36 Epidemiology: An Introduction

\e formulas, but we are actually describing mortality data. This use is
gitimate because a mortality rate is an incidence rate of death.)

The 90% confidence interval for this pooled estimate of the mortality
ite ratio can be calculated from the fourth variance formula in Table
-4.

307 - 62,119 - 15,763 324 - 6085 - 2780
+
77,882 8865°
196 - 15,763 167 - 2780) (111 62,119 157 - 6085
+ : +
77,882 8865 77,882 8865

Var{In(IRyu)] =

49.56 + 69.74 119.30
92.04 - 196.30 - 18,067 .4

= 0.00660

he corresponding standard error is 0.00660" = 0.081. The 90% confi-
ence interval for the pooled rate ratio is calculated as follows:

IR, = nO47)-16850081 — ( 47

[Ry = eNO47)+16450081_ (54
his confidence interval is narrow, as is that for the rate difference, be-
wuse there is a large number of deaths in the study. Thus, the study

idicates with substantial precision that current users of clozapine had a
wich lower death rate than past users.

-ase-Control Studies

or case-control data, we use the following notation for stratum i of a
ratified analysis.

Exposed Unexposed Total
Cases a; b; My;
Controls ¢ d; My;
Total N 1i N, 0i Ti

The pooled incidence rate ratio is estimated as a pooled odds ratio
om the following formula.

a.d;

2
i T

ORmu = (8-6)
bic;

iTi

“he data in Table 8—6 are from a case-control studv of congenital heart
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Table 8-6. Infants with congenital heart disease and Down syndrome and
healthy controls, by maternal spermicide use before conception and maternal
age at delivery*

Maternal Age (years), Spermicide Use

<35 =35
Yes No Total Yes No Total
Cases 3 9 12 1 3 4
Controls 104 1059 1163 5 86 91
Total 107 1068 1175 6 89 95
QOdds ratio 3.39 5.73

*Data from Rothman.®

syndrome among the subset of cases that had both congenital heart dis-
ease and Down syndrome. The total congenital heart disease case series
comprised more than 300 subjects, but the Down syndrome case series
was a small subset of the original series that was of interest with regard
to the specific issue of a possible relation with spermicide use. For the
crude data, combining the above strata into a single table, the odds ratio
is 3.50. Applying formula 8-6 gives us an estimate of the effect of sper-
micide use unconfounded by age.

3.1059 1-86

1175 95 2.704 + 0.905 378
ORMH = = = o.

1.9 5.3 0797 40158

1175 95

This result is slightly larger than the crude estimate of 3.50, indicating
that there was modest confounding by maternal age. We can obtain a
confidence interval for the pooled estimate from the last variance for-
mula in Table 8-4.

G, = 2704 G, = 0905
Hy = 0797 H, = 0158
P, = 0904 P, = 0916
Q, = 009 Q, = 0.084

il
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Var[ln(ORMH)]
2.704 - 0.904 + 0.905 - 0.916
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(2.704 - 0.09 + 0.797 - 0.904) + (0.905 - 0.084 + 0.158 - 0.916)
2(2.704 + 0.905) - (0.797 + 0.158)

-+

0.797 - 0.096 + 0.158 - 0.084
2(0.797 + 0.158)%

= 0.126 + 0.174 + 0.049 = 0.349

e corresponding standard error is 0.349" = 0.591. The 90% confi-
nce interval for the pooled odds ratio is calculated as follows:

OR, = (In®78)-16450591 _ 1 43

ORy = n@79+16850591 _ 10 o

gtandardization

“tandardization is a method of combining category-specific rates into a

" 1gle summary value by taking a weighted average of them. It weights
2 category-specific rates using weights that come from a standard pop-
ition. The weights, in fact, define the standard. Suppose one is stan-
rdizing a set of age-specific rates to conform to a specific age stan-
rd. One might decide to use the U.S. population in the year 2000 as
> standard. That choice means that the weights used to average the
e-specific rates reflect the distribution of the U.S. population in the
ar 2000. Standardization is thus a process of weighting the rates in
o or more categories by a specified set of weights.
Suppose we have a rate of 10/1000 yr~! for males and a rate of 5/
30 yr ! for females. We can standardize these sex-specific rates to any
ndard that we wish. A reasonable standard might be one that weights
iles and females equally. We would then obtain a weighted average of
> two rates that would equal 7.5/1000 yr~!. Suppose the rates re-
cted the disease experience of nurses, 95% of whom are female. In
it case, we might wish to use as a standard a weight of 5% for males
d 95% for females. The standardized rate would then be as follows:

