CHAPTER VII

CONDITIONAL LOGISTIC REGRESSION
FOR MATCHED SETS

One of the methods for estimating the relative risk parameters B in the stratified
logistic regression model was conditioning (§ 6.3). We supposed that for a given
stratum composed of n, cases and n, controls we knew the unordered values x, ..., X,
of the exposures for the n = n, +n, subjects, but did not know which values were asso-
ciated with the cases and which with the controls. The conditional probability of the
observed data was calculated (6.15) to be a product of terms of the form
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where I ranged over the (31) choices of n, integers from among the set {1,2, ..., n}.

With a single binary exposure variable x, coded x = 1 for exposed and x = 0 for un-
exposed, knowing the unordered x’s meant knowing the total number exposed in the
stratum, and thus knowing all the marginal totals in the corresponding 2 x 2 table. The
complete data were then determined by the number of exposed cases. In these circum-
stances the conditional probability (7.1) is proportional to the hypergeometric distribu-
tion (4.2), used as a starting point for exact statistical inference about the odds ratio
ina?2x2 table.

The conditional likelihood offers important conceptual advantages as a basis for
statistical analysis of the results of a case-control study. First, it depends only on the
relative risk parameters of interest and thus allows for construction of exact tests and
estimates such as were described in Chapters 4 and 5 for selected problems. Second,
precisely the same (conditional) likelihood is obtained whether we regard the data as
arising from either (i) a prospective study of n individuals with a given set of exposures
X1, ..., Xp, the conditioning event being the observed number n, of cases arising in the
sample; or (ii) a case-control study involving n, cases and n, controls, the conditioning
event being the n observed exposure histories. The observation that these two condi-
tional likelihoods agree, which was made in §4.2 for the 2x2 table, confirms the
fundamental point that identical methods of analysis are used whether the data have
been gathered according to prospective/or retrospective sampling plans.

Unfortunately, whenever the strata contain sizeable numbers of both cases and
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controls, the calculations required for the conditional analysis are extremely costly if
not actually impossible even using large computers. Since the analysis based on the
unconditional likelihood (6.12) yields essentially cquivalent results, it would seem to be
the method of choice in such circumstances. The conditional approach is best restricted
to matched case-control designs, or to similar situations involving very fine stratification,
where Tts_use is in fact essential in order to avoid biased estimates of relative risk. We
begin this chapter with an illustration of the magnitude of the bias which arises from
analysing matched data with the unconditional model. Next, the conditional model is
examined for several of the special problems considered in Chapters 4 and S; many
of the estimates and test statistics discussed earlier for these problems are shown to
result from application of the general model. Finally, we explore the full potential of the
conditional model for the multivariate analysis of matched data, largely by means of
example, and discuss some of the issues which arise in its implementation.

7.1 Bias arising from the unconditional analysis of matched data

Use of the unconditional regression model (6.12) for estimation of relative risks
entails explicit estimation of the a stratum parameters in addition to the B coefficients
of primary interest. For matched or finely stratified data, the number of a parameters
may be of the same order of magnitude as the number of observations and much greater
than the number of 8. In such situations, involving a large number of nuisance para-
meters, it is well known that the usual techniques of likelihood inference can yield
seriously biased estimates (Cox & Hinkley, 1974, p. 292). This phenomenon is perhaps
best illustrated for the case of 1-1 pair matching with a single binary exposure variable X

Returning to the general set-up of § 6.2, suppose that each of the I strata consists
of a matched case-control pair and that each subject has been classified as exposed
(x = 1) or unexposed (x = 0). The outcome for each pair may be represented in the
form of a 2x 2 table, of which there are four possible configurations, as shown in (5.1).
The model to be fitted is of the form

- _ __exp(a;+fx)
pri(y = 1|x) = W’
where 8 = log y is the logarithm of the relative risk, assumed constant across matched
sets.

