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13. MATCHING 

Matching refers to the selection of a comparison series-unexposed sub- 
jects in a follow-up study o r  controls in a case-control study-that is iden- 
tical, or nearly so, to the index series with respect to one or  more poten- 
tially confounding factors. The mechanics of the matching may be 
performed subject by subject, which is described as individual matching, 
or for groups of subjects, which is described asfiequency matching. The 
general principles that apply to matched data are identical for individually 
matched or frequency matched data. 

L 

PRINCIPLES OF WTCHING 
The topic of matching in epidemiology is beguiling: What at first seems 
clear is seductively deceptive. Whereas the clarity of an analysis in which 
confounding has been securely prevented by perfect matching of the com- 
pared series seems indubitable and impossible to misinterpret, the intui- 
tive foundation for this cogency attained by matching is a surprisingly 
shaky structure that does not always support the conclusions that are apt 
to be drawn. The difficulty is that our intuition about matching springs 
from knowledge of experiments or follow-up studies, whereas matching 
is most often applied in case-control studies, which differ enough from 
follow-up studies to make the implications of matching different and coun- 
terintuitive. 

Whereas the traditional view, stemming from an understanding based 
on follow-up studies, has been that matching enhances validity, in case- 
control studies the effectiveness of matching as a methodologic tool de- 
rives from its effect on study efficiency, not on validity. Indeed, for case- 
control studies it would be more accurate to state that matching introduces 
confounding rather than that it prevents confounding. 

The different implications of matching for follow-up and case-control 
studies are easy to demonstrate. Consider a source population of 2,000,000 
individuals, distributed by exposure and sex as indicated in Table 13-1. 
Both the exposure and male gender are risk factors for the disease: For 
the exposure the relative risk is 10, and for males relative to females it is 
5 There is also substantial confounding, since 90 percent of the exposed 
individuals are male and only 10 percent of the unexposed are male. The 
crude relative risk in the source population, comparing exposed with 
unexposed, is 32.9, considerably different from the unconfounded value 
of 10. 

Now consider what happens if a fo ow up study is planned by drawing 8 - the exposed cohort from the exposed source population and matching the 
unexposed cohort to the exposed cohort for sex. Suppose 10 percent of 
the exposed source population were included in the f ~ l l o w - ~  study; if 
these subjects were selected independently of gender, we would have ap- 
proximately 90,000 males and 10,000 females in the exposed cohort. A 



Table 13-1.  p pot he tical source popukation of 2,000,000 people, 
in which exposure increases risk lofold, and m a h  havejve times 
the risk of fernala, and exposure is strongly associated with male gender 

Males (1,000,000) Females (1,000,000) 

Exposed Unexposed Exposed Unexposed 
(900,000). (100,000) (100,000) (900,000) 

One-year risk 0.005 0.0005 0.001 0.0001 
No. cases in 4500 50 100 90 

one year 
(4500 + 100)/1,000,000 

Crude relative risk = = 32.9 
(50 + 90Y1.000.000 

comparison group of unexposed subjects would be drawn from the 
1,000,000 unexposed individuals in the source population. If the compar- 
ison group were drawn, like the exposed group, independently of gender, 
the follow-up study would have the same confounding as exists in the 
source population (apart from sampling variability), since the follow-up 
study would then be a simple 10 percent sample of the source population. 
It would be ,possible, hoever,  to assemble the unexposed cohort so that 
the proportion of males in it was identical to that in the exposed cohort. 
The purpose of matching the unexposed cohort to the exposed group by 
sex is to prevent confounding by sex. Of the 100,000 unexposed males in 
the source population, 90,000 would be in a matched comparison group, 
corresponding to the 90,000 exposed males in the study. Of the 900,000 
unexposed females, 10,000 would be selected to match the 10,000 ex- 
posed females. 

The "expected" results from the matched cohort study described here 
are indicated in Table 13-2. The expected relative risk in the study popu- 
lation is 10 for males and 10 for females and is also 10 in the crude data 
for the study. The matching has apparently accomplished its purpose: 
There is no confounding by sex, since sex is unrelated to exposure in the 
study population because of matching. 

The situation differs considerably, however, if a case-control study is 
conducted instead. Consider a case-control study based on the total of 
4740 cases that occur in the source population during one year. Of these 
cases, 4550 are male. Suppose, then, that 4740 controls were selected from 
the source population, matched to the cases by gender, so that 4550 of the 
controls are male. Of the 4550 male controls, we expect about 90 percent, 
or 4095, to be exposed, since 90 percent of the males in the source pop- 
ulation are exposed. Of the 190 female controls, we expect about 10 per- 
cent, or 19, to be exposed, corresponding to the 10 percent of females 
exposed in the source population. For the control series as a whole, the 
expected number of exposed subjects is 4095 + 19 = 4114 of a total of 
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Table 13-2. Eqbectation of the results of a matched 
one-year follow-up swiy of 100,000 aposed and 100,000 
unexposed d j ec t s  drawn from the source population desm'bed in table 13-1 

Males Females Total 

Exposed Unexposed Exposed Unexposed Exposed Unexposed 

Cases 450 45 10 1 460 46 
Total 90,000 90,000 10,000 10,000 100,000 100,000 

la = 10 I&'= 10 Crude fi = 10 

4740. For the cases, 4500 + 100 = 4600 of the 4740 would be exposed. 
The crude estimate of effect, based on the odds ratio from the crude data, 
is 

Crude relative risk = (4600) (626) = 5.0 
(4114) (i40) 

which is a substantial underestimate of the unconfounded effect of the 
exposure. Interestingly, the case-control data give the correct result, = 
10, if the data are stratified into male and female strata (Table 13-3). The 
discrepancy between the crude results and the stratum-specific results in 
Table 13-3 is a manifestation of confounding by sex (note that the sex- 
specific effect estimates are identical to one another and distinctly different 
from the crude estimate). This confounding is not a reflection of the orig- 
inal confounding by sex in the source population but rather a confounding 
that was introduced into the study by the matching process. In case-control 
studies, matching on factors associated with exposure builds confounding 
into the data, whether or not there was confounding in the source popu- 
lation. If there is confounding initially in the source population, as there 
was in the example, the process of matching will substitute a new con- 
founding structure in place of the initial one. The confounding introduced 
by matching is generally in the direction of a bias toward the null value of 
effect, whatever the nature of the confounding in the source population. 
In the example, the strong positive confounding (positive indicating a bias 
in the same direction as the effect) in the source population was replaced 
by strong negative confounding (negative indicating a bias in the direction 
opposite to that of the effect) in the case-control data. 

Why does matching in a case-control study introduce confounding? The 
purpose of the control series in a case-contrc@tudy is to provide an esri- 
mate of the person-time distribution for the exposed population relative 
to the unexposed population in the source population of cases. ~f controls 
are selected to match the cases for a factor that is correlated with the 
exposure, then the crude exposure proportion in controls is distorted in 
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the direction of similarity to that of the cases. If the matching factor were 
perfectly correlated with the exposure, the exposure distribution of con- 
trols would be identical to that of cases, and the crude relative risk esti- 
mate would be 1.0, since controls are chosen to be identical to cases with 
respect to the matching factor. Interestingly, the bias of the effect estimate 
toward the null value does not depend on the direction of the correlation 
between the exposure and the matching factor; as long as there is a non- 
zero correlation, positive or negative, the crude exposure distribution 
among controls will be distorted in the direction of similarity to that of 
cases. A perfect negative correlation between the matching factor and the 
exposure will still lead to identical exposure distributions for cases and 
controls and a crude relative risk estimate of 1.0 because each control is 
matched to the identical value of the matching factor of the case, guaran- 
teeing identity for the exposure variable as well. 

If the matching factor happens to be uncorrelated with the exposure, 
then matching does not influence the exposure distribution of the con- 
trols, and therefore no bias is introduced by matching. Because matching 
is ostensibly motivated by the need to control confounding by the match- 
ing factor(s), one would generally expect some correlation to exist be- 
tween the matching factor(s) and the exposure. If the correlation is zero, 
the matching factor was not confounding in the first place, since a con- 
founding factor must be associated with both the exposure and the dis- 
ease. 

c 

It seems that matching, although intended to control confounding, does 
not attain that objective in case-control studies. Apparently, it merely ac- 
complishes the substitution of a new confounding structure for the old 
one. In fact, matching can even introduce confounding where none pre- 
viously existed: If the matching factor is unrelated to disease in the source 
population, ordinarily it would not be a confounder; however, if it is cor- 
related with the exposure, it will become a confounder after matching for 
it in a case-control study This situation is illustrated in Table 13-4, in which 
the exposure has an effect corresponding to a relative risk of 5.6, and there 
is no confounding in the source population; however, if the cases are used 
as the basis for a case-control study, and a control series is matched to the 
cases by gender, the expected value for the crude estimate of effect from 
the case-control study is 2.1 rather than the correct value of 5.6. In the 
source population sex is uncorrelated with disease among the unexposed, 
the prevalence of disease being 2 in 1000 for both unexposed males and 
unexposed females. Sex is strongly correlated with exposure, however. In 
the case-control study, sex is confounding because it was a matching factor 
that was correlated with exposure. Despite the absence of correlation be- 
tween sex and disease among unexposed in the source population, a cor- 
relation between sex and disease among unexposed is introduced into the 
case-control data by matching. The result is a crude estimate of effect, 2.1, 
that seriously underestimates the correct value of 5.6. 



The confounding introduced by matching in a case-control study is by 
no means irremediable. Notice that in Tables 13-3 and 13-4 the stratum- 
specific estimates of effect are valid; the confounding can be removed by 
a stratified analysis to arrive at a pooled estimate of effect after stratifying 
by the matching factor(s). Table 13-4 illustrates the need for an analysis to 
remove confounding by the matching factors, since matching may cause 
confounding even when none was originally present. In Table 13-4, the 
selection criterion used in matching controls makes the control series un- 
representative of the source population with regard to exposure; this 
would lead to a selection bias but for the fact that it can be controlled in 
the analysis and can be therefore viewed as confounding. 

