34
Gaussian regression models

Most of this book has been about events such as the incidence of disease or
mortality. Although events are particularly important in epidemiology, in
some studies the response of interest is a quantitative measurement such as
blood pressure. The most widely used probability model for such responses
is the Gaussian model, described in Chapter 8. In this chapter we show how
regression models are used in conjunction with the Gaussian probability
model. We shall call this combination Gaussian regression although it
is more usual for it to be called simply regression or multiple regression
because it was developed before other regression methods.

34.1 Models for the mean

The Gaussian probability model differs from the binary model in having
two parameters instead of one. These are p, the mean, and o, the standard
deviation. In the simplest situation changing the level of an explanatory
variable changes the value of pz but leaves o unchanged. The distributions of
response for a comparison of exposed and unexposed subjects predicted by
such a model is illustrated in Fig. 34.1. The effect of exposure is measured
by the difference between the means, py1 — po-

To control for confounding by age, using stratification, we would stratify
by age and make the assumption that p, —po is constant across age groups.
This is equivalent to fitting the regression model

Mean = Corner + Age + Exposure.

The effect of exposure in this model is simply the (common) difference
between mean responses for exposed and unexposed subjects within age
groups.

To illustrate such models we shall use some additional data from the
study of diet and coronary heart disease. These concern daily intake of fi-
bre which is the response variable. Age and occupation are the explanatory
variables, both with three levels.* Table 34.1 shows a simple summary of
these data in which a separate estimate of mean and standard deviation

*Unpublished data
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Fig. 34.1. Effect of exposure on the mean response.

has been calculated for each of the nine age—occupation groups. The main
interest is in differences between occupations and inspection of the esti-
mated means suggests that there is a systematic tendency for bank clerks
to eat more fibre than the drivers and conductors. There is no obvious
systematic variation in the standard deviation parameters, so the assump-
tion that changing the levels of age and occupation does not affect o is
reasonable.

The additive regression model relating the mean daily intake of fibre to
the effects of age and occupation is

Mean = Corner + Age + Work.

When both age and work are treated as categorical this has five parameters
in all, namely the Corner, Age(1), Age(2), Work(1), and Work(2) param-
eters. These are called the regression parameters to distinguish them from
o, the common standard deviation, which is called the residual standard
deviation. The square of o is called the residual variance.

34.2 Likelihood, sums of squares, and deviance

From Chapter 8, the log likelihood for a study of size N is

_Nlog(a)A% 3 (m;“)2.

Subjects
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Table 34.1. Dietary fibre intake (gm/day) by age and occupation

Occupation

Age Bus driver  Bus conductor  Bank clerk
< 45 N 23 16 38
Mean 16.1 17.2 19.1
SD 3.91 5.00 5.53
45—-49 N 30 29 57
Mean 16.3 17.0 18.5
SDh 4.22 5.42 6.88
50+ N 45 39 56
Mean 16.6 14.8 17.6
SD 6.28 4.48 5.43
All N 98 84 151
Mean 16.4 16.0 18.34
SD 5.17 5.00 6.04

However, in contrast with Chapter 8, the mean parameter g is not a single
constant but can vary from subject to subject according to the regression
model. In our example p can take nine different values according to the
combination of age and occupation. For estimating the regression param-
eters the N log(c) term in the log likelihood can be ignored, and because
& is assumed to be the same for all subjects the parameter values which
minimize the sum of squared differences,

> @ -w

will also maximize the log likelihood, regardless of the value of 0. T hus
the most likely values of the regression parameters do not depend on o.
Because they minimize a sum of squared differences they are also called
least squares estimates. The minimum value which this sum of squared
differences takes is known as the residual sum of squares.