According to a well-known theory developed for logistic or log-linear models (Fien-
berg, 1977), unconditional maximum likelihood estimates (MLEs) for the parameters
a and B are found by fitting frequencies to all cells in the 2 x 2 x K! dimensional con-
figuration such that (i) the fitted frequencies satisfy the model and (ii) their totals
agree with the observed totals for each of the two dimensional marginal tables. For
the ngo concordant pairs in which neither case nor control is exposed, and the nq,
concordant pairs in which both are exposed, the zeros in the margin require that the
fitted frequencies be exactly as observed. Such tables provide no information about the
relative risk since, whatever the value of 3, the nuisance parameter «; may be chosen
so that fitted and observed frequencies are identical (a; = 0 for tables of the first type
and a; = - for tables of the latter to give probability !/, of being a case or control).
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'he remaining nyp + oy discordant pairs have the same marginal configuration, and
tor these the fitted frequencies are of the form

Exposure
+ .
Case u I 1
Control 1 u 1
1 1 2
where
exp(a; +
u= pri(y = IIX = 1) = 1+§)Ep((1[j‘)ﬂ)
and
1—u = pri(y = 1] —0)=_XP@)
=Py = Hx=0) = @y

which can be expressed as

p = exp(B) = (T‘j;;)

The additional constraint satisfied by the fitted frequencies is that the total number of
exposed cases, njo+mny;, must equal the total of the fitted values, namely
(nyo + ngy)u +ny4. This implies 4 = nyo/(n1o+1ny,) and thus that the unconditional

MLE of the relative risk is
A% n Y \2
P = (ILA) :(_19),
—H Doy,

the square of the ratio of discordant pairs (Andersen, 1973, p. 69).

The estimate based on the more appropriate conditional model has already been
presented in § 5.2. There we noted that the distribution of ny, given the total n;o+ng,
of discordant pairs was binomial with parameter 7 = /(1 +v). It followed that the
conditional MLE was the simple ratio of discordant pairs

=
Thus the unconditional analysis of matched pair data results in an estimate of the odds
ratio which is the square of the correct, conditional one: a relative risk of 2 will tend
to be estimated as 4 by this approach, and that of '/, by /,.
While the disparity between conditional and unconditional analyses is particularly
dramatic for matched pairs, it persists even with other types of fine stratification. Pike,
Hill and Smith (1979) have investigated by numerical means the extent of the bias
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in unconditional estimates obtained from a large number of strata, each having a fixed
number of cases and controls. Except for matched pairs, the bias depends slightly on N o 15888 2RNy
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2.53, depending upon whether the exposure probability for controls is 0.1 or 0.3. Even S - ~
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for estimating a true odds ratio of y = 2, and of about 15% for estimating y = 10. - .| s
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tional logistic regression equations containing many strata or other nuisance parameters : 2 12 o Yol
to limited sets of data. There are basically two choices: one should either use individual \ E
case-control matching in the-design and the conditional likelihood for analysis; or else | 5
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One design which occurs often in practice, and for which the conditional likelihood 5 o -
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same value for each member of a matched set, their contribution to the likelihood is g“% =°
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If there is but a single matched control per case, the conditional likelihood simpli-
fies even further to

!
1
[:71 . . (7.3)
1+ Cxp{gl ﬂk(Xilk_XiOk)}

This may be recognized as the unconditional likelihood for the logistic regression model
where the sampling unit is the pair and the regression variables are the differences in
exposures for case versus control. The constant (¢) term is assumed to be equal to
0 and each pair corresponds to a positive outcome (y = 1). This correspondence permits
GLIM or other widely available computer programmes for unconditional logistic regres-
sion to be used to fit the conditional model to matched pair data (Holford, White &
Kelsey, 1978). .

While not yet incorporated into any of the familiar statistical packages, computer
programmes are available to perform the conditional analysis for both matched (Ap-
pendix IV) and more generally stratified designs (Appendix V), using the likelihoods
(7.2) and (7.1), respectively (Smith et al., 1981). These programmes calculate
the following: (i) the (conditional) MLEs of the relative risk parameters; (ii) minus
twice the maximized logarithm of the conditional likelihood, used as a measure of good-
ness of fit; (iii) the (conditional) information matrix, or negative of the matrix of
second partial derivatives of the log likelihood, evaluated at the MLE; and (iv) the
score statistic for testing the significance of each new set of variables added in a series
of hierarchical models. These quantities are used to make inferences about the relative
risk just as described in § 6.4 for the unconditional model. For example, the difference
between goodness-of-fit (G) measures for a sequence of hierarchical models, in which
each succeeding model represents a generalization of the preceding one, may be used
to test the significance of the additional estimated parameters. This difference has an
asymptotic chi-square distribution, with degrees of freedom equal to the number of
additional variables incorporated in the regression equation, provided of course that
the g coefficients of these variables are truly zero. Similarly, asymptotic variances and
covariances of the parameter estimates in any particular model are obtained from the
inverse information matrix printed out by the programme.

