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13. MATCHING

Matching refers to the selection of a comparison series—unexposed sub-
jects in a follow-up study or controls in a case-control study—that is iden-
tical, or nearly so, to the index series with respect to one or more poten-
tially confounding factors. The mechanics of the matching may be
performed subject by subject, which is described as mdividual matching,
or for groups of subjects, which is described as Jrequency matching. The
general principles that apply to matched data are identical for individually
matched or frequency matched data.

[

PRINCIPLES OF MATCHING

The topic of matching in epidemiology is beguiling: What at first seems
clear is seductively deceptive. Whereas the clarity of an analysis in which
confounding has been securely prevented by perfect matching of the com-
pared series seems indubsitable and impossible to misinterpret, the intui-
tive foundation for this cogency attained by maiching is a surprisingly
shaky structure that does not always support the conclusions that are apt
to be drawn. The difficulty is that our intuition about matching springs
from knowledge of experiments or follow-up studies, whereas matching
is most often applied in case-control studies, which differ enough from
follow-up studies to make the implications of matching different and coun-
terintuitive.

Whereas the traditional view, stemming from an understanding based
on follow-up studies, has been that matching enhances validity, in case-
conirol studies the effectiveness of matching as a methodologic tool de-
rives from its effect on study efficiency, not on validity. Indeed, for case-
control studies it would be more accurate to state that matching introduces
confounding rather than that it prevents confounding,

The different implications of matching for follow-up and case-control
studies are easy to demonstrate. Consider a source population of 2,000,000
individuals, distributed by exposure and sex as indicated in Table 13-1.
Both the exposure and male gender are risk factors for the disease: For
the exposure the relative risk is 10, and for males relative to females it is
5. There is also substantial confounding, since 90 percent of the exposed
individuals are male and only 10 percent of the unexposed are male. The
crude relative risk in the source population, comparing exposed with
unexposed, is 32.9, considerably different from the unconfounded value
of 10.

Now consider what happens if a follow-up study is planned by drawing
the exposed cohort from the exposed Source population and matching the
unexposed cohort to the exposed cohort for sex. Suppose 10 percent of
the exposed source population were included in the follow-ap study; if
these subjects were selected independently of gender, we would have ap-
proximately 90,000 males and 10,000 females in the exposed cohort. A
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' etical so ' ] ] 000 people,
Table 13-1. Hypothetical source population of 2,000, eopl
in which exposute increases risk 10old, and males bave five times
the risk of females, and exposure is strongly associated with male gender

Males (1,000,000) Females (1,000,000)
Ex osed Unexposed Exposed Unexposed
(95)0,00'0)_ (100,000) (100,000) (900,000)
Oneyear risk 0005 00005 0.001 0.0001
No. cases in . 4500 50 100 90

one year -

(4500 + 100)/1,000,000 _
(50 + 90)/1,000,000

Crude relative risk = 329

comparison group of unexposed subjects would bg drawn from the
1,000,000 unexposed individuals in the source population. If the compar-
ison group were drawn, like the exposed group, independendy pf gf:nder,
the follow-up study would have the same confo.undlr.lg as exists in the
source population (apart from sampling variability), since the follow_-up
study would then be a simple 10 percent sample of the source population.
It would be possible, however, to assetnble the unfexposed cohort so that
the proportion of males in it was identical to that in the exposed cohort.
The purpose of matching the unexposed cohort to the exposed grOLllp py
sex is to prevent confounding by sex. Of the 100,000 unexpos<?d males in
the source population, 90,000 would be in a matched comparison group,
corresponding to the 90,000 exposed males in the study. Of the 900,000
unexposed females, 10,000 would be selected to match the 10,000 ex-
S,
pO;;Ci f‘(‘e;;;fcted” results from the matched cohort study described here
are indicated.in Table 13-2. The expected relative risk iq the study popu-
lation is 10 for males and 10 for females and is also 10 in thg crude data
for the étudy. The- matching has apparently accomplished its purpose:
There is no confounding by sex, since sex is unrelated to exposure in the
tudy population because of matching. _
° u’[('jgep;)ilzuation differs considerably, however, if a case-control study is
conducted instead. Consider a case-control study based on the total of
4740 cases that occur in the source population during one year. Of these
cases, 4550 are male. Suppose, then, that 4740 controls were selected from
the source population, matched to the cases by gender, so that 4550 of the
controls are male. Of the 4550 male controls, we expect about 90 percent,
or 4095, to be exposed, since 90 percent of the males in the source pop-
ulation are exposed. Of the 190 female controls, we expect about 10 per-
cent, or 19, to be exposed, corresponding to the 10 percent of females
exposed in the source population. For the control series as a whole, the
expected number. of exposed subjects is 4095 + 19 = 4114 of a total of
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Table 13-2. Expectation of ibe results of a matched
one-year follow-up study of 100,000 exposed ard 100,000
unexposed subjects drawn from the source population descrived in table 13-1

Males Females Total

Exposed  Unexposed Exposed Unexposed Exposed Unexposed

Cases 450 45 10 1 460 46
Total 90,000 90,000 10,000 10,000 100,000 100,000
R = 10 R = 10 Crude KR = 10

4740. For the cases, 4500 + 100 = 4600 of the 4740 would be exposed.

The crude estimate of effect, based on the odds ratio from the crude data,
is

(4600) (626) _
(4114) (140)

Crude relative ris_k = 5.0

which is a substantial underestimate of the unconfounded effect of the
exposure. Interestingly, the case-control data give the correct result, KR =
10, if the data are stratified into male and female strata (Table 13-3). The
discrepancy between the crude results and the stratum-specific results in
Table 13-3 is a manifestation of confounding by sex (note that the sex-
specific effect estimates are identical to one another and distinctly different
from the crude estimate). This confounding is not a reflection of the orig-
inal confounding by sex in the source population but rather a confounding
that was introduced into the study by the matching process. In case-control
studies, matching on factors associated with exposure builds confounding
into the data, whether or not there was confounding in the source popu-
lation. If there is confounding initially in the source population, as there
was in the example, the process of matching will substitute a new con-
founding structure in place of the initial one. The confounding introduced
by matching is generally in the direction of a bias toward the null value of
effect, whatever the nature of the confounding in the source population.
In the example, the strong positive confounding (positive indicating a bias
in the same direction as the effect) in the source population was replaced
by strong negative confounding (negative indicating a bias in the direction
opposite to that of the effect) in the case-control data.

Why does matching in a case-control study introduce confounding? The
purpose of the control series in a case-control study is to provide an esti-
mate of the person-time distribution for the exposed population relative
to the unexposed population in the source population of cases. If controls
are selected to match the cases for a factor that is correlated with the
exposure, then the crude exposure proportion in controls is distorted in



Total
4740
4740

Unexposed

Exposed

Total

Total
190
190

10

90
171

Unexposed

Exposed

100

Females

19

Total
4550
4550

Unexposed
50
455
10

drawn from the source population described in table 13

Males
Exposed
4500
4095

and
Table 13-3. Expectation of the results of a case-control study of 4740 cases .

4740 matched controls

Controls,

Cases
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the direction of similarity to that of the cases. If the matching factor were
perfectly correlated with the exposure, the exposure distribution of con-
trols would be identical to that of cases, and the crude relative risk esti-
mate would be 1.0, since controls are chosen to be identical to cases with
respect to the matching factor. Interestingly, the bias of the effect estimate
toward the null value does not depend on the direction of the correlation
between the exposure and the matching factor; as long as there is a non-
zero correlation, positive or negative, the crude exposure distribution
among controls will be distorted in the direction of similarity to that of
cases. A perfect negative correlation between the matching factor and the

exposure will still lead to identical exposure distributions for cases and
controls and a crude relative risk estimate of 1.0 because each control is
matched to the identical value of the matching factor of the case, guaran-
teeing identity for the exposure variable as well.

If the matching factor happens to be uncorrelated with the exposure,
then matching does not influence the exposure distribution of the con-
trols, and therefore no bias is introduced by matching. Because matching
is ostensibly motivated by the need to control confounding by the match-
ing factor(s), one would generally expect some correlation to exist be-
tween the matching factor(s) and the exposure. If the correlation is zero,
the matching factor was not confounding in the first place, since a con-

founding factor must be associated with both the exposure and the dis-
ease. :

€ )
It seems that matching, although intended to control confounding, does
not attain that objective in case-control studies. Apparently, it merely ac-
complishes the substitution of a new confounding structure for the old
one. In fact, matching can even introduce confounding where none pre-
viously existed: If the matching factor is unrelated to disease in the source
population, ordinarily it would not be a confounder; however, if it is cor-
related with the exposure, it will become a confounder after matching for
it in a case-control study. This situation is illustrated in Table 13-4, in which
the exposure has an effect corresponding to a relative risk of 5.6, and there
is no confounding in the source population; however, if the cases are used
as the basis for a case-control study, and a control series is matched to the
cases by gender, the expected value for the crude estimate of effect from
the case-control study is 2.1 rather than the correct value of 5.6. In the
source population sex is uncorrelated with disease among the unexposed,
the prevalence of disease being 2 in 1000 for both unexposed males and
unexposed females. Sex is strongly correlated with exposure, however. In
the case-control study, sex is confounding because it was a matching factor-
that was correlated with exposure. Despite the absence of correlation be-
tween sex and disease among unexposed in the source population, a cot-
relation between sex and disease among unexposed is introduced into the
case-control data by matching. The result is a crude estimate of effect, 2.1,
that seriously underestimates the correct value of 5.6.
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. Spulda _confounding by sexand @ . .. ] - S
Qsourcep-(f‘ ”on w't?lblur;t(;u tin‘g' Cor} f o unding introduced by matci{zng for sejrx. .. .

from the source populanon i

Table 13-4. Prevalence stare.of ¢
case-control study drawn

Totals |

fExp.osed
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. Exposed

_Unex
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. Exposed

Unexposed ~

posed .

Unexposed .

180
89,820
90,000

KR = 5.6

200-
99,800
100,000

Crude KR = 56

1110
98,890
100,000
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9889
110,000

20
9980

10,000

=56
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89,001

90,000
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Touals

i n sex
control study drawm from the source population and matched o

Case-

Totals

Females
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Total

Total
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Exposed

Unexposed

Exposed

Total
1019
1019

Unexposed

Exposed

1310

200
365
565

Crude KR = 2.1

1110

291
291
482

180
262
342

KR = 5.6

111

20
103

999

Cases

1310

945
2055

29
140

916
1915

Controls

2620

2038

123

Totals

5.6

&
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The confounding introduced by matching in a case-control study is by
no means irremediable. Notice that in Tables 13-3 and 13-4 the stratum-
specific estimates of effect are valid; the confounding can be removed by
a stratified analysis to arrive at a pooled estimate of effect after stratifying
by the matching factor(s). Table 13-4 illustrates the need for an analysis to
remove confounding by the matching factors, since matching may cause
confounding even when none was originally present. In Table 13-4, the
selection criterion used in matching controls makes the control series un-
representative of the source population with regard to exposure; this

would lead to a selection bias but for the fact that it can be controlled in

the analysis and can be therefore viewed as confounding.