For example, Table 34.2 shows the parameter estimates for the model

Mean = Corner + Work

for the dietary fibre data. The table shows most likely values for the three
parameters in this model, together with their standard deviations. The
standard deviation of each regression parameter has been calculated from
the profile log likelihood obtained by maximizing the log likelihood with
respect to all the other regression parameters. Although the estimated
values of these parameters do not depend on o their standard deviations
do, and in constructing the table ¢ has been taken equal to 5.5401 (we
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Table 34.2. Effects of work on fibre intake (gm/day)

Parameter Estimate SD

Corner 16.425 0.560
Work(1) —0.402 0.824
Work(2) 1.911 0.719

shall see where this value comes from later in the chapter).

Exercise 34.1. Use the results in Table 34.2 to find the 90% confidence interval
for the Work(1) parameter.

34.3 Analysis of deviance

The deviance for any fitted model is defined as minus twice the log like-
lihood ratio, when this compares the fitted model with a saturated model
which has a parameter for each record. When the records refer to individual
subjects the saturated model has p = x 80 the deviance is

2
(0
(=)

This is proportional to the residual sum of squares for that model.T  As
before, the degrees of freedom for the deviance are equal to the the number
of parameters in the saturated regression model, which is equal to the
number of subjects N, less the number of parameters in the regression
model which has been fitted. These are also the degrees of freedom for the
residual sums of squares.

The deviance can be used to compare models in the same way as in
Chapter 24, but all calculations are first done in terms of residual sums of
squares and later converted to deviances by dividing by a suitable estimate
of the square of o. The residual sums of squares are obtained from the
analysis of variance table which is usually in the output when a Gaussian

regression model is fitted. For example, the analysis of variance table
produced when fitting the model

Mean = Corner + Age + Work

to the data in Table 34.1 would look something like Table 34.3. The most
important line in this table is the middle one labelled ‘Error’ which gives

tIn the original definition of the idea of deviance, this was called the scaled deviance
because of its dependence on the unknown scale parameter and the word deviance
was reserved for its value when o is taken as 1. However, this usage has not received
widespread acceptance.
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Table 34.3. Analysis of variance for the variable work

Source DF SSq
Model 2 369.891
Error 330 10128.636
Total 332 10498.527

the residual sum of squares for the model which has been fitted and its
degrees of freedom. Since the number of subjects is N = 333 and the
regression model has three parameters, the degrees of freedom here are
333 — 3 = 330. The last line of the table, headed ‘Total’ gives the same
information for the degenerate model

Mean = Corner

in which the mean response is the same for all subjects. This regression
model has only one parameter so the degrees of freedom for its residual
sum of squares and deviance are 332. The line labelled ‘Model’ is obtained
by subtracting the degrees of freedom and the residual sum of squares for
the error and total lines. When this difference in residual sum of squares is
converted to a difference in deviance by division by the square of a suitable
estimate of o, it provides us with a test of the null hypothesis that all
parameters in the model, other than the corner parameter, are zero. In
this case this would be a test of the difference between occupations.

With more than one explanatory variable, testing the hypothesis that
all the parameters in the model are zero is rarely of any interest. The only
use of analysis of variance tables for such models is to obtain the residual
sum of squared deviations from the second line. By fitting a series of models
a more useful table can be constructed, as follows. Table 34.4 shows the
residual sums of squares extracted from the analysis of variance tables for
five models fitted to the fibre data. Changes in residual sums of squares
from one model to another can be converted to deviances and used to test
a variety of hypotheses. For example, the effects of work controlled for
age can be tested by using the change in residual sum of squares between
models 3 and 4.