In a follow-up study that compares risks, no additional action is required 
in the analysis to control confounding by the matching factors; the process 
of matching has already eliminated any confounding by the matching fac- 
tors. In contrast, matching in a case-control study requires further control 
of confounding by the matching factors in the analysis even if the matching 
factors were not confounding in the source population, provided that the 
matching factors are correlated with the exposure. What accounts for this 
discrepancy? In a follow-up study, matching is undertaken without regard 
to disease status, which is unknown at the start of follow-up, therefore 
preventing bias. In a case-control study, on the other hand, matching in- 
volves the specification of both the exposure and the disease status and 
leads to conditional associations between the matching factor(s) and both 
exposure and disease, thereby resulting in bias. In a case-control study, if 
the matching factors are not correlated with the exposure, no confounding 
is introduced by matching; in this situation there could not have been 
confounding in the source population to begin with, so the matching was 
unnecessary. 

It is reasonable to ask why one would consider matching at all in case- 
control studies, since it does not accomplish its intended objective of pre- 
venting confounding. The utility of matching in case-control studies de- 
rives not from its ability to prevent confounding but from the enhanced 
efficiency that it affords for the control of confounding. In Table 13-3, the 
male and female strata each have an equal number of cases and controls 
because of the matched design. If 4740 controls were selected without 
matching, half would be male and half would be female. There would thus 
be a great excess of female controls, since 2370 is an unnecessarily large 
number of controls for 190 cases; the total amount of information does 
not increase substantially after five or  six controls per case (see Fig. 8-I), 
and therefore the information collected on so many females is partially 
wasted. On the other hand, there would be only 2370 male controls for 
the 4550 male cases. It is generally inefficient to have strata in which the 
ratio of controls to cases varies substantially on either side of unity. The 
extreme form of such inefficiency occurs when there are many individual 
strata with one or more cases and no control subjects (controYcase ratio 



. . . , 

= 0 )  -and' other strata with one or more mntrols and no cases (control/ 
case r ~ i o  = .infinity). Such strata provide no information in a stratified 
analysis. Ifmatching i s  used in the selection of controls, however, there 
will be  fewer uninformative str2ta in,a stratified analysis than there would 
have been in such an. analysis without matching: A fixed number of 
matched controls for 'each case will provide an extremely efficient strati- 
fied malysis. The Gproved efficiency kill be manifest in narrower confi- 
dence limits about the point estimate than would otherwise be obtainable. 
Matching ki case-contrcl studies can thus be considered a means of pro- 
viding a more efficient stratified analysis rather than a direct means of 
preventing confoun4ng Stratificaicn (or a n  equivalent multivariate ap- 
proach) Mil be necessaryto control confounding with or without match- 
iiig, but matching makes the stratificarian more efficient. 

The effictency that matching provides in the analysis of case-control data 
comes at a'substmtif'cost One part of the cost is a research limitation: If 
a factor has been rnitched in a cqe-control study, it is no longer possible 
to estimate the eff& of that factor,' since its distribution is forced to be 
identical fdr ca;ses,and controls. Consequently, matching factors cannot be 
&e objiicts of inquiry in a case-control study (except as effect mod i f i e r s  
e pdgei 279-282, Evaluation of Effect Modification with Matched Data). 
Another cost the added analytic conlplexity required to control con- 
found.i@ by factors that have not be& matched. It is possible to control 
s if iuheously for bqth matched.and unmatched factors but usually only 
through specialized analyses, usually multivariate models. Conducting 
&esie analyses poses no serious dficulties in view of the growing availabil- 
ity o;f computers, but.the investigator is forced to depend on computers 
and computer pr6gra&.to analyze data that might otherwise have been 
ana1yzed.h a more st&ightforward way 

A further cost involved with individual matching is the literal expense 
enmiledin the process of choosing conrrol subjects with the same distri- 
burion of,matchin~.fa&ors found in the case series. If several factors are 
being matched, many, potential control subjects must typically be scanned 
to find one that has the same chara~teristics as the case. Whereas this ar- 
duous ptocess rhy'lead to a statistically efficient analysis, it improves ef- 
ficiency only at cdaiderable expense. ' 

I.f.the efficiency .of a study is judged from the point of view of the amount 
of infarmation per subject studied' (size efficiency), matching can be 
viewed.as a means :of improving study efficiency. Alternatively, if efficiency 
is judged the amount of inforrnatiori per unit of cost involved in obtain- 
h g  that information (cost efficiency)), matching may paradoxically have the 
opposfte effect of decreasing study efficiency, since the effort expended in 
fincl'fng. hatched Bubrcts could be spent s'imply in gathering information - .- - 

" :  

for a greater number of; unmatched subjects. With or without matching, 
confounding would have to be cbntrolled in the data analysis. Whhmatch- 
ing, a sttatifled analysis would be more size efficient, but without it the . . 
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resources for data collection can increase the number of subjects, thereby 
improving cost efficiency. Since cost efficiency is a more findamental con- 
cern to an investigator than size efficiency, the apparent efficiency gains 
from matching may be illusory. 

Thus the beneficial effect of matching on study efficiency, which is the 
primary reason for employing matching, appears to be ephemeral. Indeed, 
the decision to match subjects can result in less overall information, as 
measured by the width of the confidence interval for the effect measure, 
than would have been obtained without matching if the expense of match- 
ing reduces the total number of study subjects. A wider appreciation for 
the costs that matching imposes and the often meager advantages it offers 
would presumably persuade epidemiologists to avoid the technique in 
many settings in which matching is routinely used. Since the intended goal 
is to control confounding, and this goal is attainable only by proper anal- 
ysis regardless of whether matching is employed, the routine use of match- 
ing is seldom justified. 

Nevertheless, there are some situations in which matching is desirable 
or even necessary, If the process of obtaining the information from the 
study subjects is expensive, it is desirable to optimize the amount of in- 
formation obtained per subject. For example, if exposure information in 
a case-control study involves an expensive laboratory test run on blood 
samples, the investigator would want the information from each subject to 
contribute as much as possible. As long as the expense of ascertaining 
matched controls is small compared with the expense of obtaining the 
exposure information from each subject, it is preferable to plan for a strat- 
ified analysis in which the stratification does not lead to loss of informa- 
tion, that is, it is desirable to match controls during subject selection so 
that there will be a uniform ratio of controls to cases in the stratified anal- 
ysis. If no confounding is anticipated, of course, there is no need to match; 
for example, restriction of both series might prevent confounding without 
the need for stratification or matching. If confounding is likely, however, 
matching will ensure that control of confounding in the analysis will not 
lose information that has been expensively obtained. The essential dBer- 
ence that makes matching attractive in this situation is the high price of 
expanding the study size; when additional subjects are expensive to ob- 
tain, it is worthwhile to pay the cost of matching to take full advantage of 
the information that is collected. In such a situation, matching serves both 
size efficiency and cost efficiency. 

Sometimes the control of confounding in the analysis is not possible 
unless matching has prepared the way to do so. Imagine a potential con- 
founding factor that is measured on a nominal scale with many categories; 
examples would be variables such as neighborhood, sibship, and occu- 
pation. Controlling sibship would be impossible unless sibling controls 
had been selected for the cases, that is, matching on sibship is required to 
control for it. These variables are distinguished from other nominal scale 



variables such as sex ,by'their mulritude of categories, ensuring that one 
or very few'subjects will fdl into each category. Without matching, most 
strata in a saritified analysis would have only one subject, either a case or 
a control, and no ido!mgtjon about effect unless control subjects had been 
matched to fiecases for the value of the factor in question. Continuous 
variables such as age also have a multitude of values, but the values are 
easily combined by grouping, avoiding the fundamental problem. If the 
categories of a nomioal s d e  variable mhld,be combined in a reasonable 
way, the need for matchikg could be.avoided Methods to achieve this have 
been p - r o p ~  ffm example, see Mieninen, 19761, but they require a mul- 
tivariate analysis as a preliminary step to the sttatdied analysis. Matching 
for naminal scde variables with many categories ensures that, after strati- 
ficarion by, the poreritialli confounding factor, each case will have one or 
moTe matched contro1s:for comparison.. . , ' 

A fancimental problem with stratifikd analysis is the inability to control 
confounding by several factors simultaneously. Control of each additional 
factor involv& spreading' the existing. strata over a new dimension; the 
total numb& of strata required becomes exponentially large as the num- 
ber of ~tmtification variables increas'es. Far studies with many confounding 
factors, thenumber of strata,in a stratified analysis that controls all factors 
simulmn.eously -'be s o  -large that the situation mimics that in which 
there is a ribmi'nal scale '~onfounder.with a 'mu1.rirude of categories: There 
may be o n e o r  very few subjects per stratum and hardly any comparative 
information'about the effect in any strata:If a large number of confounding 
factors is andcipated, matching may be desiiable to ensure an informative 
stratified analysis. On the other hand, it is not absolutely necessary to 
match unless there are nominal scale variabKes with many categories, since 
a mulrivar&e analysis can cope with confounding by many factors simul- 
t-an~ously even in sit&& in which stratification fails. Even multivariate 
analysSis, howe'ver, is inadequate to control confounding by nominal scale 
variables with a large number of possible values unless matching has pro- 
vided fie necessary comparative informarion within categories. 

We summarize the utility of matching in case-control studies as f01- 
lows: Matthing is a u&hl means for improving study efficiency, in terms 
of the &bont of idofmation per subject studied, if the amount of infor- 
mation obtainable fronithe more efficient analysis exceeds the amounr of 
information &rainable 'sihply by studying more subjects without match- 
ing. Matching is indicated for potentially confounding factors that are 
measured 6n 'a nominal scale with Amy categories or when the number 
of potentially confounding variables is so great that stratUlcation would 
wread thi subfedts toothinly over the strata. Multivariate analysis is a rea- 
sonabke altefnarive.iri thelatter situation.; it would be feasible even without 
mixtchiri-: Even multivpiate analysis, however, is infeasible to control con- 
founding by a nominal scale factor with many categories, unless matching 
is emplo$ed.. 
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A term bften used in reference to matched studies is ovemzatching The 
interpretation of this term has changed with a sharper understanding of 
the principles that underlie matched studies. Originally, the term over- 
matching was used to refer to a loss of validity in a case-control study 
stemming from a control group that was so closely matched to the case 
group that the exposure distributions differed very little. This original 
interpretation for overmatching was based on a faulty analysis that failed 
to correct for confounding. On proper analysis, no validity problem what- 
soever is introduced by matching. Note that in a follow-up study with 
matching even the crude analysis is valid, so that overmatching was never 
seen as a problem for follow-up studies. We have seen that indeed a valid- 
ity problem does exist from matching in a case-control study if the crude 
data are used for inference. This problem disappears, however, if stratlfi- 
cation by the matching factors is employed in the analysis. 