Now that the technology exists for conditional logistic modelling, all the types of
multivariate analysis of stratified samples which were discussed in Chapter 6 can also
be carried out with matched case-control data. In the next few sections we introduce
these techniques by re-analysing the data already considered in Chapter 5. This will
serve to indicate where the model yields results identical with the “classical” tech-
niques, and where it goes beyond them. Later sections will extend the applications to
exploit fully the potential of the model.

7.3 Matched pairs with dichotomous and polytomous exposures: applications

Our first application of the general conditional model is to analyse in this framework
the matched pair data already considered at the end of § 5.2. There we used the 63
pairs consisting of the case and the first control in each matched set from the Los
Angeles study of endometrial cancer (Mack et al., 1976). The analysis was directed
towards obtaining an overall relative risk for oestrogens, detecting a possible inter-
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action with age for the risk associated with gall-bladder disease, and examining the
jomnt ettects of gall-bladder disease and hypertension. Further analysis of these same
matched pairs was carried out in § 5.5 to investigate the relative risks attached to dif-
ferent dose levels of conjugated oestrogens.

In order to carry out parallel analyses in the context of the logistic model, we defined
a number of regression variables as shown in Table 7.2. The first four of these (EST,
GALL, HYP. AGEGP) are dichotomous indicators for history of oestrogen use, gall-
bladder discasc, hypertension, and age, respectively. AGE is a continuous variable,
given in years. In cases where the ages of case and control differed, although this was
never by more than a year or two, AGE and AGEGP were defined as the age of the
case. Hence they represent perfect matching variables which are constant within
each matched set. The three binary variables, DOS1, DOS2 and DOS3, represent Fhe ;
four dose levels of conjugated oestrogen and thus should always appear in any equation |
as a group or not at all. The last variable, DOS, represents the coded dose .levels of
this same factor, and is used to test specifically for a trend in risk with increasing dose.

Table 7.3 shows the results of a number of regression analyses of the variables defined
in Table 7.2. The statistic G for the model with no parameters, i.c., all 8’s assumed
equal to zero, evaluates the goodness of fit to the data of the null hypothesis thgt none
of the regression variables affects risk. Part A of the table considers the relative risk
associated with a history (yes or no) of exposure to any oestrogen, as indicated by the
binary variable EST. The estimated relative risk is ¢ = exp(B) = exp(2.269) = 9.67.,
which is precisely the value found in § 3.2 as the ratio 29/3 of discordant pairs. This

Table 7.2 Definition of regression variables used in the matched pairs analysis

Variable Code
N

EST ? st History of any oestrogen use

GALL 0 No History of gall-bladder disease
1 Yes

HYP ] No . )

- 1 Yes History of hypertension

AGEGP 0 Age 5569 years
1 Age 70-83 years

AGE Age in years (55-83)

DOS t 1 0.1-0.299 mg/day conjugated oestrogens
0 otherwise

DOS 2 1 0.3-0.625 mg/day conjugated oestrogens
0 otherwise

DOS 3 1 0.626+ mg/day conjugated oestrogens
0 otherwise ,

DOS 0 None
1 0.1-0.299 mg/day
2 0.3-0.625 mg/day conjugated oestrogen
3 0.626+ mg/day
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Table 7.3 . Results of fitting the conditional logistic regression model to matched pairs consisting of
the case and first matched control: Los Angeles study of endometrial cancer

No. of Goodness of fit  Score test® Regression coefficients + standard error for each variable in equation

parameters (G}
0 87.34

A. Any oestrogens

EST
1 62.89 21.13 2.269 + 0.606

B. Gall-bladder disease and age

GALL GALL x AGEGP GALL X (AGE-70)
1 83.65 3.56 0.956 + 0.526
2 81.87 1.68 1.946 £ 1.069 -1.540+1.249
2 83.31 0.35° 1.052 +0.566 —0.066 +0.113
C. Hypertension/Gall-bladder disease
GALL HYP GALL x HYP
1 86.53 0.81 0.325 +0.364
2 82.79 3.61 0.970 £ 0.531 0.348 +0.364
3 80.84 2.01 1.517 £ 0.699 0.627 £0.435 -1.548+1.125
D. Gall-bladder disease/Hypertensior!
GALL HYP GALL x HYP
1 83.65 3.56 0.956 + 0.526
2 82.79 0.86 0.970 + 0.531 0.348 £0.377
3 80.84 2.01 1.5617 +0.699 0.627 +£0.435 -1.548+1.125
E. Dose levels of conjugated oestrogen
DOS1 DOSs2 DOS3
3 62.98 16.96 1.524 +£0.618 1.266 + 0.569 2.120+0.693
F. Coded dose of conjugated oestrogen
DOS DOS x AGE
1 65.50 14.71 0.690 + 0.202
2 65.50 0.00 0.693 . 0.282 -0.001 + 0.403