Y

0.05 X 10/1000 yr~* + 0.95 x 5/1000 yr ' = 5.25/1000 yr

all categories had similar rates, the choice of weights would matter
le. Suppose that males and females had the same rate, 8.0/1000 yrot.
en the standardized rate, after standardizing for sex, would have to
8.0/1000 yr~! because the standardization would involve taking a
iighted average of two values, both of which were 8.0/1000 yr™'. In
ch a situation, the choice of weights is not important. When rates do
ry over categories, however, the choice of weights, which is to say the
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standardized rate will be high, whereas if it assigns large weights to
categories with low rates, the standardized rate will be low. Some epi-
demiologists prefer not to derive a summary measure when the value of
the summary is so dependent on the choice of weights. On the other
hand, it may be convenient or even necessary to obtain a single sum-
mary value, in which case a standardized rate provides at least some
information about how the category-specific information was weighted,
by disclosing which standard was used.

Although one can standardize a single set of rates, the main reason to
standardize is to facilitate comparisons; therefore, there are usually two
or more sets of rates that are standardized. If we wish to compare rates
for exposed and unexposed people, we would standardize both groups
to the same standard. The standardized comparison is akin to pooling.
Both standardization and pooling involve comparing a weighted aver-
age of the stratum-specific results. With pooling, the weights for each
stratum are buried within the Mantel-Haenszel formulas and, thus, are
not immediately obvious. The built-in weights reflect the information
content of the stratum-specific data. These Mantel-Haenszel weights are
large for strata that have more information and small for strata that have
less information. Because the weighting reflects the amount of informa-
tion in each stratum, the result of pooling is an overall estimate that is
optimal from the point of view of statistical efficiency. Standardization
also assigns a weight to each stratum and involves taking a weighted
average of the results across the strata. Unlike pooling, however, in stan-
dardization the weights may have nothing to do with the amount of
data in each stratum. Thus, in pooling, the weights come from the data
themselves, whereas in standardization, the weights can come from out-
side the data and simply reflect the distribution of the standard, which
may correspond to a specific population or be chosen arbitrarily.

Standardization also differs from pooling in that pooling assumes that
the effect is the same in all strata (often called the assumption of unifor-
mity of effect). This assumption is the premise from which the formulas
for pooling are derived. As éxplained earlier, even when the assumption
of uniformity of effect is wrong, pooling may still be reasonable. We do
not necessarily expect that the effect is strictly uniform across strata
when we make the assumption of uniformity; rather, it is an assumption
of convenience. We may be willing to tolerate substantial variation in the
effect across strata as a price for the convenience and efficiency of pool-
ing, as long as we are comfortable with the idea that the actual relation
of the effect to the stratification variable is not strikingly different for

different strata. When the effect is strikingly different for different strata,

however, we can still use standardization to obtain a summary estimate
of the effect across strata, because standardization has no requirement
that the effect be uniform across strata.
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Crude rates and standardized rates T

A crude rate may be thought of as a weighted average of category-
specific rates, in which the weights correspond to the actual distribu-
tion of the population. Consider age for the purpose of discussion.
Every population can be divided into age categories. The age-specific
rates in a population can be averaged to obtain an overall rate. If the
averaging uses weights that reflect the amount of the population (or
person-time) that actually falls into each age category, the weighted
average that results is the crude rate. Algebraically, if each age-specific
rate is denoted as A,/PT;, where A, is the number of cases in age cate-
gory i (ranging from 1 to K) and PT; is the number of person-time
units in that category, the crude rate is as follows:

A A A
PT, =L & PT, > + .. . + PTx—
PT, PT, PTe SaA A
PT, + PT, + . .. + PTg T SpT. PT

A is the total number of cases in the population and PT is the total
person-time. The crude rate is thus a weighted average of the age-
specific rates, where the weights are the same as the denominators for
the rates; PTy, PT,, . . . PTx. These are the natural weights, or latent
weights, for the population. If we now change the weights from the
denominator values of the rates to an outside set of weights, drawn
from a standard, the resulting standardized rate can be viewed as the
value that the crude rate would have been if the population age struc-
ture were changed from what it actually is to that of the standard, and
the same age-specific rates applied. Thus, a standardized rate is a hy-
pothetical crude rate that would apply if the age structure were that of
the standard instead of what it happens to be.

ien pooling is a reasonable alternative, simply because standardiza-
n uses a defined set of weights to combine results across strata. This
wracteristic of standardization provides for better comparability of
stified results from one study to another or within a study.