In a follow-up study that compares risks, no additional action is required

in the analysis to control confounding by the matching factors; the process
of matching has already eliminated any confounding by the matching fac-
tors. In contrast, matching in a case-control study requires further control
of confounding by the matching factors in the analysis even if the matching
factors were not confounding in the source population, provided that the
matching factors are correlated with the exposure. What accounts for this
discrepancy? In a follow-up study, matching is undertaken without regard
to disease status, which is unknown at the start of follow-up, therefore
preventing bias. In a case-control study, on the other hand, matching in-
volves the specification of both the exposure and the disease status and
leads to conditional associations between the matching factor(s) and both
exposure and disease, thereby resulting in bias. In a case-control study, if
the matching factors are not correlated with the exposure, no confounding
is introduced by matching; in this situation there could not have been
confounding in the source population to begin with, so the matching was
unnecessary.

It is reasonable to ask why one would consider matching at all in case-
control studies, since it does not accomplish its intended objective of pre-
venting confounding. The utility of matching in case-control studies de-
rives not from its ability to prevent confounding but from the enhanced
efficiency that it affords for the control of confounding. In Table 13-3, the
male and female strata each have an equal number of cases and controls
because of the matched design. If 4740 controls were selected without
matching, half would be male and half would be female. There would thus
be a great excess of female controls, since 2370 is an unnecessarily large
number of controls for 190 cases; the total amount of information does
not increase substantially after five or six controls per case (see Fig. 8-1),
and therefore the information collected on so many females is partially

wasted. On the other hand, there would be only 2370 male controls for
the 4550 male cases. It is generally inefficient to have strata in which the
ratio of controls to cases varies substantially on either side of unity. The
extreme form of such inefficiency occurs when there are many individual
strata with one or more cases and no control subjects (control/case ratio
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= 0) and other strata with one or more controls and no cases (controV/
case ratio = infinity). Such strata provide no information in a stratified
analysis. If matching is used in the selection of controls, however, there
will be fewer uninformative strata in z stratified analysis than there would
have Been in such an.analysis without matching: A fixed number of
matched controls for each case will provide an extremely efficient strati-
fied analysis. The improved efficiency will be manifest in narrower confi-
dence limits about the point estimate than would otherwise be obtainable.
Matching ifi case-control studies can thus be considered 2 means of pro-
viding a more efficient stratified analysis rather than a direct means of
preveiiting confounding. Stratification (or an equivalent multivariate ap-
proach) will be necessary to control confounding with or without match-
ing, but matching makes the stratification more efficient.

The efficiency that matching provides in the analysis of case-control data
comes at 4 substantial cost. One part of the cost is a research limitation: If
a factor has been matched in a case-control study, it is no longer possible
to estiate the effect of that factor, since its distribution is forced to be
identical for cases and controls. Consequently, matching factors cannot be
thie objects of iﬁq‘u‘ir‘y in a case-control study (except as effect modifiers—
see pages 279-282, Evaluation of Effect Modification with Matched Data).
Another cost is the added analytic comiplexity required to control con-
founding by factors that have not been matched. It is possible to control
sithultaneously for both matched.and unmatched factors but usually only
through specialized analyses, usually multivariate models. Conducting
thiese analyses poses no serious difficulties in view of the growing availabil-
ity of computers, but-the investigator is forced to depend on computers
and comiputer programs.to analyze data that might otherwise have been
analyzed-in a more straightforward way.

A further cost involved with iridividual matching is the literal expense
entailed-in the process of choosing control subjects with the same distri-
bution of matching.factors found in the case series. If several factors are
being matched, many potential control subjects must typically be scanned
to find one that has the same characteristics as the case. Whereas this ar-

duous ptocess m'ay Jead to a statistically efficient analysis, it improves ef-
ficiency only at considerable expense. -

If the efficiency of 4 study is judged from the point of view of the amount
of information per subject studied (size efficiency), matching can be
viewed as a means of improving study efficiency. Alternatively, if efficiency
is judged as the amount of information per unit of cost involved in obtain-
ing that information (cost efficiency), matching may paradoxically have the
opposite effect of decreasing study efficiency, since the effort expended in
finding: matched subjects could be spent simply in gathering information
for a greater number. of unmatched subjects. With or without matching,

confounding would have to be controlled in the data analysis. With match-
ing, a stratified analysis would be more size efficient, but without it the
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resources for data collection can increase the number of subiects, thereb
improving cost efficiency. Since cost efficiency is a more fund]ztme,ntzlle Ce y
cern to an investigator than size efficiency, the apparent efficien ins
from matching may be illusory. e
Thus the beneficial effect of matching on study efficiency, which is the
primary reason for employing matching, appears to be epher;leral Indeed
the decision to match subjects can result in less overall inform.ation ’
measured by the width of the confidence interval for the effect me , 35
Fhan would have been obtained without matching if the expense of ;thlfﬁ,
ing reduces the total number of study subjects. A wider appreciation ? .
the costs that matching imposes and the often meager advantages it off s
would presumably persuade epidemiologists to avoid the te%hni uee'rs
marny settings in which matching is routinely used. Since the intendeqd le
1ss itsorgo;lté(l)l conffounding, and this goal is attainable only by proper agnoal-
r N,
?’ng B feldoisl.sj ‘(l)stzzze(:it.her matching is employed, the routine use of match-
Nevertheless, there are some situations in which matching is desirable
or even necessary. If the process of obtaining the information from the
study subjects is expensive, it is desirable to optimize the amount of i
formation obtained per subject. For example, if exposure inforrnationlp-
a case-control study involves an expensive laboratory test run on blo<;<r:l1
samp!es, the investigator would want the information from each subiject to
contribute as much as possible. As long as the expense of ascert:linin
matched controls is small compared with the expense of obtainin thi
exposure information from each subject, it is preferable to plan for agstr'at-
@ed analysis in which the stratification does not lead to loss of informa-
tion, that is, it is desirable to match controls during subject selection so
thgt there will be a uniform ratio of controls to cases in the stratified anal-
ysis. If no confounding is anticipated, of course, there is no need to match:
for example, restriction of both series might prevent confounding without’
the need for stratification or matching. If confounding is likely, however
matching will ensure that control of confounding in the analy}s,’is will not’
lose information that has been expensively obtained. The essential differ-
ence that makes matching attractive in this situation is the high price of
e)fparllding the study size; when additional subjects are expensive to ob-
tam,. it is worthwhile to pay the cost of matching to take full advantage of
tbe information that is collected. In such a situation, matching serves%aoth
size efficiency and cost efficiency. ’

Sometimes the control of confounding in the analysis is not possible
unlesg matching has prepared the way to do so. Imagine a potential con-
founding factor that is measured on a nominal scale with many categories;
ex@ples would be variables such as neighborhood, sibship, and occu:
pation. Controlling sibship would be impossible unless sibli;xg controls
had been selected for the cases, that is, matching on sibship is required to
control for it. These variables are distinguished from other nominal scale
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variables such as sex by their multitude of categories, ensuring that one
or very few subjects will fall into each category. Without matching, most
strata in a stratified analysis would have only one subject, either a case or
a control, and no information about effect unless control subjects had been
matched to the -cases for the value of the factor in question. Continuous
variables such as age also have a multitude of values, but the values are
easily combined by grouping, avoiding the fundamental problem. If the
categories of 2 nominal scale variable could be combined in a reasonable
way, the need for matching could be avoided. Methods to achieve this have
been proposed {for example, see Miettinen, 1976}, but they require a mul-
tivariate arialysis as a preliminary step to the stratified analysis. Matching
for nominal scale variables with many categories ensures that, after strati-
fication by the potentially confounding factor, each case will have one or
more matched controls for comparison. .
A fundamental problem with stratified analysis is the inability to control
confounding by several: factors simultaneously. Control of each additional
factor involves spreading the existing. strata over a new dimension; the
total number of strata required becomes exponentially large as the num-
ber of stratification variables increases. For studies with many confounding
factors, thie-number of stra‘i:a_in a stratified analysis that controls all factors
simultaneously miay'be 50 large that the situation mimics that in which
there is 2 nominal scale confounder with a multitude of categories: There
may be one or very few subjects per stratum and hardly any comparative
information about the effect in any strata. If a large number of confounding
factors is anticipated, matching may be desirable to ensure an informative
stratified analysis. On the other hand, it is not absolutely necessary to
match unfess there are nominal scale variables with many categories, since
a multivariate analysis can cope with confounding by many factors simul-
taneously even in situations in which stratification fails. Even multivariate
analysis, however, is inadequate to control confounding by nominal scale
vatiables with a large number of possible values unless matching has pro-
vided thie necessary comparative information within categories.