* Score statistic comparing each model with the preceding model in each set, unless otherwise indicated. The first modet in each
set is compared with the model in which all 8's are 0.
* After fitting one parameter model with GALL only

reflects the fact that the conditional likelihood (7.2) is identical (up to a constant of
proportionality) to that used earlier as a basis of inference (5.3), so that the two
analyses are entirely equivalent. Likewise, the score statistic for the test of the null
hypothesis, Hy: ¥ = 1, is identical with the uncorrected (for continuity) value of the x?
defined in (5.4), namely

|29-3]2

29+3 - 21.13.
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This illustrates the point that many of the clementary tests are in fact score tests based
on the model (Day & Byar, 1979). The corrected chi-square value is of course the
more accurate and preferred one, but it has not been incorporated in the computer
programme written for the general regression analysis, since it is not applicable in other
situations.

Two other statistics are available for testing the null hypothesis. These are the differ-
cnces in goodness-of-fit measures, 87.34—62.89 = 24.45, and the square of the stan-
dardized regression coefficient, (2.269/0.606)* = 13.99, each of which also has a
nominal y§ distribution under the null hypothesis. Although the three values are some-
what disparate with these data, they all indicate a highly significant effect. The test’
based on the corrected score statistic is preferred when available, as this comes closest
to the corresponding exact test.

Asymptotic 95 % confidence limits for ¢ are calculated as exp(2.269 £ 1.96 X 0.606) =
(2.9, 31.7), the upper limit being noticeably smaller than that based on the exact
conditional (binomial) distribution (yy = 49.6) or the normal approximation to it
(¥'v = 39.7) which were calculated in § 5.2.

Part B of Table 7.3 presents the relative risk estimate for gall-bladder disease and
its relationship to age. Just as for EST, the estimate of relative risk associated with
Gﬂmﬁz 2.6 = 13/5, and the (uncorrected) score statistic, 3.56 =
(13-5)*/18, must agree with the values found earlier. There is better concordance
between the three available tests of the null hypothesis in this (less extreme) case:
87.34-83.65 = 3.69 for the test based on G, and (0.956/0.526)> = 3.30 for that
based on the standardized coefficient, are the other two values besides the score test.

For the second model in Part B the coefficient of GALL represents the log relative
risk for those under 70 years of age, exp(1.946) = 7.0 = 7/1, while the sum of the
coefficients for GALL and GALL x AGEGP gives the log relative risk for those 70
and over, exp(1.946-1.540) = 1.50 = 6/4. These are the same results as found before.
Similarly, the score statistic for the additional parameter GALL x AGEGP, which tests
the equality of the relative risk estimates in the two age groups, is identical to the
uncorrected chi-square test for equality of the proportions 7/8 and 6/10, namely

2 (Ix4-6x1)*x18 _
) 2= T gxToxiaxs Lo ‘
In § 5.2 we reported the corrected value of this chi-square as y* = 0.59.

The third line of Part B of the table introduces an interaction term with the continu-
ous matching variable AGE. Here the coefficient of GALL gives the estimated relative
risk for someone aged 70, exp(1.052) = 2.86, while the relative risk for other ages is
determined from exp{1.052-0.066(AGE-70)}. In other words, the RR is estimated
to decline by a factor exp(—0.066) = 0.936 for each year of age above 70 and increase
by a factor exp(0.066) = 1.068 for each year below. However this tendency has no
statistical significance; all three of the available tests for homogeneity give a chi-square
of about 0.35 (p = 0.56). Such continuous variable modelling is of course not avail-
able with the elementary techniques.

Part C of Table 7.3 illustrates the increased analytical power which is available using

regression methods. In order to estimate and test the relative risk of gall-bladder
disease, whilé controlling for hypertension. we start with an eauation containine the