Consider the data on clozapine use and mortality in Table 8-5. We
ained a pooled estimate of the mortality rate difference, using the
ntel-Haenszel approach, of —720 X 107° yr~'. Suppose we chose
tead to standardize the rates for age over the two age categories.
at age standard might we use? Let us standardize to the age distribu-
1 of current clozapine use in the study, since that is the age distribu-
1 of those who use the drug. There were a total of 68,204 person-years
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What is an SMR?

When the standardized rate ratio is calculated using the exposed group
as the standard, the result is usually referred to as a standardized mor-
tality, or morbidity, ratio (SMR). The standardized rate ratio for cloz-
apine that is calculated using the age distribution of current users as
the age standard is an example of an SMR. An SMR can be expressed
as the ratio of the total number of deaths in the exposed group, 363 in
the clozapine example, divided by the number expected in the ex-
posed group if the rates among the unexposed prevailed within each
of the age categories. Thus, for the 10-54 age group, if the rate among
past users of 704.2/100,000 yr~* had prevailed among the 62,119 per-
son-years experienced by current users, there would have been 437.4
deaths expected in that age category. Similar calculations give 343.6
deaths expected in the 55-94 age category. The figure for total ex-
pected deaths is 4374 + 3436 = 781.0. The SMR is the ratio of ob-
served to expected deaths, which is 363/781.0 = 0.47. This result is
algebraically identical to standardization based on taking a weighted
average of the age-specific rates and taking the age distribution of cur-
rent users as the standard.

The SMR is sometimes claimed to result from a method of standard-
ization called indirect standardization, as opposed to direct standardiz-
ation. That is a misnomer, however, as there is nothing indirect about
indirect standardization. Indeed, the only feature that distinguishes it
from supposedly direct standardization is that for an SMR the stan-
dard is always the exposed group. The calculations for any rate stan-
dardization, direct or indirect, are basically the same.

age category. To standardize the death rate for past users to this stan-
dard, we take a weighted average of past use as follows.

0911 % 7042/100,000 yr~* + 0.089 X 5647/100,000 yr~! = 1144/100,000 yr *

The standardized rate for current users, standardized to their age distri-
bution, is the same as the crude rate for current users, which is 532.2/
100,000 yr . The standardized rate difference is the difference between the
standardized rates for current and past users, which is (5322 — 1144)
/100,000 yr~* = -—612/ 100,000 yr ™', slightly smaller in absolute value
than the —720/100,000 yr~! obtained from the pooled analysis. Analo-
gously, we can obtain the standardized rate ratio by dividing the rate
among current users by that among past users, giving 532.2/ 1144 =
0.47, essentially identical to the result obtained through pooling. The
stratum-specific rate ratios did not vary much, so any weighting, whether
pooled or standardized, will produce a result close to this value.
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Because they are different approaches and can give different results, it is
fair to ask why we would want to use one rather than the other. Both
involve taking weighted averages of the stratum-specific results. The dif-
ference is where the weights come from. In pooling, the data determine
the weights, which are derived mathematically to give statistically opti-
mal results. This method gives precise results (that is, relatively narrow
confidence intervals), but the weights are statistical constructs that come
out of the data and cannot easily be specified. Standardization, unlike
pooling, may involve weights that are inefficient if large weights are
assigned to strata with little data and vice versa. On the other hand, the
weights are explicit. Ideally, the weights used in standardization should
be presented along with the results. Making the weights used in stan-
dardization explicit facilitates comparison with other data. Thus, stan-
dardization may be less efficient, but it may provide for better compara-
bility. For a more detailed discussion of standardization, including
appropriate confidence interval formulas for standardized results, see
Rothman and Greenland.”

In a stratified analysis, another option that is always open is to strat-
fy the data and to present the results without aggregating the stratum-
specific information over the strata. Stratification is highly useful even if
it does not progress beyond examining the stratum-specific findings.
This approach to presenting the data is especially attractive when the
»ffect measure of interest appears to change considerably across the
strata. In such a situation, a single summary estimate is less attractive an
sption than it would be in a situation in which the effect measure is
1early constant across strata.