We can summarize the utility of matching in case-control studies as fol-
lows: Matching is a useful means for improving study efficiency, in terms
of the amount of information per subject studied, if the amount of infor-
mation obtainable from the more efficient analysis exceeds the amount of
information obtainable simply by studying more subjects without match-
ing. Martching is indicated for potentially confounding factors that are
mieasured on a nominal scale with many categories or when the number
of potentially confounding variables is so great that stratification would
spread the subjects too thinly over the strata. Multivariate analysis is a rea-
sonable alternative. iri the latter situation; it would be feasible even without
matching. Even multivariate analysis, however, is infeasible to control con-
founding by a nominal scale factor with many categories, unless matching
is employed.. ' S
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Overmatching

{\ term often used in reference to matched studies is overmarching. Th
1nterpr.etati0n of this term has changed with a sharper undersrar:igi.' ?
the pr'mciples that underlie matched studies. Originally, the termlrclf' ;
matchnpg was used to refer to a loss of validity in a ca,se—control st Zf_'
stemming from a control group that was so closely matched to the (:lrjlsY
group that the exposure distributions differed very little. This origi 'ei
interpretation for overmatching was based on a faulty anaiysis that fgiln 2::l
to corrgct for confounding. On proper analysis, no validity problem wh':t
soever is introduced by matching. Note that in a follow-up stud tt;
matching even the crude analysis is valid, so that overmatching wasynw'l' '
seen asa problem for follow-up studies. We have seen that indeed 2 v’e;{ <eir
ity problem does exist from matching in a case-control study if the c::;d i
datja are used for inference. This problem disappears, however, if str‘a'fit‘e
cation by the matching factors is employed in the anaiysis. ’ i}
The modern interpretation of overmatching relates to study efficiency
raFller than validity. Consider an individually matched case-control stUcCly
with one control matched to each case. Each stratum in the analysis wil}l,
consist of one case and one control unless some strata can be combined
A stra.ltum cannot contribute information to a case-control analysis if an :
marginal total in the 2 X 2 table is equal to zero. If a case and a sin l‘y
matched control are either both exposed or both unexposed, one marg‘ig
of th'e 2 X 2 table will be zero and that pair of subjects will n(,)t contrib:.glte
any information to the analysis. If several controls are matched to a singls
case and all the controls have the same exposure value as the case galel
exposed or all unexposed, the resulting zero margin likewise signals ,that
tt}e matched set of controls and case will not contribute to the analysis
Slpce matching is intended to select controls identical to the index Zase
wnd? respect to correlates of exposure, typically the information from man
subjects is “lost” in a matched analysis. Obviously the loss of informatioz
.detracts from study efficiency, reducing both information per subject stud-
ied a{ld information per dollar spent. Matching has the net effect of in-
creasing study efficiency only because stratified analysis in the absence of
matchgng is ordinarily even less efficient than stratified analysis with
matching. Recall, however, that matching in a case-control study can intré-
duce confounding even if none exists in the source population, if the
matching factor is correlated with the exposure but not with the c’li‘sease
Fn sugh an instance, matching decreases study efficiency by locking thé
?nve'stlgator into an analysis stratified by the matching factor, which will
inevitably lose information on the matched sets with comple’tely concor-
dant exposure histories, whereas without matching a much more efficient
crudf: analysis could have been used. Since the matching was not neces-
sary in the first place and has the effect of impairing study efficiency rela-
F:ve to the ‘type of analysis that could have been performed withoutczz;atch-
ing, matching in this situation can properly be described as overmatching.



Overmatching is thus understood to be matching that causes a loss of
infortmation in the analysi$ because the resulting stratified analysis would
have been unnecessary withott matching. The extent to which informa-
tion is lost by miatching depends on the degree of correlation between the
matching factor arid the exposure. A strong correlate of exposure that has
no relation to disease is the worst factor to match for, since it will lead to
relatively few informative strata in the analysis with no offsetting gain. Con-
sider, for example, a study of the relation between coffee drinking and
cancer of the bladder; suppose ‘matching for consumption of powdered
cream-substitutes were considered along with matching for a set of other
factors. Since this factor is a strong correlate of coffee consumption, many
of the individual strata in the matched analysis will be completely concor-
dant for coffee drinking and will.not contribute to the analysis; that is, for
many of the cases, controls matched to that case will be classified identi-
cally to the case with regard to coffee drinking simply because of matching
for consumption of powdered cieam-substitutes. If powdered cream-sub-
stitutes have no relation to bladder cancer, nothing is accomplished by the
matching. Though no validity, problem exists, the matching is counter-
productive and can consedquently be considered overmatching.

Matching on 4 risk factor that is not correlated with the exposure under
study will riot lead to an increased correlation of exposure histories for
cases afid controls. Such matching could nevertheless be considered over-
matching because it adversely affects cost efficiency although it does not
affect size efficiency. (Similarly; matching for any factor that is merely a
consequence of disease can atso be considered overmatching.) On the

other hand, overmatching from a factor that i associated with exposure
but not with the disease, such as indicators of opportunity for exposure
[Poole, 1986], will reduce’ both cost efficiency and size efficiency, ‘that is,
an investigator will spend more to obtain information from the same num-
ber of subjects as he could have obtained without matching on the factor
and will obtain Jess information. per subject after having spent more. These
losses in efficiency are suffered to control a factor that was not confound-
ing anyway. . - .

1f 2 factor is a weak risk factor and a sttong carrelate of the exposure, it
will be a weak confounder; matching for such' a factor will involve a rela-
tively large-loss of information coppared with a crude analysis because of
the strong correlation with exposure..A crude analysis is no longer a
proper alternative, however, if the factor is a genuine confounding factor.
A reasonable alternative to matching of a confounding factor is a stratified
analysis without matching. Matching theoretically improves efficiency by
stabilizing the ‘control-case ratio in the analysis, but it reduces efficiency
by causing the loss of information in somé strata in which the exposure
information is .concordant. If the elementary strata corresponding to each
matched set have a reasonably large number of controls, complete con-
cordance is unlikely; on the other hand, such concordance is very likely
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Matching on Indicators of Information Quality

Anothﬁr reason that matching is sometimes employed is to achieve com-
par_ablllty in the quality of information collected. A typical situation i
which such matching might be undertaken is a case-control study in whi 12
some or all of the cases have already died, and surrogates musf be inteC
viewed for exposure and confounder information. In principle controlr's_
for dead cases should be living, since they constitute a sampleyfrom the
.source_: population that gave rise to the cases. In practice, since surrogate
interview dgta is usually presumed to differ in quality fro;n interview fiata
obtained directly from the subject, many investigators prefer to match
fiead controls to dead cases. It is not clear, however, that matching on
1F1fom'1at‘i‘on quality is justifiable. Whereas using dead c’ontrols can beg ‘1?5
tified in “proportional mortality” studies essentially as a convenience (]see-
Chapter 6), there is no certainty that matching on information quality re-
duces overall bias. Many of the assumptions about the quality of surrogate
f:lata, flor example, are unproved [Gordis, 1982]. Furthermore COmparagbil—
ity .of information quality still allows bias from nondiﬁerenr_i;l misclassifi-
cation, which is more severe in matched than in unmatched studies [Green
land,. 1982), and can be more severe than the bias due to diﬁerentialrmis:
classification arising from noncomparability [Greenland and Robins, 1985b)]

To suxpmarize, the intricacies of matching in case-control studies and
the relation of matching to confounding and study efficiency are manh
more complicated than one might at first suppose. Matching has ot:tlzn
been employed when simpler and cheaper alternatives would have been



preferable. Matching is clearly-indicated only in-sharply defined circum-
stances. In many study situations, the decision rests on cost and efficiency
considerations that border on the imponderable.” -

‘HED CASE-CONTROL ANALYSIS .

The most important point in the dnalysis of matched case-control data is
that matching introduces a bias in the crude estimarte of effect toward the
null value if the matching factor is correlated either positively or negatively
with exposure, conditional on disease status. This-bias may be viewed as
a type of confounding, since it'is present in the erude data, but it can be
completely removed by stratifying by the matching factors. Therefore, the
tmain task in a matched case-control analysis is to-stratify by the matching
factors. o S -

Sifice stratification has already been discussed, there would be no need
1o elaborate further on matched case-control analysis but for one special
feature of these analyses: Often the matching factor or factors have so
many possible categories that the stratified analysis consists of one stratum
for every case in the study. This feature introduces no new analytic con-
cepts into the stratified analysis beyond those discussed in Chapter 12, but
it does often lead to analyses with dozens or hundreds of strata. The for-
mulas of Chapter 12 become tedious to apply by hand if the number of
strata is large, but the f_orm’qla_é can be simplified for matched data so that
their application with pencil and paper is not arduous even with thousands
of strata. ' T :

If stratification could be accomplished without creating a large number
of strata, a study with matching could be analyzed using an ordinaty strat-
ified approach. For example, if subjects are matched only for age and sex,
there is no need to conduét_é specialized “matched analysis” that amounts
to creating individual strata for each matchied set of subjects. Itis sufficient
to consider age and sex as ¢6nfounding factors that need to be controlled
in the analysis and to create only. the few strata for age and sex that would
have been necessary had no matching been-undertaken in subject selec-

tion. Additional. confounding factors can be-easily controlled in such an
analysis, even if they are not matching factors, by further stratification or
multivariate analysis; Frequency matching is always handled using a “non-
matchied” analysis, that is, using the usual analytic techniques to control
confounding. There is no special principle underlying the methods of
matched analysis. The need for.a matched analysis is purely a practical
one, stemming from the need to define strata in such a way that a large
number of strata is inevitable, as is the case with an analysis in which a
nominal scale variable with many categories i$ one of the matching vari-
ables. When such a variable is confounding, individual matching is needed
to perinit the control of c,qnfouhding. In other situations, however, fre-
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Point Estimation of the Relative Risk (Odds Ratio)
Jfrom Matched Case-Control Data

{%s }JClsual for Case—.control data, the odds ratio, being an estimate of the
inci 'ence rlalt(e 1rtaltlo or relative risk, is the measure of interest. Either the
maximum likelihood or the Mantel-Haenszel a '
xim pproach may be used fo
Eit:};l}?uog. The Ma}?tel-Haenszel approach is simpler, but LSf,le maximuni
ood approach is not as complicated for mat ’ it i
usual stratified analysis. vuched data as i for the
- szu"r‘lum l%k:elih?’od estimation of the odds ratio in a stratified analysis
an 163’ co_ndluonal on both margins of the 2 X 2 tables or “uncondi-
;ﬁm »~ which means conditional on only one margin of the 2 X 2 table
R e tl:vo approz'lches give nearly identical results except when the averagé
aum erhof subjects per str'atum is small, in which case the unconditional
lggiozic b.cmlggllsult\)dsmrglally biased and should not be used [Breslow
; Lubin, . Matched analyses are the extreme f ified
Lut ‘ orm of stratified
?)nalysw in the sense of having the fewest possible subjects per strarum
ngl cas'e and' one control per stratum is the minimum requirement but.
ftu ies in which ?ll the strata are matched pairs can nevertheless bé ex-
rerg}ely informative. For matched analyses, the applicable likelihood
methods are those based on the conditional likelihood.

POINT ESTIMATION OF RELATIVE RISK FROM MATCHED CASE-CONTROL PAIRS
W’hen.a single control is matched individually to each case, the elementa
strata in the analysis are 2 x 2 tables with only two subject’s For a dichotry
mous exposure, only four possible exposure patterns ex1.'st for the tv;) -
subjects: both exposed, both unexposed, case exposed and control une:
posed, and case unexposed and control exposed. These four exposu :
patterns are shown in Table 13-5. Note that when the exposure h)icgo i
1dent{cal for the case and the control, there is a marginal total e ualt:lY tls
zero in the 2 X 2 wable. The first and last of the 2 X 2 wables in Ta?)le 130
5, A‘and D, have a zero marginal total and consequently do not contrib t-
to either estimation or statistical hypothesis testing, v
The conditional maximum likelihood estimate of the odds ratio is sim
ply thfe frequency of matched sets of type B divided by the frequency o}
;e;tasccgs ;yilzee C, thatd is, the ratio of the number of discordant pairs in which
! xposed to the number of discordant pairs in which the control
is exposed. This estimator can be derived easily as follows: If the odds
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Table 13-5. P.os'sible patterns of exposure for & case and a single matched control

A |.B c D

% v T|E u T|E U T|E U T

| - Nk 11

Case 10 -t |1 o 1to 11 g P

Contiol 1 0. 1 ‘ 1 _ 1 . i ) ' :
Toals 2 o 21 1 -2]1 1

E = exposed; U = unexposed; T = total.

ratio is designated as OR, then from the noncentral hy;per}geomg;;riiz gﬁ/
3 11) ¢ obability of 2 2 x 2 table of type

ibution (see Chap. 11) the probability o .