The modern interpretation of overmatching relates to study efficiency 
rather than validity. Consider an individually matched case-control study 
with one control matched to each case. Each stratum in the analysis will 
consist of one case and one control unless some strata can be combined. 
A stratum cannot contribute information to a case-control analysis if any 
marginal total in the 2 x 2 table is equal to zero. If a case and a single 
matched control are either both exposed or both unexposed, one margin 
of the 2 x 2 table will be zero and that pair of subjects will not contribute 
any information to the analysis. If several controls are matched to a single 
case and all the controls have the same exposure value as the case, all 
exposed or all unexposed, the resulting zero margin likewise signals that 
the matched set of controls and case will not contribute to the analysis. 
Since matching is intended to select controls identical to the index case 
with respect to correlates of exposure, typically the information from many 
subjects is "lost" in a matched analysis. Obviously the loss of information 
detracts from study efficiency, reducing both information per subject stud- 
ied and information per dollar spFnt. Matching has the net effect of in- 
creasing study efficiency only because strat*ed analysis in the absence of 
matching is ordinarily even less efficient than stratified analysis with 
matching. Recall, however, that matching in a case-control study can intro- 
duce confounding even if none exists in the source population, if the 
matching Eactor is correlated with the exposure but not with the disease. 
In such an instance, matching decreases study efficiency by locking the 
investigator into an analysis stratified by the matching factor, which will 
inevitably lose information on the matched sets with completely concor- 
dant exposure histories, whereas without matching a much more efficient 
crude analysis could have been used. Since the matching was not neces- 
sary in the first place and has the effect of impairing study efficiency rela- 
tive to the type of analysis that could have been performed without match- 
ing, matching in this situation can properly be described as overmatching. 
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Overmatching is thus understood to be matching that causes a loss of 
information in the analysis because the resultilig stratified analysis would 
have been unnecessary without matching. The extent to which informa- 
tion is lost by matching depends on the degree of correlation between the 
matching factor arid the exposure. A strongcorrelate of exposure that has 
no relation .to hi:sease is the worst factor to match for, since it will lead to 
relatively few informarivestrata in' the analysiswith no offsetting gain. Con- 
sider, for example, a study of the relation between coffee drinking and 
c m w r  of the bladder; suppose 'matching for conkmption of powdered 
cream-substicutei were considered along with matching for a set of other 
factors. Since this factor is a strong correlate of coffee consumption, many 
of the individual suata in the matched analysis will be completely concor- 
dant for coffee drinking and willnot contribute to the analysis; that is, for 
many of the cases, controls matched to that case will be classified identi- 
cally to the care with regardto coffee drinking simply because of matching 
for ~ o n s u r n p t i ~ o f . ~ o w d e ~ e d  cream-substitutes. .If powdered crearn-sub- 
stitutes have no relation to bladder cancer, nothing is accomplished by the 
marching. Though oo validiy problem e,fists'; .the matching is counter- 
productive aiid can consec@ently be considered overmatching. 

Matching on i risk fat@-'thatis not correlated with the exposure under 
audy will not bad  to an increased correlation of exposure histories for 
cases and controls. Such ?atching could neverdeless be considered over- 
matching because it adversely atfects cost efficiency although it does not 
&en si.ze effic~cncy. (simil&ly; matching for any factor that is merely a 
consequence d disease c &  also be considered overmatching.) On the 
other hand, ov&matching from a factor that is associated with exposure 
but not with the disease, such indicators of opportunity for exposure 
[paole, 19861, will reduce.both mst eficiency and size efficiency, 'that is, 
an investigator will s m  more to obtain information from the same num- 
ber of subleas as he could have obtained without matching on the factor 
andwill obtain less informationper subject after having spent more. These 
losses in efficikixy are suffered to control a factor that was not confound- 
ing a n p a p  ,. 

If a factor is a weak risk factor and a stiong carrelate of the exposure, it 
will. be a we* ,confoxnder; matching foc such a factor will involve a rela- 
tively large-loss of inform&ibi compared with a crude analysis because of 
the strong mrrelatiton with exposure. .A crude analysis is no longer a 
proper alternative, however, ifthe factor is a genuine confounding factor. 
A reasonable alternative to .matching of a confounding factor is a stratified 
analysis without. matching. Matching theoretically improves eaciency by 
stabilhing the,&nrrol&~e .ratio in the analysis, but it reduces efficiency 
by causing the'loss of informa'tion in some strata in which the exposure 
information is concordant.If the elementary strata corresponding to each 
matched set h k . a  reasonably large number of controls, complete con- 
cordance is unlikely; on ,the other hand, such concordance is very likely . : .  . . 
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for matched pairs. If elementary strata can be combined in the analysis, a 
possibility when there are only a few matching factors with a modest num- 
ber of categories, it is much less likely that there will be zero margins for 
the 2 X 2 tables in the analysis. The likelihood is hrther reduced if the 
matching factors are not strongly correlated with the exposure, although 
it should be remembered that the confounding that prompts matching 
depends on the magnitude of the association between the potential con- 
founding factor and the exposure: With no association, there is no  con- 
founding. If it is thought that a study design would lead to many elemen- 
tary strata with zero margins, then the value of matching in stabilizing the 
case-control ratio to improve study efficiency must be weighed against the 
loss of information from concordant exposure histories. It may be consid- 
ered a form of overmatching to match on a weak confounding factor that 
is a strong correlate of exposure, since the matching itself is expensive and 
can lead to a less efficient analysis than the alternative of stratification with- 
out matching. The primary way to improve study efficiency when consid- 
ering matching for a strong correlate of exposure is to increase the ratio 
of controls to cases, thereby decreasing the likelihood of a zero margin in 
the 2 X 2 table corresponding to each matched set. 

Matching on Indicators of Information Quala@ 
Another reason that matching is sometimes employed is to achieve com- 
parability in the quality of information collected. A typical situation in 
which such matching might be undertaken is a case-control study in which 
some or all of the cases have already died, and surrogates must be inter- 
viewed for exposure and confounder information. In principle, controls 
for dead cases should be living, since they constitute a sample from the 
source population that gave rise to the cases. In practice, since surrogate 
interview data is usually presumed to differ in quality from interview data 
obtained directly from the subject, many investigators prefer to match 
dead controls to dead cases. It is not clear, however, that matching on 
information quality is justifiable. Whereas using dead controls can be jus- 
tified in "proportional mortality" studies essentially as a convenience (see 
Chapter 6), there is no certainty that matching on information quality re- 
duces overall bias. Many of the assumptions about the quality of surrogate 
data, for example, are unproved [Gordis, 19821. Furthermore, comparabil- 
ity of information quality still allows bias from nondifferential misclassifi- 
cation, which is more severe in matched than in unmatched studies [Green- 
land, 19821, and can be more severe than the bias due to Werential mis- 
classification arising from noncomparability [Greenland and Robins, 1985131. 

To summarize, the intricacies of matching in case-control studies and 
the relation of matching to confounding and study efficiency are much 
more complicated than one might at first suppose. Matching has often 
been employed when simpler and cheaper alternatives would have been 



preferable. M%tchfng is c~earl~ifidicated o n b  i n  sharply defined circum- 
stances, In many.$wdy'sltuations, the decisibn resy on cost and efficiency 
cansi&racions &at border ~ n ' t h e  imponderable. ' . , 

. . 

. . . . . . . . 

:HED CASE-mNTROL ANALYSIS 
The mast imponant point 'in the analysis of matched case-control data is 
that matching Lnrroduces a ,bias in the crude, es.timmate of effect toward the 
null value if the matching factor ig correlated kither'positively or negatively 
with exposure, c&ditionalon disease status: ~his.bias may be viewed as 
a rype of mnfounding, s-in& it'is present in the crude data, but it can be 
completely remved by ariufying,by the matching factors. Therefore, the 
maid task in a matchid sase~bntrol  analysis is to -stratify by the matching 
factors. 

Since str~cifii:iti&n has already been discussel, there would be no need 
to elatsorare fnfther on matched case-comrol analysis but for one special 
feature of these analyses: Often the matching faccor or factors have so 
many possible categories that the stratified ~nalysis consists of one stratum 
for every case in the study This feature introduces no new analytic con- 
cepts into the straufied analy,sis beyond those discussed in Chapter 12, but 
it does often lead to .analy'ses with dozens or hundfeds of strata. The for- 
mulas d Chapter '12 become tedious to apply by hand if the number of 
strata is large, hut the famiul@ can be simplfied,for matched data so that 
hei r  applica~ion:~rh pencil and paper is not arduous even with thousands 
of strata. 

~f strscificzrion codld b ~ a ~ c o m ~ l i s h e d  withbut creating a large number 
of strata, a study with matching. could be analyzed using an ordinary strat- 
ified approach. For example; if subjects are matched only for age and sex, 
there is no need, to conduct a specialized ''matched analysis" that amounts 
to creating individual stfa& for each matched set of subjects. It is sufficient 
to consider age andsex as confounding factors that need to be controlled 
in the analysis and to create b*ly, the few strata for age and sex that would 
have been nece&ry had nomatching been.undenaken in subject selec- 
tion. Adiitioflal. contounding factors can be.easily controlled in such an 
analysis, even if they are nor hatching factors, by further stratification or 
multivariate aialysis Frequency matching is always handled using a 'non- 
matched'. analysis, that i?, using the usual analytic techniques to control 
canfounding..lhere is no special principle underlying the methods of a 
matched analysis: The need for:.a matched analysis is purely a practical 
o w ,  stemming from the.'nee'd to define strata in such a way that a large 
number of strata is"inevitable, as is the case' with . . an analysis in which a 
nominal scale variable xGith many categories is ,one of the matching vari- 
ables. When such a variable is confounding, individual matching is needed 
to permit the.contro1 of~onfou'ndin~.  . . .  , In other situations, however, fre- 

. .  . 
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quency matching or no matching at all is a better design option, since it is 
usually more cost efficient. Even if individual matching is employed, unless 
the number of categories in the analysis is inevitably large relative to the 
number of cases, there is no compulsion to use the methods of individ- 
ually matched analysis as long as the matching factors are all controlled in 
the analysis. 