Calculation of p Values for Stratified Data

Zarlier, we gave the reasons why estimation is preferable to statistical
significance testing. Nevertheless, for completeness, we give here the
ormulas for calculating p values from stratified data. These are straight-
orward extensions of the formulas presented in Chapter 7 for crude
lata.

For risk, prevalence, or case-control data, all of which consist of a set
f 2 X 2 tables, the x formula is as follows.

E 4 — 2 NliMli
i i T;

X =

Ny;No:M 1Mo

i TAT: - 1)

\pplying this formula to the case-control data in Table 8-6 gives the
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12.107 4.6
B+1) - : s
= 117 o
'\f07‘1068-12~1163 6-89-4-91
,+.
1175% - 1174 952 - 94

This result translates to a p value of 0.016 (see Appendix).
For rate data, the corresponding formula is as follows.

PT,M,
2111' - 2 !

i T,'

E PT{,PTy;

Applying this formula to the data in Table 8-5, we obtain the following.

X =

62,119 - 307 6085 - 324)

(196 + 167) — +
77,882 8865
X = = —9.55

307 - 62,119 - 15,763 324 - 6085 - 2780
+
77 8822 88652

This result is too large, in absolute value, for the Appendix, implying an
extremely small p value.

Measuring Confounding

The control of confounding and assessment of confounding are closely
intertwined. It might seem reasonable to assess how much confounding
a given variable produces in a body of data before we control for tha.t
confounding. The assessment might indicate, for example, that there is
not enough confounding to present a problem, and we may therefore
ignore that variable in the analysis. It is possible to predict the amohr}t
of confounding from the general characteristics of confounding vari-
ables, that is, the associations of a confounder with both exposure and
disease. To measure confounding directly, however, requires that we
control it: the procedure is to remove the confounding from the data and
then see how much has been removed.

As an example of the measurement of confounding, let us return to
the data in Tables 1-1 and 1-2. In Table 1-1, we have risks of death over
a 20-year period of 0.24 among smokers and 0.31 among nonsmokers.
The crude risk ratio is 0.24/0.31 = 0.76, indicating a risk among
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ted both in Chapter 1 and earlier in this chapter, this apparent protec-
re effect of smoking on the risk of death is confounded by age, which
n be seen from the data in Table 1-2. The age confounding can be
moved by applying formula 8-2, which gives a result of 1.21. This
due indicates a risk of death among smokers that is 21% greater than
at of nonsmokers. The discrepancy between the crude risk ratio of 0.76
id the unconfounded risk ratio of 1.21 is a direct measure of age con-
unding. Were these two values equal, there would be no indication of
nfounding in the data. To the extent that they differ, it indicates the
esence of age confounding. The age confounding is strong enough, in
is instance, to have reversed the apparent effect of smoking, making it
pear that smoking is related to a reduced risk of death in the crude
ita. This biased result occurs because smokers tend to be younger than
msmokers, so the crude comparison between smokers and non-
wkers is to some extent a comparison of younger women with older
omen, mixing the smoking effect with an age effect that negates it. By
aatifying, the age confounding can be removed, revealing the adverse
‘ect of smoking. The direct measure of this confounding effect is a
mparison of the pooled estimate of the risk ratio with the crude esti-
ate of the risk ratio.

A common mistake is to use statistical significance tests to evaluate
e presence or absence of confounding. This mistaken approach to the
aluation of confounding applies a significance test to the association
tween a confounder and the exposure or the disease. The amount of
nfounding, however, is a result of the strength of the associations be-
een the confounder and both exposure and disease. Confounding
ies not depend on the statistical significance of these associations. Fur-
ermore, a significance test evaluates only one of the two component
ations that give rise to confounding. Perhaps the most common situa-
m in which this mistaken approach to evaluating confounding is ap-
ied is the analysis of randomized trials, when “baseline” characteris-
s are compared for the randomized groups. Baseline comparisons are
eful, but often they are conducted with the sole aim of checking for
itistically significant differences in any of the baseline variables, as a
2ans of detecting confounding. A better way to evaluate confounding,
a trial as in any study, would be to control for the potential con-
ander and determine whether the unconfounded result differs from
2 crude, potentially confounded result.