Er(l)li:l 1)( and the probibility of a table of type Cis 1/(chi( ]:; fl).al;le(; lt:l;lz
: irs i i 5e i 0S¢ 10

equency of discordant pairs in which the case 18 €Xp :
gzquy of discordant pairs in which the control is exposed be f[,trle S;?;Z
a c;ilscorclant pair must contribute either to fig or tolfm, we lc-inl-hoi he
distribution of,.di‘scordant pairs of type B as binomial; thf f: ecei ;scordam
obsetving exactly f,, type B pairs, given that there are f;, + fo
pairs is then P

. - ' fio fo1
prz (B0t f°‘> (—95-—) ( ! > (13-1)
= J\or+ 1/ \oR+1

The maxi‘ﬁlﬁm'likeiihébd estimator of the OR is deriv'ed‘ by.mak‘iimlzli?‘;g_
the above expression withi-respect 10 the OR. The maximization 1S €q
alent to maximizing the:logarithm of expression 13-1,

| - ‘ “ OR 1 )
: 4 ) |
Inpey = ln(fl"f' £, fm) * fo l"(OR % 1) o n(OR 1

Taking thlé dérivativé,and setting it equal to zero gives
| @) _ o - oo
. (d(OR) =0 —-"_fu.) K (ORX,, (13-2]
' o fi0
R ==
. © fo ©
D ximumn likelihood estimator.
shifch is the conditional maximum like hood ,
szl-c'te'rl';ativdy, the Mantel-Haenszel estinhator of the Sdfls ragob z?ﬂr b:—
used (formula 12-26). For each table of type B, ad/T, 3 -1/ /ZTahn et the
0. For each table of type C, adyT,. = 0 a’pd b;c-(T i = 72 1he
Maritel Haenszel estimator for matched-pair data is
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the same expression as the maximum likelihood estimator.

POINT ESTIMATION OF RELATIVE RISK WITH R CONTROLS MATCHED TO
EACH CASE

For the more general situation of R controls matched to each case, there
is a larger number of possible exposure patterns, the exact number de-
pending on the value of R. Considering all R controls as equivalent, there
are R + 1 different outcomes possible for each matched set of controls,
corresponding to the number of controls in the matched set that are ex-
posed and ranging from zero exposed at one extreme to R exposed at the
other extreme. Since the case can be either exposed or unexposed, the
total number of possible exposure patterns is 2 (R + 1). A convenient way
to summarize the data is simply to tally the frequency of matched sets with
each exposure pattern, using the notation of Table 13-6.

The frequency fy, is the number of matched sets with no exposed sub-
jects: these elementary strata have a zero marginal total and do not con-
tribute to the analysis. Similarly, f,; refers to the sets with no unexposed
subjects; these sets also have a zero marginal total and do not contribute
to the analysis. The remaining 2R types of sets are all informative sets,
representing elementary 2 X 2 tables with nonzero marginal totals. Note
that as R increases, the probability that a given set will be informative also
increases, since the likelihood that all the controls will have the same ex-
posure as the case becomes smaller. If there is a 90 percent probability
that a matched control has an exposure history concordant with that of the
case, the probability that the matched set for that case will contribute to
the analysis ranges from 10 percent forR = 1to 1 — (0.9)° = 41 percerit
for R = 5. If a matched control has an 80 percent probability of having a
concordant exposure, the probability that a set is informative ranges from
20 percent for R = 1to 67 percent for R = 6.

Let us denote the total number of exposed subjects in a matched set as
m. The value of m ranges from zero to R + 1, but the informative sets are

Table 13-6. Data summary for R controls matched to each case,
indicating the frequency (f; ) of matched sets with every possible exposure pattern

No. exposed controls

0 1 2 3 R
Exposed cases fio £ £, £, B £
Unexposed cases £y £, £, £, - Py
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those for which 1 <mi <R; keeping all marginal totals nonzero. For a given
value of m, there are two possible patterns of exposure for the matched
set, cotresponding to the case being exposed and m — 1 cqntrols being
exposed; or the-case not being exposed and m controls ben}g exposed,
From the noncentral liypergeometric distribution, the probability that the
case is exposed; given m éxposed subjects, 1s

m(OR) -’

Pr(case is éxpgsgd, given m) = R PR ——
= ok [13:3)
. R+1 m + OR
m
and the pfﬁbébilit’y that the case is unexposed is the complement,
. o s (R+ 1 — mym 134)
Pr(case is unexposed, given m) = —————— {
: P : R+1-m, or
m

It is again convenient .tcg'qonsi'der the observations as following a !)ino'rnia}l
distribution, but with R-to-1 matching there is a separate binomial distri-
bution for each value of m. Thus, for m =1, there is a total of fy, + .fm
sets, afid; given that exa@gt{y one subject in 2 s€t is exposed, the pfobab1llty
of exposure. is OR{OR + R), from equation 13-3. The probability of ob-
serving exactly f,, and fo; sets with the case exposed and une.:xpo'sed, re-
spectively, given a total of f;, + £, sets wi‘th‘one exposed subject, is

C . ‘ 'f10 for

The ove‘r'al"li likelihood for the data is the product of the binomial proba-
bilities corresponding to each value of m from 1toR:

Pr = ﬁ (fl‘m"';" fb;m)"
1

’ . . fm-1
d - OR__ - )
ah A fm J\®R+1 - mym + OR

' : _‘,(R + 1 — mym )fo"“ (13.5]
"\® + 1 — mym + OR

The logarithm of the above likelihood qﬁcpfession is

In(pe) = 2% fIo{*7F )+ s IO\ T~ mym + OR

m=1i Lm—1 )
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+f0mln( (R +1 - mym
" \R+1- m)Ym+ OR

Taking the derivative of the above expression with regard to the OR and
setting it equal to zero yields the equation for the conditional maximum
likelihood solution for the OR [Miettinen, 1970]:

R

Z fl.m—l

mel, - i fl.m—l + fO.m — =
OR me1(R+ 1 — mym + OR

0 [13-6]

Equation 13-6 reduces to equation 13-2 for R = 1. For R = 2, it can be
solved explicitly for OR {Miettinen, 1970}, but for values of R greater than
2 an iterative solution is necessary. Even so, equation 13-6 represents a
rather simple computational exercise compared with the onerous com-
putations needed to obtain a conditional maximum likelihood estimate of
the odds ratio for unmatched stratified data.

The data in Example 13-1 represent the individual exposure values for
each subject in a matched case-control study with 18 cases and four con-
trols matched to each case. The cases were women with ectopic preg-
nancy; controls were women without ectopic pregnancy drawn from the
same source population and matched individually to the cases for number
of pregnancies, age, and husband's level of education. All subjects had had
at least one previous pregnancy. A positive history indicates that the
woman had at least one induced abortion.

If only the first control had been matched to each case, the investigators
would have observed nine concordant pairs (four concordant pairs with
positive exposure histories and five with negative exposure histories) and
nine discordant pairs. In eight of the discordant pairs the case is exposed,
compared with only one in which the control is exposed, giving a relative
risk estimate of 8/1 = 8. Considering all controls that were studied, there
are 2(4 + 1) = 10 types of exposure patterns for the matched sets. The
distribution of exposure patterns for the data in Example 13-1 is shown in
Table 13-7.

Six of the matched sets have completely concordant exposure histories
and so are noncontributory to the analysis. The data from the remaining
sets can be used to estimate the odds ratio, or relative risk, of ectopic
pregnancy after induced abortion by substituting into equation 13-6:

n 4 5 3
OR OR+4 OR+32 OR+23

0

A trial and error solution gives OR = 23,



56

Example 13-1. Previous hzstory of induced abortion among women with ectopic

pregnancy and matched controls. Data of Trichopoulos et al. |Miettinen, 1969)

Control

. T 4
Case 1 o2 : 3 :
+ - * - _
+ - - _ _
- ¥ - - -
+ - - - _
+ - _ _
— - ’ . - +
+ + o -
+ - - -

4 ~ + . -
— - - ’ + +
+ + .

+ i i . _
: - - + g
+ ot - - _
= - : L +

+ + . S
/+. =7[7)'re;ibus" induced abortion; — = no previous induced abortion.

Table 13-7. Pazfern of éaqoésure for the 18 matched sets in example 13-1

:". No. exposed-controls

e 3 0 1
Exposed cases 2 ? 0 0 0

Unexposed cases

) - % s 4 . . the
An alternative to the maximum likelihood _appro?ch to esumanorcl 012 the
Maritel-Haenszel approach. When the ma_tc_t.l_ing ratio exceeds otr(':lﬁin tro!
per case, the two approaches are not identical. With R-to-1 ma g,
mula 12-26 can be rewritten as follows: . -

R .. _ flm—l
OR = 20" : .m) ' (137]

.m=1

MATCHING 257

Applying formula 13-7 to the data in Table 13-7 gives

50 _ 3 +35)+23) 33
ORys = (D) =7

which differs noticeably from the conditional mazimum likelihood esti-
mate of 23. The large difference between the two estimates is attributable
to the fact that there are only 12 informative sets, and 11 of these are
supportive of a positive association, representing an extreme result with
somewhat scanty data. Consequently, it is not surprising that two different
estimators give somewhat discrepant results. Breslow [1981] has shown
that statistically the Mantel-Haenszel estimator is consistent for matched
data, is as efficient as the conditional maximum likelihood approach when
the OR = 1, and is nearly as efficient over a wide range of conditions.