Point Estimation of the Relative Risk (Odds Ratio) 
porn Matched Case-Control Data 

As usual for case-control data, the odds ratio, being an estimate of the 
incidence rate ratio or relative risk, is the measure of interest. Either the 
maximum likelihood or the Mantel-Haenszel approach may be used for 
estimation. The Mantel-Haenszel approach is simpler, but the maximum 
likelihood approach is not as complicated for matched data as it is for the 
usual stratified analysis. 

Maximum likelihood estimation of the odds ratio in a stratified analysis 
can be "conditional" on both margins of the 2 x 2 tables or  "uncondi- 
tional," which means conditional on only one margin of the 2 x 2 table. 
The two approaches give nearly identical results except when the average 
number of subjects per stratum is small, in which case the unconditional 
approach can be substantially biased and should not be used [Breslow, 
1981; Lubin, 19811. Matched analyses are the extreme form of stratified 
analysis in the sense of having the fewest possible subjects per stratum. 
One case and one control per stratum is the minimum requirement, but 
studies in which all the strata are matched pairs can nevertheless be ex- 
tremely informative. For matched analyses, the applicable likelihood 
methods are those based on the conditional likelihood. 

POINT ESTIMATION OF RELATIVE RISK FROM MATCHED CASE-CONTROL PAIRS 

When a single control is matched individually to each case, the elementary 
strata in the analysis are 2 X 2 tables with only two subjects. For a dichoto- 
mous exposure, only four possible exposure patterns exist for the two 
subjects: both exposed, both unexposed, case exposed and control unex- 
posed, and case unexposed and control exposed. These four exposure 
patterns are shown in Table 13-5. Note that when the exposure history is 
identical for the case and the control, there is a marginal total equal to 
zero in the 2 x 2 table. The first and last of the 2 X 2 tables in Table 13- 
5, A and D, have a zero marginal total and consequently do not contribute 
to either estimation or statistical hypothesis testing. 

The conditional maximum likelihood estimate of the odds ratio is sim- 
ply the frequency of matched sets of type B divided by the frequency of 
sets of type C, that is, the ratio of the number of discordant pairs in which 
the case is exposed to the number of discordant pairs in which the control 
is exposed. This estimator can be derived easily as follows: If the odds 



Table 13-5. possible Paner~'of  qosure for a case and a single matched control 

Case ' 0 ; ' 1 .  '.l 
Control 

r m  is designated as OR, then from the noncentral hypergeometric dis- 
tribution (see Chap. 11) the probabili&of a 2 X 2 table of !ype B is OR1 
(OR + 1) andthe probability of a table .of type C is l/(OR + 1). Let the 
frequency of discordant pairs in which the case is exposed be f,, and the 
frequency of discordantpairs in which the conrrol is exposed be f,,. Since 
a discordmi pair must'contribute either to f,, or to fo,, we can treat the 
disnibutiofi of.discordant pairs of type B as binomial; the likelihood of 
observing eactly f,, ripe B pairs, given that there are f,, + fo, discordant 
pairs is then . . . 

The maximum.1ikeiihood esdmator of the OR is derived by maximizing 
the abom exppssion with respect to the OR The maximization is equiv- 
alent to maximizing the. logarithm of expression 13-1, 

Takifig the denvativ;.and seaing it equal to zero gives 

which is the c d i d o n a l  m&mum likelilymd estimator. 
Altgmatively, h e  Mantel-Haenszel estidator of the odds ratio Can be 

used (formula 12-26). For, each table of type B, aidi/Ti = Y2 and b,cJIi = 
0. For each table of typk C, aidJI,. =. 0 and bg/Ti = Y2. Therefore the 
Marife1:Haenszel estimator' for matched-p,air data is 
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the same expression as the maximum likelihood estimator. 

POINT ESTIMATION OF RELATIVE RISK WITH R CONTROLS MATCHED TO 
EACH M E  

For the more general situation of R controls matched to each case, there 
is a larger number of possible exposure patterns, the exact number. de- 
pending on the value of R. Considering all R controls as equivalent, there 
are R + 1 different outcomes possible for each matched set of controls, 
corresponding to the number of controls in the matched set that are ex- 
posed and ranging from zero exposed at one extreme to R exposed at the 
other extreme. Since the case can be either exposed or unexposed, the 
total number of possible exposure patterns is 2 (R + 1). A convenient way 
to summarize the data is simply to tally the frequency of matched sets with 
each exposure pattern, using the notation of Table 13-6. 

The frequency foo is the number of matched sets with no exposed sub- 
jects: these elementary strata have a zero marginal total and do not con- 
tribute to the analysis. Similarly, f,, refers to the sers with no unexposed 
subjects; these sets also have a zero marginal total and do not contribute 
to the analysis. The remaining 2R types of sets are all informative sers, 
representing elementary 2 X 2 tables with nonzero marginal totals. Note 
that as R increases, the probability that a given set will be informative also 
increases, since the likelihood that all the controls will have the same ex- 
posure as the case becomes smaller. If there is a 90 percent probability 
that a matched control has an exposure history concordant with that of the 
case, the probability that the matched set for that case will contribute to 
the analysis ranges from 10 percent for R = 1 to 1 - (0.9)5 = 41 percent 
for R = 5. If a matched control has an 80 percent probability of having a 
concordant exposure, the  roba ability that a set is informative ranges from 
20 percent for R = 1 to 67 percent for R = 5. 

Let us denote the total number of exposed subjects in a matched set as 
m. The value of m ranges from zero to R + 1, but the informative sets are 

Tdle 13-6 Data summary for R conrrok matched to each case, 
indicating the frequency ) of martched sets with every possible exposure pattern 

No. exposed controls 

0 1 2 3 . . . R 

Exposed cases f10 f l l  f12 fi, . . . flR 

Unexposed cases f f, 2 2  f03 . . .  f R 



. . .  , . .. . . . . 
. . . . .  

ttTose fofwhich .l crii . k ~ ; : k e e ~ i n ~  all.mar&nal totals nonzero. For a given 
value d m,, there are &yo' possible patterns.of exposure for the matched 
set, Corfespondh'ig to the caSe being exposed and rn - 1 controls being 
exposed.; or the -case not being exposed and m controls being exposed. 
F r m  the mricentral hypergeometric distjbutbn, the probability that the 
case & -eiiposed; given m 'expaed subjects, is 

Pr(case is exposed, given m) = 
m(OR) 

R + 1 - m + m(0R) 

and the piobability that the case is unexposed is the complement, 

(R + 1 - m)/m 
Pi(case is unexposed, given' in) = .R + 1 -m 

[13-41 
. . . .  , . . .. . + OR m 

. . . .  , 

It is aga.in co&nient 'toSonstder the observations as following a binomial 
disrflburion, bit   with'^-to-1 matching. there is a separate binomial distri- 
bution for each value of m. Thus, for m = . I ,  there is a total of flo + f,, 
sets, ad., given that exacdy o,ne subject in a set is exposed, the probability 
of expos6re. is .OR/(OR' + R), from equation 13-25. The probability of ob- 
servirlg gmctly flu and f,l sets with the &e'exposed and unexposed, re- 
spectively, given a total of f,,. + f,, sets with one exposed subject, is 

. . . . . . .  . . 

The overall:likelih.ood:fii the data is the broduct of the binomial proba- 
bilities corresponding to kach value of m from 1 to R: 

. .  , 

. . 
The logarithm of the above likelihood expression is 
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Taking the derivative of the above expression with regard to the OR and 
setting it equal to zero yields the equation for the conditional maximum 
likelihood solution for the OR [Miettinen, 19701: 

Equation 13-6 reduces to equation 13-2 for R = 1. For R = 2, it can be 
solved explicitly for dR [Miettinen, 19701, but for values of R greater than 
2 an iterative solution is necessary. Even so, equation 13-6 represents a 
rather simple computational exercise compared with the onerous com- 
putations needed to obtain a conditional maximum likelihood estimate of 
the odds ratio for unmatched stratified data. 

The data in Example 13-1 represent the individual exposure values for 
each subject in a matched case-control study with 18 cases and four con- 
trols matched to each case. The cases were women with ectopic preg- 
nancy; controls were women without ectopic pregnancy drawn from the 
same source population and matched individually to the cases for number 
of pregnancies, age, and husband's level of education. All subjects had had 
at least one previous pregnancy. A positive history indicates that the 
woman had at least one induced abortion. 

If only the first control had been matched to each case, the investigators 
would have observed nine concordant pairs (four concordant pairs with 
positive exposure histories and five with negative exposure histories) and 
nine discordant pairs. In eight of the discordant pairs the case is exposed, 
compared with only one in which the control is exposed, giving a relative 
risk estimate of 8/1 = 8. Considering all controls that were studied, there 
are 2(4 + 1) = 10 types of exposure patterns for the matched sets. The 
distribution of exposure patterns for the data in Example 13-1 is shown in 
Table 13-7. 

Six of the matched sets have completely concordant exposure histories 
and so are noncontributory to the analysis. The data from the remaining 
sets can be used to estimate the odds ratio, or relative risk, of ectopic 
pregnancy after induced abortion by substituting into equation 13-6: 

A trial and error solution gives & = 23. 



,?xample 13-1. Pra,,ious h*ray of iduced abortion among womm with ectopic 
pregnancy and hatched connok Data of T~chopo~lm et a1 [Miem'm, 19691 

. 1  ; .2 3. , 4 
Case . . 

