k tho(t), (3.13)

where (av);i is the term corresponding to the interaction.

Consider the ratio of the hazard of death at time ¢ for a patient in the
jth age group, 7 = 1,2,3, and the kth level of nephrectomy status, k = 1,2,
relative to an individual in the first age group who has not had a nephrectomy,
which is

exp{a; + vk + (av);x}
exp{al +v1 + (av)in}’

As in Example 3.4, the model in equation (3.13) is fitted by including the
indicator variables As, A3, and N in the model, together with the products
A, N and A3N. The estimated coefficients of these variables are then &, Gs,

vy, (2;)22, and (av),,, respectively. From the coding of the indicator variables

o e

that has been used, the estimates &, 1, (av),; and (av),, are all zero. The
estimated hazard ratio for an individual in the jth age group, j =1,2,3, and
the kth level of nephrectomy status, k = 1,2, relative to one in the first age
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group who has not had a nephrectomy, is then just

e

exp{&; + D + () . }-

1‘/}_1\@ non-zero parameter estimates are dp = 0.005, a3 = 0.065, 7 = —1.943
(), = —0.051, and (av),, = 2.003. The estimated hazard ratios are sum-

marised in Table 3.9.

Table 3.9 Estimated hazard ratios on fitting a
model that contains an interaction to the data
from Ezample 3.4.

Age group No nephrectomy Nephrectomy

<60 1.000 0.143
60-70 1.005 0.137
>70 1.067 1.133

Inclusion of the combination of factor levels for which the estimated hazard
ratio is 1.00, in tables such as Table 3.9, emphasises that the hazards are
relative to those for individuals in the first age group who have not had a
nephrectomy. This table shows that individuals aged less than or equal to 70
who have had a nephrectomy, have a much reduced hazard of death, compareci
to those in the other age group and those who have not had a nephrectomy.

Confidence intervals for the corresponding true hazard ratios can be found
using the method described in Section 3.7.2. As a further illustration, a con-
fidence interval will be obtained for the hazard ratio for individuals who have
had a nephrectomy in the SEC/Oild age group relative to those in the first. The

log~haza.rd ratio is now &+ (av),,, and so the estimated hazard ratio is 0.955.
The variance of this estimate is given by

s

var (&) -+ var {(@)22} +2cov {Gg, (o) gy}

From the variance-covariance matrix of the parameter estimates after fitting
the model in equation (3.13), var (&2) = 0.697, var {{av),,} = 0.942, and the

covariance term is cov {Gz, (ar),,} = —0.695. Consequently, the variance of
the estimated log-hazard ratio is 0.248, and so a 95% confidence interval for
the true log-hazard ratio ranges from —0.532 to 0.441. The corresponding con-
fidence interval for the true hazard ratio is (0.59, 1.55). This interval includes
unity, and so the hazard ratio of 0.955 is not significantly different from unity

at the 5% level. Confidence intervals for the hazard ratios in Table 3.9 can be
found in a similar manner.

3.8" Estimating the hazard and survivor functions

So far in t}.liS chapter, we have only considered the estimation of the G-
parameters in the linear component of a proportional hazards model. As we
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have seen, this is all that is required in order to draw inferences about the effect
of explanatory variables in the model on the hazard function. Once a suitable
model for a set of survival data has been identified, the hazard function, and
the corresponding survivor function, can be estimated. These estimates can
then be used to summarise the survival experience of individuals in the study.

Suppose that the linear component of a proportional hazards model contains
p explanatory variables, X1, Xa,...,Xp, and that the estimated coefficients of
these variables are Bl, Bz, ceey Bp. The estimated hazard function for the ith
of n individuals in the study is then given by

ha(t) = exp(B &) ho(t), (3.14)

where @; is the vector of values of the explanatory variables for the 1th indi-
vidual,i=1,2,...,n, B is the vector of estimated coeflicients, and fzo (t) is the
estimated baseline hazard function. Using this equation, the hazard function
for an individual can be estimated once an estimate of ho(t) has been found.
The relationship between the hazard, cumulative hazard and survivor func-
tions can then be used to give estimates of the cumulative hazard function
and the survivor function.