POINT ESTIMATION OF RELATIVE RISK WITH A VARYING NUMBER OF
CONTROLS MATCHED TO EACH CASE

With a varying number of controls matched to each case, the data can be
summarized by 2 set of displays like the one in Table 13-6, each one cor-
responding to a different value of R. The likelihood for the data is the
product of the likelihood expressions corresponding to each value of R,

and the equation that yields the maximum likelihood estimate of the OR
is a simple extension of equation 13-6:

R

2 fl,m—l R

m=1 fl,rn~1 + fO‘m
Tt i T hm ) i
; OR ,.E, (R + 1~ mym + OR 0 (13-8]

The data in Example 13-2 are derived from a study of myocardial infarc-
tion and history of coffee consumption (Jick et al., 1973]. The authors at-
tempted to match two controls to each case, but for 27 cases only one

Example 13-2. Distribution. of cases of myocardial infarction
and matched controls according to amount of coffee drinking; subjects
drinking one to five cups of coffee per day were excluded [Jick et al., 1973]

No. controls drinking 6+ cups/day

Matched pairs Matched triplets
(4] 1 0 1 2
Cases
6+ cups/day 8 8 16 23 4
0 cups/day 8 3 20 22 3




matched control was'availab'lgé. The 'resu}tihg data consist of 27 matcheq
pairs afid 88 matched triplets. The use of these data and equation 13-8to
determine the maximum likelihood estimate of the odds ratio produces
the following likelihood equation:

TR B . ]20
[6—R_6R+.1 IR TBR+2 Or+12

s OR = 2.0,

Solving the-above equation by trial and error gives OR .
The%g’eﬁé’ralizati'()n of formula 13-7 for the Mantel-Haengl estimator of
the odds ratio with matched case-control data having a varying number of
conitrols, R, matched to. each case can be derived easily from formula 12-

(R +1.= m)f]m—l

R
. 2 mE:] R+1 [13-9)
ORMH: V X mem
‘ 2R:'mz=1 R + 1

Applying.the above fo“r.rm._lla to the data of Example 13-2 gives the Man-
tel-Haenszel estimate as - o

_ 82 4206 + 213 _
T 32+ (224 2B3))53

O

which is 'ri'early identical to the maximum likelihood estimate and is con-
siderably easier to obtain. o

tistical Hypothesis Testin, with Matched Case-Control Data .
Sfafwflsiiif{ﬁ: éinalysis of rf’lait'ch'ed case-control data is equivalent to an analy&s
strat'i‘.fyi'rrg the data according to the matching faqors, hypothesis testmﬁ
for matched data is accomplished simply by applying .the gener.al approac
for stratified data to the strata defined by the matching. As with point tc;:ls-
timatiot; some of the formulas can be simplified for mat_chmg becau§e e
2 x 2 tables can have only a limited number of conflgurz'ltlong since a
matched analysis typically involves many strata, t.he simphﬁcgtlons mz;z
prove important. Even the two tableaus for disglaymg the data in Examp €
13-2 illustrate this point because they summarize data on 115 strata, co
responding to the 115 maiched sets. -

HYPOTHESIS TESTING FOR MATCHED, CASE-CONTROL PAIRS o
For matched pairs, an exact P-value can be calculated fron-x equation 13-'1
by setting OR .= 1 and calculating the tail_probabnl-;ty. This calculation is
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simply the tail probability of a binomial distribution with a probability of
0.5 for each binomial trial. The tail probability for the Fisher P-value is

flo+fo1 flo+foy
Fisher 7 = 3 <f“’ ; f‘") (-21-) [13-10]

k=f1o

for fi, = f,,. Iff,, > f,,, then the lower tail should be calculated by summing
over the range 0 < k < f,,,

To get the exact mid-P value, only half the probability of the observed
data should be included. For the upper tail, this modification gives

flo+for flo4 1

. 1/(f, + ¢ 1 o (¢ +f 1\ Mo+ o
Mid-P == [ fo ) { - o+ fy) (1 B
2 ( fo ) (2) t2, ( Kk 3 [13-11]

If 5, > £, then the lower tail should be calculated by summing over
the range 0 s k < f,,— 1.

Consider the data in Example 13-2 relating just to matched pairs. The
16 pairs for which the exposure history was concordant do not contribute
to the evaluation and should be ignored. Of the remaining 11 pairs, 8 are
discordant with the case exposed. The exact Fisher one-tail P-value is, from
formula 13-10,

) [\ () ) N 1) )
GG ()6 (O )
= 0.0806 + 0.0269 + 0.0054 + 0.0005 = 0.11

The mid-P value is the same summation except for the first term, which
would be ¥2(0.0806), giving a one-tail P-value of 0.07.

An approximate P-value can be calculated using the Mantel-Haenszel
test statistic (formula 12-38). For matched pairs, the Mantel-Haenszel test
simplifies to

Y = M [13_12']
\7 flo + fOl

which is a form of the test first described by McNemar | 1947] and often

referred to as the McNemar test.
For the matched pair data in Example 13-2, this test formula gives

=— =1
X =g = 151

which corresponds to a one-tail P-value of 0.07, agreeing well with the
exact mid-P value even for these apparently small numbers.



HYPOTHESIS TESTING FOR R CONTROLS MATCHED TO EACH CASE

Exact hypothesis testing for R controls matched to each case is consider-
ably more complicated than hypothesis tésting for matched pairs. The data
can be considered a set of R binomial distributions with the likelihood
function expressed in formula 13-5. For hypothesis testing, the value of
the odds ratio in expression 13-5 is set equal to unity. The upper tail prob-
ability is determined by evaluating formula 13-5 for every possible distri-
bution of the data for which the number of exposed cases is equal to or
greater than thé number observed (the exposed cases for whom all
matched controls are also exposed can:be ignored). Thé exact Fisher P-

value is therefore

Fisher upper-tail pr_obnbility._:f, -
Mi R ) - N /- ¥m . . flm—1+fom—km
£y + fom ( m R+1~-m
= . i : 13-
Z,IJ( v ) \&e 1) Ure (13-13]

where a is the total number of exposed cases in sets with at least one
unexposed control, M, is the total number of sets that are not completely
concordant, ki, is the permutation of the possible number of exposed
cases with m — 1-exposed controls, i.e., the total number of exposed cases
that could have been observed among matched sets that actually had m
exposed subjects, and k is the sum of ky: s

f1.m—-1
1

= ®
Ty e
IM= IMI=

fl.m-i + . f(;,m

ko

M:ﬂ

ik =

It
-

m

The tail sufsirhation ihclﬁd_e’é_all the combinations of the data that could
give rise to all the values of k in the range from a to M. For the lower tail
probability, the: range: of summation for'k is from 0 to a.

To obtain the exact. mid-P value, it is necessary to include only half the
probability for k = 2, as follows: :

Mid-P upper tail probability .

_ Ly (G * Fon) (o S U\ S
2% a5\ ke o J\R+1/ R4 _

My R . e\, [ 1+ foum —kim B
; . fimy ¥ B} (D R+1—m ]
+2 1 ( ki m) (R + 1) ( R+ 1 ) (13-14)

k=a+1 m=1,
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For the lower tail mid-P v ion i i
SOV b fr 0 = k < -1 aer o n o 1 gy C2uon 1314
Consider the data in Example 13-1 (Table 13-7). Digregarding the ex-
posed case that had four exposed matched controls, there are 11 exposed
cases, so a = 11. The total number of informative sets, M,, is 3 + g + 3
+ 0 + 1+ 0+ 0+ 0= 12 There is only one set of Valll.’les for {k} for
which every informative set has an exposed case; since there are foutfn five
three, and zero sets, respectively, for m = 1, 2, 3, and 4, the values ’of k ’
wguld be 4, 5, 3, and 0, respectively, to obtain the most e;(treme outcom y
V&.'lth all the cases exposed. There are three different patterns that ¢ 13
yield 3k,, = 11. These are, starting with the observed pattern, 3, 5, 3 c())1-14
l4r,1 C3l,u(()i,1 22(31] 46, cs)i)ié ﬁ)‘.’;h;: t?fhgfper tail has four possible outcomes in, it:
including the obse oumomé € are two equally extreme outcomes, and
] Letth us calculate the probability of each of these four outcomes. Consider
Sligslt] ! ; 1[131f)st extreme outcome, 4, 5, 3, 0. The probability is, using expres-

D0
LR

B OEO-HYE
s -

For the remaining two possible outcomes, the probabilities are
HEE-O6 6000
4)\s) \s/ \4/\s) \5) "\3/\5) \s
1 4 2)4 (3)4
=5|= - - =
(5) (5 5 0.00002654

(Y 2V 3Y L
3 (5) (5) (5) = 0.00000708
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wal Estimation of the Qdds Ratio with Matched Case-Control Data
INTERVAL ESTIMATION FOR MATCHED CASE»C(_)NTRQL PAIRS
Exact conifidence limits for the odds ratio from matched case-control pairs
can be calculated based on th'e'probab'i'lity distribution of the pqssible
discordant pairs, conditional on the total number of discofdant pairs, by
expressing the probability as a funiction of the odds ratio (see formula 13-

1):
._1 . T k: B fip+for1~k
L fwifm flol..'";_fol ﬁ__ AR ) . [13-19]
o2 = k) \OR + 1/ \OR + 1

k=Ff1p

o+ g f. orR \* 1 fio+foL —k
Lo (g f Y 1320
R > (w~k"><o_R+1> -(OR+1) (13-20]

k=fjg+1 .
The above formulas, when -solved for OR and OR, give the exact Fisher

confidence litnits. To obtain the mid-P exact confidence limits, only half
the probability that k' = fy; is added to the tail: =~

Do (o fo1
o LB # ) (_OR ) 1 )
=3\ & J\or+1/ \OR+1

o fioifox (flo + fm) ( OR )k
+ > ] ! -,
. k=fp*1 ‘ k OR + 1

) 1 fio+fo1—k
: - [13-21]
\OR + 1

. - . —_— \ k. fio+for1—k
fmim fo b o o) 5 ) : (13-22]
+k=ﬁ;+, \ k- /\OR+1/ \OR +1

The solution of equations 13-19 and 13-20 or 13-21 and 13-22 amounts
to finding the exact confidence limits for a binomial parameter, P Whl(fh
is 2 function-of the odds ratio: p. = OR/(OR + 1). Consider thg data in
Example 13-2 relating to matched pairs. With 11 di'scorldant pairs, 8 of
which have an exposed case, the calculation of exact conﬁ_depce limits fo'r
the odds ratio- corrésponds (o setting exact confidence limits for the bi-
nomial pardnreter estimated by eight successes in 11 trials. The Fisher
exact 90 .percent confidence. limits are, from formulas 13-19 and 13-20,
0.4356 and 0.9212 for the binomial parameter, which correspond to a 90

) _—1_ fré"-'i £, y _6§ fio —1 ) )fol..'j,
1—0:/2—2_ fo - OR + 1 oR + 1 :

percent exact Fisher confidence interval of 0.77.and 11.7 for the odds ratio. -

If formulas 13-21 and 13-22 are used to get the mid-P exact limits, ¥he
results are 0.4702 and 0.9030 for the binomial--‘parameter,-correspondmg
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t0 0.89 and 9.31 for the 90 percent exact limits for the odds ratio. The wide
limits reflect the small number of discordant pairs.