.- - . . 
- 

- . - 

. . 
- . +  ' . 

- . . + + 
- .. - -  .~ . . . .- . . 

' .. , 
+ = prevfiiiiinduced aboitidn; {' = no previous induced abortion. 

Tdle 13-7. P& of qosure  fm  the 18 matched sets in aranple 13-1 

: . No. . exposed.controls 

. , 0 ; . 1  ' 2 3 4 
. . ,  

ExPoscd cases ' . . . 3 5 .' 3 
0 1 

. . 
Unexposed ;asks : ; , .5 .i . o o 0 

... 
- .  

.' . . . . 
. : : :. . 

An alreinarivi to the maximum like1,hood approach to estimation is the 
Mantel-Haenszel approach When the matching ratio exceeds one control 
per case, the two approaches are not identical. With R-to-1 matching, for- 
mula 1-2-26 cah be rewritten . . as follows: . . ' 
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Applying formula 13-7 to the data in Table 13-7 gives 

which differs noticeably from the conditional maximum likelihood esti- 
mate of 23. The large difference between the two estimates is attributable 
to the fact that there are only 12 informative sets, and 11 of these are 
supportive of a positive association, representing an extreme result with 
somewhat scanty data. Consequently, it is not surprising that two different 
estimators give somewhat discrepant results. Breslow [I9811 has shown 
that statistically the Mantel-Haenszel estimator is consistent for matched 
data, is as efficient as the conditional maximum likelihood approach when 
the OR = 1, and is nearly as efficient over a wide range of conditions. 

POINT ESTIMATION OF RELATIVE RISK WITH A VARYING NUMBER OF 
CONTROLS MATCHED TO EACH CASE 
With a varying number of controls matched to each case, the data can be 
summarized by a set of displays like the one in Table 13-6, each one cor- 
responding to a different value of R. The likelihood for the data is the 
product of the likelihood expressions corresponding to each value of R, 
and the equation that yields the maximum likelihood estimate of the OR 
is a simple extension of equation 13-6: 

The data in Example 13-2 are derived from a study of myocardial infarc- 
tion and history of coffee consumption Uick et a]., 19731. The authors at- 
tempted to match two controls to each case, but for 27 cases only one 

Example 13-2. Distribution of cases of myomrdial infarction 
and matched m n m k  according to amount of coffee drinking; d j e c ~  
driding one to five cups of coffee per day were excluded wick et al., 19731 

No. controls drinking 6 + cu~s/dav 
- -- 

Matched pairs Matched triplets 

0 1 0 1 2 

Cases 



marched control was available. The resulting data consist of 27 matched 
pairs and 88 matched triplets. The use of these data and equation 13-8 to 
determine the maximum likelihood estimate of the odds ratio produces 
the following likelihood equation. 

. . 
. .. . . 

htvingthe above eqy&& by trial and &ror gives 6R = 2.0. 
The gen&r&zition df6rmuI.a 13-7 for the ~ ~ a n t e l - ~ a e n s z e ~  estimator of 

the odds riifio with matched case-control data having avarying number of 
corir~ols;~, . to. . kach:case can be derived easily from formula 12- 
26: ' . .  . . 

.. , . 

. . 
. .; . . . . .. 

: .$ (R + 1.; m)f 

~ ~ $ ~ k ~ , t h e  above h i k u l a  to the data . , of Example 13-2 gives the Man- 
tel-HaeTiSi$l e4titnate +, .. . 

. . . . 

wfih nearly identical tothe maximum likelihood estimate and is con- 
siderablp easier to obtain: . ,  , 

stat&tica/ wipo~& Terng ~ i t h ' ~ a t c b e d e a s ~ ~ o n t r 0 1  Data 
Since @ d y s i s  of matched case-control dara is equivalent to an analysis 
stratifyiq h e  data according to the matching factors, hypothesis testing 
for matched data is ac~bm~i ished simply by applying the general approach 
for suacified dam to thk'syata defined by the matching. As with point es- 
timation; some' of the formulas can b e  simp:lified for matching because the 
2 x 2 tables can have -only a limited number of configurations; since a 
matched afxalysis typically involves many strata, the simplifications may 
prove lllrportant. Even the two tableaus for displaying the data in Example 
13-2 illustrate this point .because they summarize data on 115 strata, cor- 
resp-onding. to the 1 1 5  matched . . sets. . , . . 

' 

. . 

H Y P O ~ S I S  TESTING FOR MATCHED CASE-CONTROL PAIRS 

For marched pairs, .an exact P-value can be calculated from equation 13-1 
by setting OR .= 1, and calculating the tail ,probability. This calculation is 
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simply the tail probability of a binomial distribution with a probability of 
0.5 for each binomial trial. The tail probability for the Fisher P-value is 

for flo a fO1. If fol > f,,, then the lower tail should be calculated by summing 
over the range 0 G k k f,,. 

To get the exact mid-~ia lue ,  only half the probability of the observed 
data should be included For the upper tail, this modification gives 

1 fI0 + fo, 
f10 + f0l 

Mid-P = 2 ( f,o ) (:) + f l o y l  ( f10 + fol ) ( ~ ) f l o + f o l  

k=f,o+ 1 
[13-111 

If fO1 > flo, then the lower tail should be calculated by summing over 
the range 0 G k k flo-1. 

Consider the data in Example 13-2 relating just to matched pairs. The 
16 pairs for which the exposure history was concordant do not contribute 
to the evaluation and should be ignored. Of the remaining 11 pairs, 8 are 
discordant with the case exposed. The exact Fisher one-tail P-value is, from 
formula 13-10, 

The mid-P value is the same summation except for the first term, which 
would be '/2(0.0806), giving a one-tail P-value of 0.07. 

An approximate P-value can be calculated using the Mantel-Haenszel 
test statistic (formula 12-38). For matched pairs, the Mantel-Haenszel test 
simplifies to 

f,o - fo, 

= 

which is a form of the test first described by McNemar [I9471 and often 
referred to as the McNemar test. 

For the matched pair data in Example 13-2, this tea formula gives 

which corresponds to a one-tail P-value of 0.07, agreeing well with the 
exact mid-P value even for these apparently small numbers. 



HYPOTHESIS TESTING FOR R CONTROLS MATCHED TO EACH CASE 

Exact hypothesis testing for R controls matched to each case is consider- 
ably more complicated than hypothesis testing for matched pairs. The data 
can be considered a set of R binom~al distributions with the likelihood 
function expressed in formula 13-5. For hypothes~s testing, the value of 
the odds ratio in expression 13-5 is set equal to unity The upper tail prob- 
abil~ty is determined by evaluating formula 13-5 for every possible distri- 
bution of the data for which the number of exposed cases is equal to or 
greater than the number observed (the exposed cases for whom all 
matched controls are also exposed can be ignored). The exact Fisher P- 
value is therefore 

Fisher upper-tail probability 

where a is the total number of exposed cases in sets with at least one 
unexposed control, MI is the total number of sets that are not completely 
concordant, k, is the permutation of the possible number of exposed 
cases with m - 1 exposed controls, i.e., the total number of exposed cases 
that could have been observed among matched sets that actually had m 
exposed subjects, and k is the sum of k,,,: 

The rail summation includes all the combinations of the data that could 
give rise to all the values of k in the range from a to M,. For the lower tail 
probability, the range of summation fork  is from 0 to a. 

To obtain the exact. mid? value, it is necessary to include only half the 
probability for k = a., as follows: 

Mld-P upper tail probability 
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For the lower tail mid-P value, the second summation in equation 13-14 
should be for 0 k k k a- 1 rather than a +  1 c k k MI. 

Consider the data in Example 13-1 (Table 13-7). Disregarding the ex- 
posed case that had four exposed matched controls, there are 11 exposed 
cases, so a = 11. The total number of informative sets, M,, is 3 + 5 + 3 
+ 0 + 1 + 0 + 0 + 0 = 12 There is only one set of values for {k,) for 
which every informative set has an exposed case; since there are four, five, 
three, and zero sets, respectively, for m = 1, 2, 3, and 4, the values of k, 
would be 4, 5,3, and 0, respectively, to obtain the most extreme outcome, 
with all the cases exposed. There are three different patterns that could 
yield Zk, = 11. These are, starting with the observed pattern, 3, 5 3 ,  0; 4, 
4, 3, 0; and 4, 5, 2 , O .  Thus the upper tail has four possible outcomes in it, 
including the observed data; there are two equally extreme outcomes, and 
one more extreme outcome. 

Let us calculate the probability of each of these four outcomes. Consider 
first the most extreme outcome, 4, 5, 3, 0. The probability is, using expres- 
sion 13-13, 

For the observed data, the probability is 

For the remaining two possible outcomes, the probabilities are 

and 



8 
ffi 



val E~dmation if the O&s Ratio with Matched ~ke-control Data 
INTERVAL ESTIMATION FOR MATCHED CASE-CONTROL PAIRS 

Exact confidence iimits for the'odds ratio from marched case-control pairs 
can be calculateijl b&ed on' the.probability distribution of the possible 
discordant pairs, conditional on the toral number .of discordant pairs, by 
expressing the gr&ablirj:~ a function of the odds ratio (see formula 13- 

. . 
1): . . . . 

The above fo;imulas, when .solved for OR and (?R, give the exact Fisher 
limlrs. To obtain the .pid-~=ct .confidence limits, only half 

the pr&abi.lity that k- = fl,j is added to the tail: , ' . 
, 

1 f,, t; fo, . PR 
= - ( , j (' )f'O:('L)?' , . . . 

O R + 1  O R +  1 2 - .  

and . . 