An estimate of the baseline hazard function was derived by Kalbfleisch
and Prentice (1973) using an approach based on the method of maximum
likelihood. Suppose that there are r distinct death times which, when arranged
in increasing order, are t(1) < t(g) < - < t(r), and that there are d; deaths
and n; individuals at risk at time ;). The estimated baseline hazard function

at time t(;) is then given by
ho(t) =1— &, (3.15)

where éj is the solution of the equation

>, opBa) > exp(B z), (3.16)

leD(t) 1 — éf’(p('@ ) leR(iy)

for j = 1,2,...,r. In equation (3.16), D(t(;)) is the set of all d; individuals
who die at the jth ordered death time, t(;), and as in Section 3.3, R(t(;))
is the set of all n; individuals at risk at time t(;). The estimates of the 8’s,
which form the vector B, are those which maximise the likelihood function in
equation (3.4). The derivation of this estimate of ho(t) is quite complex, and
so it will not be reproduced here.

In the particular case where there are no tied death times, that is, where
dj=1forj=12,...,7, the left-hand side of equation (3.16) will be a single
term. This equation can then be solved to give

v exp(~B T )
¢ (1 _ exp(Brg))
;=
>

~t
1€ Rt ) exp(B x1)

h T :l:( s L vector fex } nat ly val € 1 he I VI( al who
wlere ) 5 ¢ Ctor o pa. ato a. db 28 10
() > C h dles

When there are tied observations, that is, when one or more of the d; are
greater than unity, the summation on the left-hand side of equation (3.1]6) is
Eheds_;lfm of a series of fractions in which §; occurs in the denominators, raised

o different powers. Equation (3.16) cannot then b icitly, :
: . . e solved
iterative scheme is required. ved explicity, and an

We now make the a.ssumption that the hazard of death is constant be-
Eweeg adqacen.t (.ieath tlr'nes. An appropriate estimate of the baseline hazard
unctlpn in this interval is then obtained by dividing the estimated hazard in
equation (3.15) by the time interval, to give the step function

. 1-¢;
ho(t) = ———4—,
tG+1) — o) (347
for t(;) <t <tyyn), J =1,2,...,r ~ 1, with ho(t) = 0 for ¢ < ty).
The quantity &; can be regarded as an estimate of the probability that

an individual survives through the interval fr
: : om 1ty to t(i11y. i
survivor function can then be estimated by v vy The bascline

k
S =1 (3.18)
Jj=1

tfnor téfc) <t < t(;ﬁ%l), k=1,2,...,r — 1, and so this estimate is also a step-
unction. The estimated value of the baseline survivor function is unity for
t < t(1), and zero for t > t(T)L unless there are censored survival times greater
than ¢(,. If this is the case, Sy(t) can be taken to be S‘O(t(T)) until the largest

censored time, but the esti ; S
time. imated survivor function is undefined beyond that

"The baseline cumulative hazard function is, from equation (1.7), given by

Hy(t) = —log So(t), and so an estimate of this function is
X ) k
Ho(t) = —log Sy(t) = — Y _log§;, (3.19)
j=1

for Lk gt <t k+1)> k=12,...,r—1, with Ho(t) =0fort < ty-

; The' estunat?s of the baseline hazard, survivor and cumulative hazard func-
ons in equations (3.17), (3.18) and (3.19) can be used to obtain the cor-

respondmg.estimates for an individual with vector of explanatory variable

z;. In particular, from equation (3.14), the hazard function is estimated b}Sf

~ /! ~
exp(B z;)ho(t). Next, integrating both sides of equation (3.14), we get

/szi(u)duzexp([i/wi)/() ho(u) du, (3.20)

80 that the estimated cumulative hazard function for the ith individual is