Approximate confidence limits for matched case-control pairs can be
determined in several ways. One approach is to determine the confidence
limits for the probability that a discordant pair has an exposed case, based
on the large sample characteristics of the binomial distribution, and then
convert these confidence limits to the corresponding limits for the odds
ratio. Other approaches include the large sample characteristics of maxi-
mum likelihood estimators, the formula by Robins et al. {1986] for the
variance of the logarithm of the Mantel-Haenszel estimate (formula 12-58),
and the test-based procedure.

First let us consider basing the approximation on the sampling distri-
bution of the binomial distribution, which has a variance of pg/n for large
n, where n is the number of binomial trials, p is the probability of a “suc-
cess,” and q = 1 — p. For matched case-control pairs, p = f,i/(f,, + f,),
and confidence limits for p can be approximated by

f1° fmfm
* 13-23
f‘° + fOl (flo + fcn)3 [ ]

where Z is the value of the standard normal distribution corresponding to
the desired level of confidence, the plus sign gives the upper confidence
limit, and the minus sign gives the lower corfidence limit. The corre-
sponding limits for the odds ratio are given by OR = p/(1 — p) and OR
= p/(1 = p), or

-z fiofor
+ £,
OR = fio + ffo: (fio 1) [13.24]
1 - w0 fofor
f10 + Em tZ (£ + £,

fio +7 £iofon
— f, + £,)?
o5 _fotf (o + o) 1325)
1 - o Z £iofor

Lot T ™ (@ + P

The above approximate confidence limits are simple to calculate, but they
are inaccurate unless the number of discordant pairs is reasonably large.
For values of the odds ratio that are far from the null value, the number
of discordant pairs must be very large for the approximation to be ade-
quate. The difficulty is that the binomial distribution does not approximate
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a nortmal distribution very well if the nurﬁber_ of trials is modest, especially
if the probability of a success is far from.0.5. Formula 13-23 always pro-
duces confidence limits for p that are symmetric about p despite the fact

that the sampling distribution can be strikingly asymmetric for values of p

that depart from 0.5, the center of the range. of the distribution. It is pos-
sible to calculate a confidénce interval from. formula 13-23 with a bound-
ary outside the admissible range of 0-tg 1 for p. For example, if two suc-
cesses were observed in 10 trials, formula 13-23 gives a 90 percent
confidence interval for p.with a lower bound of —0.008; eight successes
in 10 trials would give, from the same formula, an upper bound of 1.008.
These limits outside the admissible range for p correspond to negative
values of the odds ratio as determined from formulas 13-24 and 13-25.

A more ‘accurate method for obtaining approximate confidence limits
for thve binomial parameter was proposed by Wilson [1927). This approach
takes ifnto account the asymmetry of the distribution and consequently
never gives results outside the admissible range. Wilson’s formula is

i, 2 [, 2
T"_+-Z2‘[T Ta T T (13-26)

whete T is £+ o, Z i8 Z;— o, the plus sign. gives the upper confidence
limit for p, and the minus sign gives the lower confidence limit for p.
Confidence limits for the odds ratio are taken, as before, as p/(1 — p) and
p/1 — p). If f,, = 8 and £, = 2, the 90 percent confidence limits for p
from forfula 13-26 are 0.541 and 0.931, well within the admissible range
and reflective of the asymmetry of the sampling distribution.

For the 11 discordant matched pairs in the data of Example 13-2, for-
mula 13-23 gives the 90 percent confidence limits of the binomial param-
eter of 0,506.and 0.948, corresponding to 1.03 and 1823 for the odds ratio.
These limits, especially the upper orie, agree poorly with the exact limits
calculated earlier. Formula 13-26, on the other hand, gives a 90 percent
confidence interval for the binomial parameter of 0.479 and 0.885, corre-
sponding to a confidence interval for the odds ratio of 0.92 to 7.72, which
agrees much more closely with the mid-P exact 90 pereent interval.

The rati¢ of discotdant matched pairs is simultaneously the maximum
likelihood estimate and the Mantel-Haenszel estimate of the odds ratio.
For matched case-control data the variance-of the maximum likelihood
estimate of the odds ratio has been described by Miettinen [1970]. As is
usual for ratio estimators, the confidence limits are set for the logarithmic
transformation of the estimate, and then the transformation is reversed.
For matched pairs, the large sample formula for the variance of the loga-
rithm of the odds ratiois -
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Var(In(GR)] = foJ“—E’-‘ (13-27]

10401

which gives approximate confidence limits for the odds ratio of

— f, fo + £
OR = exp | In{ 2] - a0 T le
= ["(fm) Z\/I ] (1328]
5% = f fo + f
OR = exp | In L") + 7 [T la
p[ (fm ok [13-29]

frolzgrf(l;he Hllat;gezd pair data in Example 13-2, the variance is estimated
rmula 13-27 to be 11/24 = 0.458, and the 90 '
ton 458, percent confiden
?mlts f'ron? formulas 13-28 and 13-29 are 0.88 and 8.12. Considering ai:
;w pairs involved, this approximation gives excellent results for these
d;l::a; the Io;:/er tzjound is nearly equal to the mid-? exact lower limit, and
upper bound i i ’

e . pp nd is reasonably close to the corresponding exact upper

Sinc;e the maximum likelihood and Mantel-Haenszel estimators are the
san;e or matched case'-‘control pairs, it is not surprising to find that for-
mula 1_2-_58 fo'r the variance of the logarithm of the Mantel-Haenszel esti-
mator is identical to formula 13-27 when applied to matched pairs

Qne other approach to approximate confidence limits for the odds ratio
estimated from matched case-control pairs is the test-based approach. For
matched pairs, the test-based limits are .

£\ 0=
10
(fm) [13-30]

where the x is the value from equation 13-12. Since equations 13-28 and
13-2? represent a straightforward and theoretically optimal approach to
thalnlng approximate confidence limits for matched case-control pairs, it
is generally preferable to use them rather than the test-based a proac,h
the bipomial formulations in equations 13-24 through 13-26, or I())It)her al-
ternatives. For comparison, the 90 percent test-based conﬁder,lce limits for
the matched pair data in Example 13-2 are 0.91 and 7.78, which are similar
to the results obtained from formula 13-26 and slightl); worse, compared

with the mid-P exact limits . ,
28 and 1329, imits, than the results obtained from equations 13-

=

and
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INTERVAL ESTIMATION FOR R CONTROLS MATCHED TO EACH CASE

M, is the total number of sets th
. : . : . R o . at are
Exact interval estimation of the odds ratio with R matched controls for not completely concordant, the

values {k,.} represent the permutations of possible values for the number

each case proceeds from the probability expression for the data written as of matched case-c ,
- Pr -control sets with an e
a function of the odds ratio: - . : ' posed subjects in a set xposed case when there are m ex-
R- . TN ‘. » fll.m'—-l fo,m
ata) = fim—1 + fom) __OR ) (__CL_ g X
Pr(daa) = ‘ﬂ, ( fini ©/ \OR + Ca/ = . \OR + Cq (13:31] k= m§; L
where C,, = (R + 1'— m)m and the remaining notation follows Table and

13-6. Expression 13-31 represents the product of R binomial probabilities,
in which the binomial parameter corresponding to the probability of a R+1-m
“success” (i.e., a matched set with an exposed case, given that the set has Cn = —
m exposed subjects) is
' For mid-P exact confidence limits, only half the ility is i .
oR in the il for y p_robabﬂnty is included

OR + (R + 1 — mym

Pr(exposed case given m exposed subjects) =

R
k = m2=1 fl.m-—l

which can be detived from the noncentral hyp-efgeometric distribution.
The exact confidence limits ‘are determined iteratively by summing the

value of expr’e‘séi-’dg 13-31 for: évery possible outcome of the data that de- These limits are the solution to the equations
parts equally or more extremely from the null hypothesis, starting with
the observed data; the.sum is calculated for trial values of the odds ratio ' 1 LI OrR \*™ 1+ fom—km
S R IS [P rn . . L - . . . a/z = = Z H Im=1 0,m Cm
until the tail area equals the desired value. Thus, the Fisher exact limits 2& o k, OR+ C OR + C
are the solutions to the following equations: - N — " = ™
o . : e ) + 21 H (fl,m—-l + fo_m) ( OR )km( C., f1m—( +om—km
w2 =3 [T (Bin-r * fom (ﬁ_>km <__<3£L'_>fl'm_'+ro'm—km (1332} el OR +Co/ \OR+C,
T EMS\ LK J\OR+C/ \OR TG, ' [13-34]
o . - . ' and
and
1 - o2
9 . P ey km . fi,m—1+fom=km 2 =2 m= ' ~D =T
-3 (f{'mf’ ) fo'm) (—'FOR ) (—Cm ) T e el e JAOR+ G/ OGRS G,
k=a+1m=1 \ - km OR + Cm i OR +Cm ’ + ﬁ IR] (fl.m—l + fO.m) _-O_R km Cm fAum—1+fom—km
o . WS k, OR + C,/] \OR+c, (13-35)

where a is the total number of exposed cases in. sets with at least one

unexposed control, - . o In considering exact hypothesis testing, we saw that for the data in Ex-

. 3 : ample 13-1 (Table 13-7) there were three outcomes, including the ob-

. T served data, that give k = 11, and only one more extreme outcome, for

as Yty M = > fooi B which k = 12. Therefore, a = 11 and M, = 12. The four terms in the
et B oo , summation of the upper-tail probability are
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of formula 12-58, when applied to ﬁlatched data with a figed R-to-1 match-
ing ratio, are ' S .

SN VRV SR
) pa =Z fom E(ff—;l—‘)“) L 34
B> QS= é, f(,‘mf(%-% ' (13-42]

Zs‘= S 6 n - [13-44]

P TIIS

e this formula to the. dita o le 13-1, for which ORyy = 33,
Applying this formula to the dita of Examp , | _ :
tﬁ? v}:rignce is calculated to be 1.5179, for a 90 percent conf@ence interval

of | |
. explIn(33) = 1.645 VISIT] = 435, 250

The variance estimate of 1 5179 is larger than the CQ'rrespond;)ng varw.cr:(ce:fl
estimate for the maximum _likeli_h'o-od esrimator,_-whrch mlght e TXPE ed
in view of the extreme departure from .the null state. ‘I't-,ls only geﬁi_
vicinity of the riull condition that the Mantel-Hagps;e! estimator is
cient as the corniditional maximum likelihood ,es.t}mat'or. e odds ratio
Another approz{ch to approximate interval estifmation of . e oAS ot
for R controls matched to each case is the _test-based procedure. ,
these limits are | - : :

OAR(I i‘Z))O

where the  is the result from expression 13-15: Il:l pr‘ihciplg, t}}e test-bastﬁ;l
limits could be used with either the maximum hkehhood-_?stxmate c;r !
Mantel-Haerisze] estimate as the anchor point. For the data in Example 831
1, the x is 4.0, which gives a 90 percent conﬁdenc.e interval of 6.3 toh
v;h‘en the maximum likelihood estimate of 22.6 is used as the anchor
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point, and 7.8 to 139 when the Mantel-Haenszel estimate of 33 is used as
the anchor point. In either case the test-based limits are evidently much
too narrow and would not serve as an adequate approximation to the exact
confidence limits. The test-based limits are usually adequate in the vicinity
of the null value of the odds ratio, but for these data, which depart strongly
from the null condition, the test-based limits are a poor approximation.