The s o l ~ ~ i o n  df ~qu~tions.13-le and 13-20. or .i3-21 and 13-22 amounts 
to finding the exact ccmfklence limits for a b i l lodd  parameter, p, which 
is a funcd.an.d. the. odds ratio: p = OR/(OR. + 1). Consider the data in 
Example 13-2 =elating to marched pairs. With 11 discordant pairs, 8 of 
which have xn exposed case, the calcuhtion of e'xact confidence limits for 
the raeo. c&respon& tb seaing exact confidence limits for the bi- 
nomial pas;merer esdmatcd. by eight successes in 11 trials. The Fisher 
exact 90 percent corifidence lim'its are, from formulas 13-19 and 13-20, 
0.4356 a*d 0,9212 for the @lnomial parzmeter, which correspond to a 90 
percent exxct Fisher.confidence interval of 0.77,and 11.7 for the odds ratio. 
If formulas ,13-21 and 13-22 *.used to' get the mid? exact limits, the 
results are 0.470.2 and .0.9030 for the binomial.:pakmeter, corresponding 
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to 0.89 and 9.31 for the 90 percent exact limits for the odds ratio. The wide 
limits reflect the small number of discordant pairs. 

Approximate confidence limits for matched case-control pairs can be 
determined in several ways. One approach is to determine the confidence 
limits for the probability that a discordant pair has an exposed case, based 
on the large sample characteristics of the binomial distribution, and then 
convert these confidence limits to the corresponding limits for the odds 
ratio. Other approaches include the large sample characteristics of maxi- 
mum likelihood estimators, the formula by Robins et al. [I9861 for the 
variance of the logarithm of the Mantel-Haenszel estimate (formula 12-58), 
and the test-based procedure. 

First let us consider basing the approximation on the sampling distri- 
bution of the binomial distribution, which has a variance of pq/n for large 
n, where n is the number of binomial trials, p is the probability of a "suc- 
cess," and q = 1 - p. For matched case-control pairs, 6 = f1d(fl, + f,,), 
and confidence limits for 6 can be approximated by 

f10 

- t z J  flo + fol (flo f l ~ O l  + foil3 

where Z is the value of the standard normal distribution corresponding to 
the desired level of confidence, the plus sign gives the upper confidence 
limit, and the minus sign gives the lower corifidence limit. The corre- 
sponding limits for the odds ratio are given by OR = p/(1 - p) and OR - - 
= p/(l - F), or 

The above approximate confidence limits are simple to calculate, but they 
are inaccurate unless the number of discordant pairs is reasonably large. 
For values of the odds ratio that are far from the null value, the number 
of discordant pairs must be very large for the approximation to be ade- 
quate. The difficulty is that the binomial distribution does not approximate 



a norm21 ciistribution &y dveil if the nu*berof trials is modest, especially 
if the probability of a su&e$s is farfrom,O.S. Formula 13-23 always pro- 
duces confidence limitti for p that are symmetric about p despite the fact 
fiat the ~ ~ ~ ~ 1 i n g  distributidn. can be strikingly asymmetric for values of p 
that depart from 0.5, the center of the ringe,hf thk distribution. It is pos- 
sible ro calculate a co.nfrdence interval.fromformula 13-23 with a bound- 
ary ourside the admissible range of 0. to  1 for p. For example, if two suc- 
cesses were observed .in 10 trials, formula 13-23 gives a 90 percent 
confidence. interval for 6. with a lower bound of - 0.008; eight successes 
in 1.0 trials would give; frb;& the same fbrmula, an upper bound of 1.008. 
T h a e  h i t s  outside th6 admissible range for p correspond to negative 
values of the odds rar io :~ '  determined froin formulas 13-24 and 13-25. 

A more 'accurAte method for obtaining dpproximate confidence limits 
for thi b-jnomiai par&eter was proposed by Wilson 119271. This approach 
t-&es filto account the .aspnmetry of -the distribution and consequently 
never g:ives results outside the admissible rarige. Wilson's formula is 

. . 
. . . .  

: - r : -t 

*here T is f,f f,, Z is Z;.,, the signgives the upper confidence 
limit for p;md the 'minus sign gives 'thelower confidence limit for p. 
Corifidence:lirnits - for the odds ratio are tak$n, as before, as p/(l - p) and 
p/(l - 5). If f,, = 8 &.d f,, = 2, the 90 percent confidence limits for p 
from formula 13-26 are 0.541 and 0.931, well within the admissible range 
arid reflective of the asymmetry of the sampling distribution. 

Far the 11' discordant matched pairs in:lhe data of Example 13-2, for- 
m u h  13-23 gives the. 90 percent confidence limits of the binomial param- 
eter of 0,506.anid 0.948,'correspondfng to 1..03 and 18.3 for the odds ratio. 
These limits;' especially the upper orie; agree poorly with the exact limits 
calcukated earlier. Formula 13-26, on the other hand, gives a 90 percent 
~~.nf i r l ince  intern1 for'the tjinominl parameter of 0.479 and 0.885, corre- 
sponding ro a confiden&.interval for the odds ratio of 0.92 to 7.72, which 
agrees much more 'closely with the mid-P .exact 90 percent interval. 

The rXi6 of ,discotdant matched pairs is simultaneously the maximum 
likelihood estimate 'yl the,   ant el-~aenszel estimate of the odds ratio. 
For matched case-control data the variance.of the maximum likelihood 
estimate of: ihe odds r k o  has been described by Miettinen [1970]. As is 
usual for ratio esrimators, the confidence'limits are set for the logarithmic 
trznsformati~n of the estimate, and, then the transformation is reversed. 
For matched pairs, the large' sample formula for the variance of the loga- 
rithm of the odds ratiois 

' 
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which gives approximate confidence limits for the odds ratio of 

and 

For the matched pair data in Example 13-2, the variance is estimated 
from formula 13-27 to be 11/24 = 0.458, and the 90 percent confidence 
limits from formulas 13-28 and 13-29 are 0.88 and 8.12. Considering the 
few pairs involved, this approximation gives excellent results for these 
data; the lower bound is nearly equal to the mid-P exact lower limit, and 
the upper bound is reasonably close to the corresponding exact upper 
limit. 

Since the maximum likelihood and Mantel-Haenszel estimators are the 
same for matched case-control pairs, it is not surprising to find that for- 
mula 12-58 for the variance of the logarithm of the Mantel-Haenszel esti- 
mator is identical to formula 13-27 when applied to matched pairs. 

One other approach to approximate confidence limits for the odds ratio 
estimated from matched case-control pairs is the test-based approach. For 
matched pairs, the test-based limits are 

where the x is the value from equation 13-12. Since equations 13-28 and 
13-29 represent a straightforward and theoretically optimal approach to 
obtaining approximate confidence limits for matched case-control pairs, it 
is generally preferable to use them rather than the test-based approach, 
the binomial formulations in equations 13-24 through 13-26, or other al- 
ternatives. For comparison, the 90 percent test-based confidence limits for 
the matched pair data in Example 13-2 are 0.91 and 7.78, which are similar 
to the results obtained from formula 13-26 and slightly worse, compared 
with the mid-P exact limits, than the results obtained from equations 13- 
28 and 13-29. 
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INTERVAL ESTf&fkpON .FOR R ~ N T R O L S  MATCHED TO EACH CASE 
Exact interval estimation of the odds rath .with R matched controls for 
each case p r ~ c e e - & ~ f r ~ m  the probability expression for the data written as 
a function of the odds ratia . '  .: . 

. .. : 

where C, = (I? + 1 - m)jm and the remaining notation follows Table 
13-6. Expression i331 represents the product pf R biilomial probabilities, 
in wh.ich [he binohid corresponding .to the probability of a 
"success" (i.e.,'a hitched set.with an exposed.case, given that the set has 
m exposed subjects) is . ' 

. . 
OR 

Pr(exposed c&e given m' exposed . , subjects) = OR + (R + 1. - m)/m 

. , . .  . . 

which c m  be &rived from the n6ncentral hypergeometric distribution. 
The emct cd id&ce  limits 'are determined iteratively by summing the 
value of expressi6n .13-31 for:,every possible outcome of the data that de- 
parrs equally or more extremely fiom the null hypothesis, starting with 
the &seewed dzta; the.sbm'is calculated for trial values of the odds ratio 
until the tail .iq"als the desired value. Thus? 'the Fisher exact limits 
are the solut:ions to a e  following equations: . 

. 

. . . .. 
and 

. . 

where a is .fie total nifmber .df exposed cases 1E?: sets with at least one 
unexpase-d cO-hc~ol, . . ,  . 

.. . 
. . 
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M, is the total number of sets that are not completely concordant, the 
values {k,,,) represent the permutations of possible values for the number 
of matched case-control sets with an exposed case when there are m ex- 
posed subjects in a set, 

and 

For mid-P exact confidence limits, only half the probability is included 
in the tail for 

These limits are the solution to the equations 

and 

In considering exact hypothesis testing, we saw that for the data in Ex- 
ample 13-1 (Table 13-7) there were three outcomes, including the ob- 
served data, that give k = 11, and only one more extreme outcome, for 
which k = 12. Therefore, a = 11 and M, = 12. The four terms in the 
summation of the upper-tail probability are 
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of formula 12-58. &en apphed . .  to matched . data with a fixed R-to-1 match- 
. . 

ing rztio, are ., ' 

. .. 

- .  .. . . . ' . "(R - m)' , 

C 61s = z form (R + 1)2 
I : m=1 

. . 

Applying this formula to the:'data of Example 13-1, for which 6RMH = 33, 
the variance is calculated to be 1.5'179, for a 90 percent confidence interval 
of . . .  

. . 

The variz*ce.es&ate of 1.5179 is larger than th'e corresponding variance 
estimate for the .maximum likkli,&ood estimator,which might be expected 
in view of the extreme d k p w r e  from the null state. l i i s  only in the 
vicinity of she null eonditioo that the ~ari tel-~aenszel  estimator is as effi- 
cient ;TS the ~osiditiohal maximum kikelihood .estimtiror. 

Another approach to appioximate interval estimation of the odds ratio 
for R controls matched to each case is the test-based procedure. As usual, 
these h i t s  are . '. 

. . 

. . 
, : &I * Z / X )  , . 