ESTIMATING ¢

Using the joint likelihood for the regression parameters and o it can be
shown, using calculus, that the most likely value of o is '

\ﬁ{esidual sum of squares
N )
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Table 34.4. Analysis of deviance (o = 5.5445)

Mean = Corner + - - - DF SSq Deviance
1. - 332 10498.527  341.510
2. Work 330 10128.636  329.478
3. Age 330 10384.702  337.807
4. Age + Work 328 10048.456  326.870
5. Age + Work + Age-Work 324  9960.268  324.000

This is the value of o which maximizes the total likelihood and it therefore
also maximizes the profile likelihood for . When the number of regression
parameters is large compared with the number of subjects, it is preferable
to use a conditional likelihood which depends only on o, rather than the
profile likelihood. The most likely value of o is then equal to the residual
sum of squares divided by its degrees of freedom. For example, the value
of o used throughout Table 34.4 was

o = /9960.268/324 = 5.5445

which is the conditional estimate obtained from model 5, although the
overall most likely value is

o = 1/9960.268/333 = 5.4691

It can be seen that the use of the degrees of freedom in place of N has
a negligible effect for a study of this size. The reason why o is generally
estimated from the conditional likelihood can be illustrated by a simple
argument. If we imagine a study of 10 subjects and fit a regression model
with 10 parameters it will fit the observations exactly. The overall most
likely value of o would be zero but the reality is that we have no data for
estimating o. Only when we add an eleventh subject to our study do we
start collecting information about o. It follows that the effective size of the
study for the purposes of estimating o is given by the N minus the number
of regression parameters — the degrees of freedom -— and the estimated
value of o should be

Residual sum of squares
Degrees of freedom

One consequence of using this estimate is that the deviance for the model
used to estimate o is equal to its degrees of freedom.

A test for interaction between work and age may be obtained by com-
paring the deviances for models 4 and 5. The difference in deviance is
326.870 — 324.000 = 2.870 with 326 — 324 = 2 degrees of freedom. Re-
ferring this to the chi-squared distribution shows this to be clearly non-
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Table 34.5. Effects of age and work o fibre intake (gm/day)

Parameter Estimate SD

Corner 16.430  0.560
Age(1) —0.223 0.814
Age(2) —1.118 0.788
Work(1) —0.387 0.824
Work(2) 1.828 0.720

significant so that we are reassured concerning our assumption of constant
occupational effects over age groups.

The parameter estimates for model 4 are shown in Table 34.5. Note,
however, that the value of o used to calculate the standard deviations of
the parameters is slightly different from that used in Table 34.4. This is
because, whereas the estimate of o used in Table 34.4 was obtained from
model 5, Table 34.5 refers to model 4 and it is therefore logical to estimate
o using this model, that is by

o = 1/10048.456/328 = 5.5349.

The significance of the occupational effect, controlled for age, can be tested
by comparing the deviances for models 4 and 3. However, since this test
only makes sense when there is no interaction, deviances should properly
be calculated using the model 4 estimate of o rather than that used in
Table 34.4.

Exercise 34.2. Carry out the test for the effect of occupation controlled for age.

Similarly, the value of o used to calculate standard deviations of parameter
estimates in Table 34.2 is obtained from model 2,

o = 1/10128.636/330 = 5.5401

and this is the value which would be used if we wished to compare models 1
and 2. In practice the difference between the possible estimates of o are
usually inconsequential except in very small studies.

F RATIO TESTS

The tests discussed above refer changes in deviance to the appropriate chi-
squared distribution. If the value of o were a known constant, these would
be ezact tests. However, when o is estimated they are only approximate.
Exact tests which take account of the fact that o is estimated may be car-
ried out using F distributions, tables of which arc readily available. Instead
of referring the change in deviance to the chi-square distribution, we divide

MULTIPLICATIVE MODELS 343

it by the corresponding degrees of freecdom to obtain the F ratio. For exam-
ple, the change in deviance for the test for interaction was 2.870, with two
degrees of freedom, so the corresponding F ratio is 1.435. To obtain the
exact p-value, the F ratio is referred to the correct F distribution. However,
to select the correct F distribution, we must specify two different numbers
of degrees of freedom. The first, called the numerator degrees of freedom,
is the same as the degrees of freedom for the approximate chi-squared test
while the second, called the denominator degrees of freedom, is the number
of degrees of freedom used to estimate o. In our example these are 2 and
334 respectively.