INTERVAL ESTIMATION FOR A VARYING NUMBER OF CONTROLS MATCHED TO
EACH CASE

With a varying number of matched controls, the probability expression for
the data as a function of the odds ratio is an extension of formula 13-31,
taking the product of the probabilities over each value of R:

S (B + £, ( OR \%m-! c om
Pr(data) = 1m—1 + fom -
T( ) l;[ ngl ( fl,m—l > OR + Cm> OR + C., [13-45]

where the notation is that used for equation 13-31. The tail probabilities
for the calculation of exact confidence limits are calculated as they are for
a fixed matching ratio (formulas 13-32 through 13-35) with expression 13-
45 representing the probability for each realization of the data in the tail
summation.

The data in Example 13-2, for which there are 3522 terms in the tail
summation, would not ordinarily warrant an exact calculation of confi-
dence limits because the large numbers ensure that most approximate
formulas for the determination of confidence intervals would be satisfac-
tory. The exact confidence limits must be determined iteratively, so that
the tail summation involving 3522 terms must be calculated repeatedly
until the solution is reached. This tedious task is not difficult, however,
using a computer. The 90 percent exact Fisher confidence limits for the
data in Example 13-2 are 128 and 3.10; the 90 percent exact mid-P limits
are 1.32 and 3.01.

Approximate confidence limits for the conditional maximum likelihood
estimate of the odds ratio with a varying number of matched controls can
be based on formulas 13-37 and 13-38 after extending the variance for-
mula (13-36) to accommodate more than one value for R, by extending
the summation in the denominator of formula 13-36 to the various values
for R:

~ 1
Var{ln(OR)] = . [13-46]
5 (fl m—1 T f;Jxm)cm
OR ; mz—l (OR + Cm)z

where the notation follows that in formula 13-36.



For the datd in 'Exaﬁlple 13;2, the maximum l'ikelihoqd estimate %{Rﬂ?e
odds ratio is, from equatiori 13-8, 1.9835. Subs‘titu_t_ing. this value for R in
equation 13-46 along with the observed frequencies gives, for the variance

of the logarithm of the odds ratio and approximate 90 percent confidence

interval,
o C i S = 0.0620
fin(OR) = ——— oo 26 (%) ]
1.9835 [-(1_98_3;*'1—)2 + (1.9835+2)  (1:9835+12)%
and

OR = explin(1:9835) — 1.645 V00G2| = 132 .
| OR = explIn(1.9835) + 1645 V0062) = 299

As one would expect with these moderately large numper's, Fheselgpprox:f
imate confidence limits are -extremely close"to the mid-P exact limits o
lhsﬁhinst:ﬁ(i;[il:{aenszel estiinator for the data of Example '13._2 is ?.062.
Thie variance of the Mantel-Haenszel estimator for a varying ratio tl;o coomn:
trols to cases can be obtained from formula 12:58 by exter;dllnggll ec o
ponents of 12-58 given in formulas 13-39 through 13-44 for all v lues of ®
Thus, each of the six sumimations, should be ,surmned for all va uesl oe Sti;
For tiie data ‘of Example 13-2, the variance. of _t.h-e _Mar_ltel-Haensze e
mmator can be calculated in this way as 0.0659, wh_l_ch 1srs.11ght,1_y greater an
the maximum Jikelihood variance estimator of (_).0620..The apprcz;nn:iata
90 percent confidence limits for the Mantel—Haenszel estimator for the
of Example 13-2.are ' = :

* ORyy = -e-xpuﬁ(z:oﬁz) — 1645/ 00659) = 135
ORoy, = explln(2.062) + 1645 VOTESI] = 3.14

Test-based approximate confidence limits can also b’e apphed when sthufe-
matching ratio varies, subject to the usp’al caution thax their ?lccuragyirtion
fers according to how much the data depart. from the nu dC:t: fEx:
Whereas test-based ;li"mjits were a poor apprc')x‘lmatlhor_l. for the o e0 >
ample 13-1, which indicated.a strong e‘lfect, one ;mght rez.zsonczil ); rtxgnl
a better performance for the data of Example 13-2., which Tp . iz
modestly from the null state, For these data, the X from for$u a 315 i
2.79. Using the maxitmum likelihood point estimate of 1.98, e1 tefj - e
90 percent confidence limits are 1.32 and 2.96, Wh.lCh are n.ealr y i 'ft?m a
to the interval obtained using the variance expression for the ogzr; t
the maximum likelihood estimator and gearly identical to the mid-P exac

MATCHING 275

limits. Using the Mantel-Haeﬁézel point estimate of 2.06, the test-based 90
percent confidence limits are 1.35 and 3.16, which are close to the results
using the variance formula of Robins et al. 1986].

MATCHED FOLLOW-UP STUDIES
Matching can achieve in follow-up studies what it cannot achieve in case-
control studies: It can prevent confounding. The crude risk comparisons
from a matched follow-up study are unbiased with respect to the matching
factors because of the absence of an association between exposure and
the matching factors among the study subjects at the start of follow-up.

Despite this efficacy, matched follow-up studies are rare. The main rea-
son is the great expense of matching large cohorts; follow-up studies or-
dinarily have many more subjects than case-control studies, and matching
is usually a time-consuming process. Walker [1982] has suggested a
method to improve this poor cost efficiency in matched follow-up studies
by limiting data collection on unmatched confounders to those sets in
which an event occurs. Another reason that matched follow-up studies are
rare is that matching can reasonably be accomplished only for subjects
themselves, whereas in any long-term follow-up study the optimal mea-
sure to use for follow-up experience is person-time, If matching were em-
ployed in a long-term follow-up study at the time of subject selection, the
identical distributions of the compared series for the matched factors
could change as the follow-up experience of the compared groups began
to differ.

For matched follow-up studies in which the period of follow-up is short
enough to warrant the use of cumulative incidence data rather than inci-
dence rate data, a crude analysis of the data will give results that are un-
confounded by the matching factors (although the crude analysis will yield
a variance estimate that is too large [Greenland and Robins, 1985a]). In
addition to preventing confounding, matching also contributes to study
efficiency by reducing the variation of the effect estimate; the reduced vari-
ation stems from the correlation in the disease outcome for the matched
subjects introduced by the matching.

Consider a matched follow-up study with T matched pairs of exposed
and unexposed subjects. Suppose that the frequency distribution of
matched pairs according to the outcome in exposed and unexposed sub-
jects is f, for pairs in which both the exposed and unexposed subjects
develop the disease, f,, for pairs in which only the exposed subject devel-
ops the disease, fy, for pairs in which only the unexposed subject develops
the disease, and fy, for pairs in which neither subject develops the disease.
The risk difference can be estimated by

o f +f, £ o+ -
lﬁ):R]_RO=IITIO_HTfW:flOTfO] [13_47]




nd the risk ratio can be e‘stir'naFed g_s

o (G ST _ Gyt o - (13-48]
= (fn' + f(n)/r £ + fof

Statistical hyporheéis testing for these data is i_d'ent_ic.al to the progedurelrs
sed for case-cantrol data; both the exact and approximate me.:tho s pr;r) y
f ually well for foliow-up data in-which all of the observat-lonf, I;r N e
g‘el:nc?es Exact confidence limits for the above measures afe di 1cr111[ : }tloe
ibtain bﬁt excelfent approximate methods exist tl_lat' take into accou
7 ce hing. .

duced variation introduced by the matching. . - .
re(;irltll;equ‘St direct approach involves variance formulas corrgspg%c:;gn zc::
the estimators given in formulas 13-47 and 13-48. For the rate di
estinate, the vatiance is

M6 + 6 = (e — ) [13-49]
) ™. ;

| Var(fD) =
. ' ] '. . . . ‘I ' e
The variance estimate for the logarithmically transformed rate ratio
sure is T .

. fo * fn [13-50]
Var{ln(RR)} = s + fo) (G + )

The estimates of effect d’erived from formulas 13:-47 and 13-4§ af;er iflz:
btained from thé crude data, butthe corresponding variances in mulas
(1)3 4;nand 1350 are g‘e‘nefally smaller than those obr;ame;ii f;(;?mztion c
.‘  Anc ssible appt nfidence interv.
alysis. Another possible approach to conf o
?ﬁ:lﬁ; of tés“t-b‘asgd' confidence limits, using'the x from foferSLga 1r3e -
Example 13-3 illustrates data from a follow-up study o preg

Jtraceptives; rison
women who had previously used oral cortraceptives; the compa

42 2 Dicihulion ched pairs of - »
Example 13-3. fnmmégnazj; %OSIZZ to oral.contraceptives

%igonrgggu;g??ékcted abnormalities in the offpring (Robinson, 1971
- ".'Une.xpose’d mother ~. |
" Abrormali . Abnormality
gtr)er;g')? v : © absent Total
Exposed mother S . . - s 13
Abnorrmality présent g 28 L el 2ie
Abnormality absent 61 2¢

R . 369 458

Toals © %
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Table 13-8. Crude data for example 13-3

Oral contraceptive exposure

Yes No Total
Abnormal baby
Yes 113 89 202
No 345 369 714
Total 458 458 26

group consists of an equal number of women who had never used oral
contraceptives and who were individually matched to the exposed women
for age and parity {Robinson, 1971]. The pairs are classified according to
whether or not each mother delivered a baby with one of a group of ab-
normalities potentially related to the exposure. (The reader should note
that these data, although they resemble cumulative incidence data, are ac-
tually prevalence data, since miscarriages are excluded.)

The estimate of risk difference from these data, from formula 13-47, is
(85 — 61)/458 = 0.052. A 90 percent confidence interval may be calcu-
lated from the variance as determined by formula 13-49,

s, . 458(85 + 61) — (85 — 61)
Var(RD) = ( 4)583 ¢ 2

= 0.000690

giving for the confidence limits

0.0524 + 1.645 V/0.000690 = 0.009, 0.096

It is also possible to use the test-based approach, based on the y obtained
from formula 13-12 applied to the data in Example 13-3. The x value for
this example is (85 ~ 61)\/146 = 1.986, giving a 90 percent confidence
interval for the rate difference of

0.0524(1 = 1.645/1.986) = 0.009, 0.096

which is essentially identical to the result obtained using formula 13-49.