. . . . 
. . .  . . 

where the x is the result expression 13-15; ln principle, the test-based 
limis could b i  used with eithef the maximum likelihood'.estimate or  the 
  ant el-~aemz&l estimate as 'the inchor point. For the data in Example 13: 
1, the x is 4.0, $hich gives a 90 percent confidence interval of 6.3 to 81 
when the r i l dpurn  likelihood . . estimate of '22.6 is used as the anchor 
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point, and 7.8 to 139 when the Mantel-Haenszel estimate of 33 is used as 
the anchor point. In either case the test-based limits are evidently much 
too narrow and would not serve as an adequate approximation to the exact 
confidence limits. The test-based limits are usually adequate in the vicinity 
of the null value of the odds ratio, but for these data, which depart strongly 
from the null condition, the test-based limits are a poor approximation. 

INTERVAL ESTIMATION FOR A VARYING NUMBER OF CONTROLS MATCHED TO 
EACH CASE 
With a varying number of matched controls, the probability expression for 
the data as a function of the odds ratio is an extension of formula 13-31, 
taking the product of the probabilities over each value of R: 

where the notation is that used for equation 13-31. The tail probabilities 
for the calculation of exact confidence limits are calculated as they are for 
a fixed matching ratio (formulas 13-32 through 13-35) with expression 13- 
45 representing the probability for each realization of the data in the tail 
summation. 

The data in Example 13-2, for which there are 3522 terms in the tail 
summation, would not ordinarily warrant an exact calculation of cod- 
dence limits because the large numbers ensure that most approximate 
formulas for the determination of confidence intervals would be satisfac- 
tory. The exact confidence limits must be determined iteratively, so that 
the tail summation involving 3522 terms must be calculated repeatedly 
until the solution is reached. This tedious task is not difficult, however, 
using a computer. The 90 percent exact Fisher confidence limits for the 
data in Example 13-2 are 1.28 and 3.10; the 90 percent exact mid-P limits 
are 1.32 and 3.01. 

Approximate confidence limits for the conditional maximum likelihood 
estimate of the odds ratio with a varying number of matched controls can 
be based on formulas 13-37 and 13-38 afier extending the variance for- 
mula (13-36) to accommodate more than one value for R, by extending 
the summation in the denominator of formula 13-36 to the various values 
for R: 

~ar[ln(o^R>] ; 1 cR (6,m-~ + b , m K m  [13-461 
R m-1 (OR + C,)' 

where the notation follows that in formula 13-36. 



. .. . . . . . . . . 
. . ,. . . 

F~~ the datg f i . ~ p m p l e  13'2, the maximum likelihood estimate of the 
odds ratio is, from equation 13-8, 1.9835. Substituting this value for 6R in 
equation 13-46 alohg with the observed frequencies gives, for the variance 
d the logarithm df the odds r&o and approximate 90 percent confidence . . , . 

interval, . . 

. . 

. . . . , .. and . . 

- 
OR. = ejcp[ln(i:9835) + 1.645.-1 = 2.99 . . . .  , 

. . 

one wcju;l.d e-qect, with these moderately large numbers, these approx- 
mte  ca&&fice limi6 are .gxtremely close.to the mid-P exact limits of 
1.32 md 3.0.1.. . . 

The Mantel-Haenszd estimator for the dara of Exaqple .13-2 is 2.062. 
The v~riance sf t.& ~ m r e l - ~ i e n s z e ~  estimator fdr a'varying ratio R of Con- 
trols to cases can be obt-ained from formula 12158 by extending the com- 
ponents d 12-58 given in f b r m u l ~  13-39 through 13-44 for all values of R. 
~ h u s ,  each of the six stmiinations should be For all values of R. 
 or the d m ' o f .  Example 13-2, ~e variance. of ,the Mantel-'Haenszel esti- 
mator can be aidulared in this way as 0.0659, & j c h  is slightly greater than 
.the mai-mum. &elihaod, variance estimator of 0.0620. Tke approximate 
90 percent anfidence limits for the ~ari tel-~aen$el  estimator for the data 
of Emp1.e 1.3~2. are, 

Test=based approximate LonSdence limits can also be applied when the 
matching rado varies, suMect to the usual caution thak their accuracy suf- 
fers according to  how much the  data depart from :the null condition. 
Whereas test-bked ,l&its were $ poor approxim8tion for the data of Ex- 
ample 1.3-1, which indikated,a. strong effect, one might reasonably expect 
a better prfO;rmmmce for the data of Example 13-2, which depart only 
modestly f roh  thenull siate For these data, the x from formula 13-18 is 
2.79. Using th i  maximum l&lihbod point estimate of 1.98, the test-based 
90 percent codfdence limits are, 1.32 and2.98, which are nearly identical 
to the interval obtained usifg the variance expression for the logarithm of 
the maximum likelihood-esdrparbr and nearly identical to +e mid-P exact 

. .  . .  
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limits. Using the Mantel-Haenszel point estimate of 2.06, the test-based 90 
percent confidence limits are 1.35 and 3.16, which are close to the results 
using the variance formula of Robins et al. [1986]. 

MATCHED FOLLOW-UP STUDIES 
Matching can achieve in follow-up studies what it cannot achieve in case- 
control studies: It can prevent confounding. The crude risk comparisons 
from a matched follow-up study are unbiased with respect to the matching 
factors because of the absence of an association between exposure and 
the matching factors among the study subjects at the start of follow-up. 

Despite this efficacy, matched follow-up studies are rare. The main rea- 
son is the great expense of matching large cohorts; follow-up studies or- 
dinarily have many more subjects than case-control studies, and matching 
is usually a time-consuming process. Walker [I9823 has suggested a 
method to improve this poor cost efficiency in matched follow-up studies 
by limiting data collection on unmatched confounders to those sets in 
which an event occurs. Another reason that matched follow-up studies are 
rare is that matching can reasonably be accomplished only for subjects 
themselves, whereas in any long-term follow-up study the optimal mea- 
sure to use for follow-up experience is person-time. If matching were em- 
ployed in a long-term follow-up study at the time of subject selection, the 
identical distributions of the compared series for the matched Factors 
could change as the follow-up experience of the compared groups began 
to differ. 

For matched follow-up studies in which the period of follow-up is short 
enough to warrant the use of cumulative incidence data rather than inci- 
dence rate data, a crude analysis of the data will give results that are un- 
confounded by the matching factors (although the crude analysis will yield 
a variance estimate that is too large [Greenland and Robins, 1985al). In 
addition to preventing confounding, matching also contributes to study 
efficiency by reducing the variation of the effect estimate; the reduced vari- 
ation stems from the correlation in the disease outcome for the matched 
subjects introduced by the matching. 

Consider a matched follow-up study with T matched pairs of exposed 
and unexposed subjects. Suppose that the frequency distribution of 
matched pairs according to the outcome in exposed and unexposed sub- 
jects is f,, for pairs in which both the exposed and unexposed subjects 
develop the disease, f,, for pairs in which only the exposed subject devel- 
ops the disease, f,, for pairs in which only the unexposed subject develops 
the disease, and f, for pairs in which neither subject develops the disease. 
The risk difference can be estimated by 



. .. 

nd the risk ratio can be estimated as . . , .. 
. . 

(f,, + . f I O ) f l  - fll + f10 
' i% =. 

( f  + f l  fli + foi ' 

Smdsticgl hypothe&$ testing for these data is identical to the procedures 
lsed for case-c&itiQl &a; both.the exact and approximate methods apply 
:ququally well for follow-up data inwhich all of the observations are fre- 
pencies. Exacs co&deOce limits . for . the above measures are difficult to 
sbtain, but excellent a*pro&ate methods enist'that take into account the 
reduced vxr.tian' introduced by the matching. . 

The .most direct approach igiv61ves variance formulas corresponding to 
estimators in formulas 13-47 and 13-48 For the rate difference 

estimate, the v~'ianCe' is : ' . 

The variance estimate for . the . l'Pgarithmically trq~formkd rate ratio mea- 
. . .  . . 

sure is 
. . .  

The estimates of effect derived fkrn formulas 13-47 and 13-48 are those 
obtained .&& crude data, but.the corresponding variances in f0ftTIula~ 
13-49 and 13-50 are generally h a l l e r  thao those obtained from a crude 
analysis. .hother  p~ssiblk'approach to co,dde&e interval estimation is 
the use of test-based confidence limits, usinglhe ,y fmm formula 13-1 2. 

Example 1.33 illusrntes data from a follow-up study of 458 pregnmt 
women who had previously used oral &ritraceptives; the comparison 

Example 23-31 D&ribution of matcbedpairs df , , ' 

p8wirt wof-il..g+j e,qaed and unexposed to aaL.con~ac~tiws 

according . - . ~  . . . to.sek&ed . a b n e i t i e s  , - ~ 

hl the c@rplig'[Robinmn, 1971 1 

, -Unexposed mother . . ' . 

~lbnorrnallty ~bnormality 
present absent Total 

Exposed mother . ;' 

~b-~ofiii&w present - '  28 " .  85 

h-normalIfy absent ' 61 284 

Totals ' 89 369 458 
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Table 13-8. Crude data for example 13-3 

Oral contraceptive exposure 

Yes No Total 

Abnormal baby 
Yes 113 89 202 
No 345 369 714 

Total 458 458 916 

group consists of an equal number of women who had never used oral 
contraceptives and who were individually matched to the exposed women 
for age and parity [Robinson, 19711. The pairs are classified according to 
whether or not each mother delivered a baby with one of a group of ab- 
normalities potentially related to the exposure. (The reader should note 
that these data, although they resemble cumulative incidence data, are ac- 
tually prevalence data, since miscarriages are excluded.) 

The estimate of risk difference from these data, from formula 13-47, is 
(85 - 61)/458 = 0.052. A 90 percent confidence interval may be calcu- 
lated from the variance as determined by formula 13-49, 

giving for the confidence limits 

It is also possible to use the test-based approach, based on the x obtained 
from formula 13-12 applied to the data in Example 13-3. The x value for 
this example is (85 - 6 1 ) / ~ ' % 6  = 1.986, giving a 90 percent confidence 
interval for the rate difference of 

which is essentially identical to the result obtained using formula 13-49. 
It is interesting to compare these results with the confidence limits ob- 

tained from the crude data, ignoring the matching. The 2 x 2 table for 
the crude data is shown in Table 13-8; the cell entries for this table are the 
marginal totals for the pairs in Example 13-3. Using the square of formula 
11-17, the variance for the risk difference is 



. . .  . . 

which is sm&hat largej than the variance estimate that takes the match- 
ing ratio info ac?ount:From this value a 90 percent confidence interval 
can be czlcutated as . , , . ' 

'. . 
. . 