ratification by Two or More Variables

r convenience of presentation, the examples in this chapter have used
~ strata with only one stratification variable. Nevertheless, stratified
alysis can be conducted with two or more stratification variables. Sup-
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ously, with five age categories. The combination of age and sex catego-
ries will produce 10 strata. All of the methods discussed in this chapter
can be applied without any modification to a stratified analysis with two
or more stratification variables. The only real difficulty with such an-
alyses is that with several variables to control the number of strata in-
creases quickly and can stretch the data too far. Thus, to control five
different variables with three categories each in a stratified analysis
would require 3 X 3 X 3 X 3 X 3 = 243 strata. With so many strata,
many of them would contain few observations and end up contributing
little information to the data summary. When the numbers within strata
become very small, and in particular when zeroes become frequent in
the tables, some tables may not contribute any information to the sum-
mary measures and some of the study information is effectively lost. As
a result, the analysis as a whole becomes less precise. Thus, stratified
analysis is not a practical method to control for many confounding fac-
tors at once. Fortunately, it is rare to have substantial confounding by
many variables at once.

The Importance of Stratification

The formulas in this chapter may look imposing, but they can be applied
readily with a hand calculator or a spreadsheet or even a pencil and
paper. Consequently, the methods described here to control confounding
are widely accessible without heavy reliance on technology. These are
not the only methods available to control confounding. In Chapter 10,
we discuss multivariable modeling to control confounding. Multivari-
able modeling requires computer hardware and software but offers the
possibility of convenient methods to control confounding not merely for
a single variable but simultaneously for a set of variables. The allure of
these multivariable methods is nearly irresistible. Nevertheless, stratified
analysis is preferable and should always be the method of choice to
control confounding. This is not to say that multivariable modeling
should be ignored: it does have its uses. Nevertheless, stratification is
the preferred approach, at least as the initial approach to data analysis.-
Following are the main advantages of stratification over multivariable
analysis.

1. With stratified analysis, the investigator can visualize the distribu-
tion of subjects by exposure, disease, and the potential confounder.
Strange features in the distributions become immediately apparent.
These distributions are obscure when conducting multivariable
modeling.

2 Nat anlv the investicator hut also the consumer of the research
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tables of stratified data, a reader will be able to check the calcula-
tions or conduct his or her own pooled or standardized analysis.

3. Fewer assumptions are needed for a stratified analysis, reducing
the possibility of obtaining a biased result.

It should be standard practice to examine the data by categories of the
rimary potential confounding factors, that is, to conduct a stratified
nalysis. It is rare that a multivariable analysis will change the inter-
retation produced by a stratified analysis. The stratified analysis will
eep both the researcher and the reader better informed about the na-
ure of the data. Even when it is reasonable to conduct a multivariable
nalysis, it should be undertaken only after the researcher has con-
wcted a stratified analysis and, thus, has a good appreciation for the
onfounding in the data, or lack of it, by the main study variables.

duestions

1. In Table 8-3, the crude value of the risk ratio is 1.44, which is between
the values for the risk ratio in the two age strata. Could the crude risk
ratio have been outside the range of the stratum-specific values, or
must it always fall within the range of the stratum-specific values?
Why or why not?

2. The pooled estimate for the risk ratio from Table 8~3 was 1.33, also
within the range of the stratum-specific values. Does the pooled esti-
mate always fall within the range of the stratum-specific estimates of
the risk ratio? Why or why not?

3. If you were comparing the effect of exposure at several levels and
needed to control confounding, would you prefer to compare a pooled
estimate of the effect at each level or a standardized estimate of the
effect at each level? Why?

4. Prove that an SMR is “directly” standardized to the distribution of the
exposed group; that is, prove that an SMR is the ratio of two stan-
dardized rates that are both standardized to the distribution of the
exposed group.

5. Suppose that an investigator conducting a randomized trial of an old
and a new treatment examines baseline characteristics of the subjects
(such as age, sex, or stage of disease) that might be confounding fac-
tors and finds that the two groups are different with respect to several
characteristics. Why is it unimportant whether these differences are
“statistically significant”?

6. Suppose one of the differences in question 5 is statistically significant. A
significance test is a test of the null hypothesis, which is a hypothesis
that chance alone can account for the observed difference. What is the
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7. The larger a randomized trial, the less the possibility for confounding.
Why? Explain why the size of a study does not affect confounding in
nonexperimental studies.

8. Imagine a stratum of a case-control study in which all subjects were
unexposed. What is the mathematical contribution of that stratum to
the estimate of the pooled odds ratio (formula 8-6)? What is the math-
ematical contribution of that stratum to the variance of the pooled
odds ratio (bottom formula in Table 8-4)?
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