In practice there is only a noticeable difference between F ratio tests
and the approximate chi-squared test in small studies. In our example,
the p-value obtained from the chi-squared distribution is 0.2381 while that
obtained from the F distribution is 0.2396. Since the F ratio test is only
exact if the assumptions of Gaussian distribution shape and constancy of o
are true, they are not usually worth the (admittedly slight) extra trouble.

34.4 Multiplicative models

A basic assumption in the Gaussian regression model is that changes in
the explanatory variables affect the mean level of response but not the
variability. However, it is commonly the case that as the level of response
goes up, so does its variability. A simple multiplicative model acting at the
individual level would explain this, for if the effect of changing the level
of work is to double the values of the individual responses, then the stan-
dard deviation of these individual values will also get doubled. On a log
scale, however, the effect of doubling the response will be to add log(2) to
the log response, leaving the standard deviation of the log responses un-
changed. This suggests that when the effects appear to act multiplicatively
at an individual level, the log response should be analysed in place of the
response.

There is some suggestion in Table 34.1 that standard deviation of fibre
intake goes up with the mean, so that a multiplicative model may be more
appropriate. This suggests analysing log fibre intakes rather than fibre
intakes themselves. Inspection of the data suggests that the distribution of
log fibre intake is closer to the Gaussian shape than the distribution of fibre
intake, and this is another point in favour of analysing log fibre intakes.
When the Gaussian regression model

Mean = Corner + Age + Work.

is fitted to the logs of the fibre intakes we obtain the parameter estimates
shown in Table 34.6.

The effect parameters shown in this table arc additive effects upon log
fibre intake and these should be exponentiated to express them as multi-
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Table 34.6. Effects of age and work on log fibre intake

Parameter Estimate SD

Corner 2.8039 0.0430
Age(1) —0.0253 0.0445
Age(2) —0.0800 0.0431
Work(1) —0.0345 0.0451
Work(2) 0.0962 0.0394

plicative effects on fibre intake. The error factor method can be used to
calculate confidence intervals for the multiplicative effects.

Exercise 34.3. Express the estimates of the Work parameters as multiplicative
effects, and calculate 90% confidence intervals. .

Apart from this change in the way the parameter estimates are interpreted
the use of the log response in place of the response does not affect matters.
Models are compared using residual sums of squares in the same way as
before.

If the effect of the explanatory variables is multiplicative at a group
level, but not at an individual level, so that o is constant, a multiplicative
model such as '

Mean = Corner x Age x Work,

can be fitted to the data on the original scale. Computer programs are
available for fitting such models but the need for them rarely arises because
the idea of an explanatory variable acting multiplicatively at a group level
but not at an individual level is rather implausible.

Solutions to the exercises

34.1 The 90% confidence interval is from —0.402—1.645x0.824 = —1.757
to —0.402 + 1.645 x 0.824 = 0.953. The lower limit is a reduction of 1.757
gm, the upper limit is an increase of 0.953 gm.

34.2 The appropriate value for o is 5.5349, taken from the model which
includes both age and work. The deviance for this model is then 328.000,
and the deviance for the model which includes age alone is

10384.702/5.5349% = 338.982.
The change in deviances is 338.982 — 328.000 = 10.982 on 2 degrees of

freedom, for which p = 0.004 (from the chi-squared distribution on two
degrees of freedom.
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34.3 The Work(1) parameter is estimated as —0.0345, and since
exp(—0.0345) = 0.966,

the fibre intakes of conductors are 0.966 times those of drivers. The 90%
confidence interval for this ratio is found from the error factor

exp(1.645 x 0.0451) = 1.077,
to be from 0.966/1.077 = 0.897 to 0.966 x 1.077 = 1.04. Similarly, the

multiplicative effect of Work(2) is 1.101 with 90% confidence interval from
1.032 to 1.175.