It is interesting to compare these results with the confidence limits ob-
tained from the crude data, ignoring the matching. The 2 X 2 table for
the crude data is shown in Table 13-8; the cell entries for this table are the
marginal totals for the pairs in Example 13-3. Using the square of formula
11-17, the variance for the risk difference is

= (113) (345) | (89) (369)

Var(RD) 4582 458

= 0.000748
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which is somewhat larger than the variance estimate that takes the.match-
ing ratio into account.” From this value a 90 percent confidence interval
can be calcutated as ' .t :

00524 + 1.645 V/G000788 = 0.007, 0097

The risk ratio can be estimated from the data in Example 133 as 113/89
= 1.27 using formula 13:48. The variance of the logarithmic transforma-
tion, taking the matching into account, is, from formula 13-50,

85 + 61

22T 20 2 50145
(113) (89)

Varln(RR)] =
which éives a 96_ percent confidence intervgl of
-explln(1.27)  1.645 VOOI45) = 104, 155
Test-based 90 pér‘cent confidence limits for the risk ratio are
'.1'27&.1:1.64511.9'86) = 1.04, 155

which is .eséehﬁally t.he: sime result. From the crude data in Table 13-8,
using formula 11-18, we have :

Sl L B34S 1369 oo
Ve 00RL= Tigy @9 @y e

which corresponds 10 a 90 percent confidence interval of
 explin(127) + 1645 VO0I57] = 1.03, 156

just sliig'ihtly; larger than the confidence intervals thaF Fake matching into
ac%‘%}-cle'rl':tﬁalysis of matched follow-up studies with several unexposeq sx;b-
jects tnatchéd to each exposed subject is analogous to the analysis for
paired data. The crude data provide an unbiased estimate of effect as long
as the miatching ratio is-constant. If it varies, the methods of Chapter 12
for follow-up data should be applied, grouping the subjects into fstrata
according to categofies,bf the matching fac‘_tor(s) to ensure control of con-
fo{é;lr?érl‘gf the differences between follow-up and caselcor}trol studies with
respect to matching is. the amount of information provided by the data
about the effect of a matching factor on the disease occurrence. In a-case-
control s’t’ﬁdy, there is no way to evaluate directly the effect of a factor that

has been matched. An identical distribution in both cases and controls of
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any matched factor is ensured by the selection process. In a follow-up
study, however, the identity of distribution is achieved for exposed and
unexposed subjects before disease develops. The outcome among subjects
classified at different levels of a matching factor is yet to be determined
and can thus be evaluated by a straightforward comparison that is uncon-
founded by the exposure.

EVALUATION OF EFFECT MODIFICATION WITH MATCHED DATA

All of the estimation approaches described in this chapter involve the as-
sumption that the effect is constant for all strata. Since the numbers within
strata are usually extremely small for matched analyses, because the strata
correspond 1o the matched sets, the usual statistical approaches to the
evaluation of effect modification do not apply. It is still possible to evaluate
whether the effect is constant over levels of a matching factor, however, if,
for example, only a few categories of the matching factor are involved. We
shall not consider this issue in detail but will discuss a simple case to
demonstrate the idea,

Suppose a matched-pair case-control study were conducted with 200
pairs. Of the 200 pairs, suppose that 60 are discordant, 40 with the case
exposed and 20 with the case unexposed, so that the overall estimate of
the odds ratio is 2.0. The overall estimate is calculated on the assumption
that the odds ratio is constant for all strata, but suppose that we want to
evaluate statistically whether that is the case with respect to sex, which was
one of the matching factors. To evaluate effect modification in these
matched data by sex, it is necessary only to separate the discordant pairs
into male and female subgroups and contrast the estimates of effect ob-
tained from these subgroups. Of the 40 discordant pairs with an exposed
Case, suppose that 31 are male pairs and 9 are female, whereas 15 of the
20 discordant pairs in which the control is exposed are male pairs and 5
are female. Among males, the ratio of discordant pairs is 31715 = 2.1,
compared with 9/5 = 1.8 among females. The similarity of these ratios

- indicates that the data are reasonably comparable with a uniform rate ratio.
A statistical test of the hypothesis that there is a uniform odds ratio for
:males and females amounts to a test of association of the 2 X 2 table
shown in Table 13-9.

Table 13-9. Distribution of discordant pairs by
exposure and gender for bypotbetical matched data

Male Female Totals
Case exposed 31 9 40
Control exposed 15 5 20
Totals 46 14 60




A x test statistic for these data, from formula 11-6, gives x = 0.21, which
corresponds to 2 P-value of 0.8 and is reasonably consistent with the hy-
pothesis of a uniform effect. -~ U

More general tests of effect modification for matched data can be con-
structed by extending the procedure described above. Estimates of effect
from several subcategories can be ¢ompared in a.single test by using for-
mula 12-60 coupled with formula 13-36 (or one of the simpler counter-
parts) to estimate the appropriate variances for each of the compared es-
timates. o o B

UATION OF THE EFFECT OF _MATQHING WITH CASE-CONTROL DATA
We have seen that the process of matching itself can introduce confound-
ing into a case-control study .whenever the matching factor is a correlate
of the exposure. The confounding that is introduced becomes a substitute
for whatever confounding might have been observed for the factor in the
absence of matching; there would be confounding as long as the factor in
question, in addition to being correlated with the exposure, is also related
to disease status. If the matching factor is not felated 1o disease status and
therefore is not inherently confounding, matching for it represents over-
matching because the effort ‘of matching and the loss of efficiency in the
required matchied analysis' do, not improve the validity of the study. The
matched analysis is still required even if the factor matched for would not
have been a C‘onf_ounding factor, since matching for any correlate of ex-
posure introduces confounding that necessitates a stratified analysis to re-
move it. o L - ' '

The penalty for matching. for a. factor or. a set of factors that jointly are
riot correlated with the exposure is not as severe. If the matching factors
do not introduce a correlation in the exposure histories between cases
and controls, the matching has not introduced any confounding into the
data, and the fiatchied analysis need not be rétained. Avoiding the matched
analysis may be useful to bolster study efficiency by avoiding the loss of
information from the matched case-control sets with fully concordant ex-
posure histories, or to permit stratification by factors that have not been
matched. Matching factors that are uncorrelated with the exposure in the
data probably répresent factors that would not have been confounding
even without matching, so the matching cannot be viewed as productive,
but the ability to abandon the unnecessary matched analysis in this situa-
tion mitigates the problém. - .- - ; .

Evaluation of the relation between the matched factors and the exposure
is essentially an évalization of.the confounding introduced by the match-
ing, and it proceeds in the same-way as evaluation of confounding gener-

ally. The effect estimate is calculated in two ways, by preserving the match- -

ing and ignoring it. If the effect estimate from-the matched analysis differs
materially from the crude estitnate, that difference can usually be ascribed
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to the confounding that results from the correlation between the matching
factors and the exposure. The difference, if any exists, will usually be such
that the crude estimate of the effect is closer to the’ null value than the
.confounded estimate, provided that the matching ratio of controls to cases
is constant across sets. If no material difference exists between the crude
estimate and the result of the matched analysis, then the investigator can
conclude that the matching did not introduce or control any confounding
and the matching can be ignored in the analysis. It should be emphasize(i
that the evaluation of matching, like the evaluation of confounding in gen-
eral, should not be based on statistical tests but on the magnitude of the
apparent bias reflected in the compared point estimates.

Consider as an example the data in Table 13-7. The maximum likelihood
estimate of the relative risk from the stratified (matched) analysis is 23
The crude estimate, calculated from the crude exposure proportions of
12/18 for the cases and 16/72 for the controls, is 7.0. The discrepancy in-
dicates that the matching factors were correlated with the exposure and
therefore that the matched analysis must be retained.

If the matching ratio is constant across matched sets, the crude associ-
ation between exposure and disease is usually closer to the null value than
the association conditional on control of the matching factors. In unusual
circumstances, however, the crude association between exposure and dis-
ease is farther from the null value than the association after stratification
by the matching factors [Koepsell, 1984). This anomaly occurs only if there
is a negative correlation in exposure histories between cases and their
matched controls. Ordinarily, the correlation is positive, but it may occa-
sionally be negative either from sampling variability or from extreme ef-
fect modification. If stratification by the matching factors does lead to an
effect estimate that is closer to the null value than the crude effect estimate
Fhis result should be interpreted as a warning that the data are momalous’
in some way. Koepsell has recommended an examination for effect mod-
ification in such situations; this step is generally a good idea even without
the paradoxical effect of matching. It is also worthwhile verifying that no
data processing or labeling errors have been overlooked.

MULTIVARIATE ANALYSIS OF MATCHED DATA
The conditional likelihood methods described in this chapter for estimat-
ing the odds ratio with individually matched data can be expressed math-
ematically in the form of a conditional logistic regression equation [Pren- -
tice and Breslow, 1978). The two analytic approaches are equivalent as long
as the exposure variable is dichotomous and no other factors, aside from
the matching variables, are considered. The conditional logistic regression
analysis does offer some advantages, however. A fundamental advantage is
the ability to control conveniently for other factors that were measured
but not matched for. Using the conventional stratified analysis, there is
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often no way to control effectively for the matehing factors and for factors
not included in the matching algorithm. It is possible that, on evaluating
the effect of matching and’ determining that ‘it has introduced little or no
confounding by the matching factors, the matched sets can be disrupted
and the data stratified by factors not matched on. If, on the other hand, the
matching has introduced a material correlation in the exposure histories
between cases and controls; conditional Jogistic regression analysis (or
other conditional models)-allows both the remdval of the confounding
introduced by the matching and the control of additional unmatched con-
founding factors. It is also possible, although unusual, that the matching
factors are confounding only conditionally on the control of unmatched
confounding factors [Fisher and Patil, 1974; Miettinen, 1974], a situation
that conditional logistic analysis can diagnose and deal with effectively. The
latter method also allows the evaluation of exposure at several levels si-
multaneously, a process that is otherwise: especially difficult with matched
data (see Chap: 16). The drawback of the multivariate approach is the re-
quirement for-a computer and the necessaty software for the analysis; the
conventional stratified approach requires only a pencil and paper and per-
haps a pocket calculator. -

The construction of the multivariate model for logistic regression anal-
ysis is discussed. in the next chapter along w1th the theory behind the
approach. : ,
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