00524 * L645 d-8 '= 0.007, 0.097 

The risk ratio Gfi Be estimated from the data in Example 13-3 as 113/89 
= 1,27 using formula.'1.3~48. The variance of the logarithmic transforma- 
tion, -raktng.thC' . mstching . into account, is, from formula 13-50, 

Test-based 90 percent confidence limits for the,risk ratio are 
. , 

,' ,1.2j'(! fl.64Y1.986) 1.04, 1.55 

..I . . 
wh.ich is .es&tiallg the s h e  result. From the crude data in Table 13-8, 
using fo~-mula 11-18, wk.have . : . . . . 

. . . . . . 
. , 

which ct&espo& to a 90 p,ercent confidence interval . . of 

. , 

just slightly large-r than the confidenceint'ervals . . that take matching into 
. , acmunt.. . . 

. . 

. . 
:. . 

'The analysis of matched follow-up studies with several unexposed sub- 
jects matched to each expdsed subject is analogous to the analysis for 
pai-red data The crude data provide anknbiased estimate of effect as long 
as -the irlatching ratio isconstant. If it $aries, the methods of Chapter 12 
for follow-up dara should'be applied, grouping the subjects into strata 
according to categories,of the matching . fador(s) . to ensure control of con- 
foundirig. 

One of the dBerences between follow-up and case-control studies with - ~ 

respect to mat- is .he 'amount of ihformation provided by the data 
abaut .the ,effect of a matching factor on.the disease occurrence. In a,case- 
control sody, there is no way to evduate'directly the effect of a factor that 
has been matched. An ideritical distribution in both cases and controls of 
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any matched factor is ensured by the selection process. In a follow-up 
study, however, the identity of distribution is achieved for exposed and 
unexposed subjects before disease develops. The outcome among subjects 
classified at different levels of a matching factor is yet to be determined 
and can thus be evaluated by a straightforward comparison that is uncon- 
founded by the exposure. 

EVALUATION OF EFFECT MODIFICATION WITH MATCHED DATA 
All of the estimation approaches described in this chapter involve the as- 
sumption that the effect is constant for all strata. Since the numbers within 
strata are usually extremely small for matched analyses, because the strata 
correspond to the matched sets, the usual statistical approaches to the 
evaluation of effect modification do not apply. It is still possible to evaluate 
whether the effect is constant over levels of a matching factor, however, if, 
for example, only a few categories of the matching factor are involved. We 
shall not consider this issue in detail but will discuss a simple case to 
demonstrate the idea. 

Suppose a matched-pair case-control study were conducted with 200 
pairs. Of the 200 pairs, suppose that 60 are discordant, 40 with the case 
exposed and 20 with the case unexposed, so that the overall estimate of 
the odds ratio is 2.0. The overall estimate is calculated on the assumption 
that the odds ratio is constant for all strata, but suppose that we want to 
evaluate statistically whether that is the case with respect to sex, which was 
one of the matching factors. To evaluate effect modification in these 
matched data by sex, it is necessary only to separate the discordant pairs 
into male and female subgroups and contrast the estimates of effect ob- 
tained from these subgroups. Of the 40 discordant pairs with an exposed 
case, suppose that 31 are male pairs and 9 are female, whereas 15 of the 
20 discordant pairs in which the control is exposed are male pairs and 5 
are female. Among males, the ratio of discordant pairs is 31/15 = 2.1, 
compared with 9/5 = 1.8 among females. The similarity of these ratios 
indicates that the data are reasonably comparable with a uniform rate ratio. 
A statistical test of the hypothesis that there is a uniform odds ratio for 
males and females amounts to a test of association of the 2 x 2 table 
shown in Table 13-9. 

TdZe 13-9. DMbution of d&cor&ntpain by 
exposure and gender for bypothetical matched data 

Male Female Totals 

Case exposed 31 9 40 
Control exposed 15 5 20 

Totals 46 14 60 



AX test statistic for these data, from formula 11-6, gives x = 0.21, which 
corresponds to a P-value of 0.8 and is reasonably . consistent with the hy- 
pothesis of a uniform effect. 

More general tests of effect modification for matched data can be con- 
structed by extending the procedure described above. Estimates of effect 
from several subcategories can be compared in a single test by using for- 
mula 12-60 coupled wirh formula 13-36 (or one of the simpler counter- 
parts) to estimate the appropriate variances for each of the compared es- 
timates. 

UATION OF THE EFFECT OF MATCHING WITH CASE-CONTROL DATA 
We have seen that the process of matching itself can introduce confound- 
ing into a case-control study whenever the matching factor is a correlate 
of the exposure. The confounding that is introduced becomes a substitute 
for whatever confounding might have been observed for the factor in the 
absence of matching; there would be confounding as long as the factor in 
question, in addition to being correlated with the exposure, is also related 
to disease stat&. If the matching factor is not related to disease status and 
therefore is not inherently confounding, matching for it represents over- 
match~ng because the effort of matching and the loss of efficiency in the 
required matched analysis do nor improve the validity of the study. The 
matched analysis is still required even if the factor matched for would not 
have been a confoundingfactor, since matching for any correlate of ex- 
posure introduces confounding that necessitates a stratified analysis to re- 
move it. 

The penalty for matching for a factor or  a set of factors that jointly are 
not correlated with the exposure is not as severe. If the matching factors 
do not introduce a. correlation in the exposure histories between cases 
and controls, the matching has not introduced any confounding into the 
data, and the matched analysis need not be retained Avoiding the matched 
analysis may be useful to bolster study efficiency by avoiding the loss of 
information frdm the matched case-control sets with fully concordant ex- 
posure histories, o r  to permit stratification by factors that have not been 
matched. Matching factors that are uncorrelated with the exposure in the 
data probably represent factors that would not have been confounding 
even without marching, so the matching cannot be viewed as productive, 
but the ability to abandon the unnecessary matched analysis in this situa- 
tion mitigates rhe problem. 

Evaluation of the relation between the matched factors and the exposure 
is essentially an evaluation of the confounding introduced by the match- 
ing, and it proceeds in the same way as evaluation of confounding gener- 
ally. The effect estimate is calculated in t& ways, by preserving the match- 
ing and ignoring it. If the effect estimate from-the matched analysis di£fers 
materially from the crude estimate, that difference can usually be ascribed 
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to the confounding that results from the correlation between the matching 
factors and the exposure. The difference, if any exists, will usually be such 
that the crude estimate of the effect is closer to the null value than the 
confounded estimate, provided that the matching ratio of controls to cases 
is constant across sets. If no material difference exists between the crude 
estimate and the result of the matched analysis, then the investigator can 
conclude that the matching did not introduce or control any confounding, 
and the matching can be ignored in the analysis. It should be emphasized 
that the evaluation of matching, like the evaluation of confounding in gen- 
eral, should not be based on statistical tests but on the magnitude of the 
apparent bias reflected in the compared point estimates. 

Consider as an example the data in Table 13-7. The maximum likelihood 
estimate of the relative risk from the stratified (matched) analysis is 23. 
The crude estimate, calculated from the crude exposure proportions of 
12/18 for the cases and 16/72 for the controls, is 7.0. The discrepancy in- 
dicates that the matching factors were correlated with the exposure and 
therefore that the matched analysis must be retained. 

If the matching ratio is constant across matched sets, the crude associ- 
ation between exposure and disease is usually closer to the null value than 
the association conditional on control of the matching factors. In unusual 
circumstances, however, the crude association between exposure and dis- 
ease is farther from the null value than the association after stratification 
by the matching factors [Koepsell, 19841. This anomaly occurs only if there 
is a negative correlation in exposure histories between cases and their 
matched controls. Ordinarily, the correlation is positive, but it may occa- 
sionally be negative either from sampling variability or  from extreme ef- 
fect modification. If stratification by the matching factors does lead to an 
effect estimate that is closer to the null value than the crude effect estimate, 
this result should be interpreted as a warning that the data are anomalous 
in some way. Koepsell has recommended an examination for effect mod- 
ification in such situations; this step is generally a good idea even without 
the paradoxical effect of matching. It is also worthwhile verifying that no 
data processing or labeling errors have been overlooked. 

MULTNARlATE ANALYSIS OF MATCHED DATA 
The conditional likelihood methods described in this chapter for estimat- 
ing the odds ratio with individually matched data can be expressed math- 
ematically in the form of a conditional logistic regression equation [Pren- 
tice and Breslow, 19781. The two analytic approaches are equivalent as long 
as the exposure variable is dichotomous and no other factors, aside from 
the matching variables, are considered. The conditional logistic regression 
analysis does offer some advantages, however. A fundamental advantage is 
the ability to control conveniently for other factors that were measured 
but not matched for. Using the conventional stratified analysis, there is 



often no *ay to control effectively for'the'.matihing factors and for factors 
not included in the matching algorithm. It is possible that, on evaluating 
the effect of matching ind'determinirig that 'it h i  introduced little or no 
co-nfoun.ding by the matching factors, the matched sets ran be disrupted 
and the data stratified by factors not matched on. If, on thk other hand, the 
matching has 'inu-oduced'a m;lterial correlation in the exposure histories 
between cases .and col?tiols; conditional ,logistic regression analysis (or 
other conditional models): allows both the removal of .the confounding 
introduced by.die matching and the coritrol of additional unmatched con- 
founding factors. It is also poss~ble, although unusual, that the matching 
factors are ~6nfouridi-n~ only conditionally on. the control of unmatched 
confoundin'g faixors [Fisher and Patil, 1974;:~iettinen, 19741, a situation 
that conditi~nal logistic dnalysis can diagnose. and deal with effectively. The 
latter method also alIows the evaluation of. e'xbosure at several levels si- 
rnulta'neously, a process that .is otherwise. especially difficult with matched 
d-ata (see Chapl 16). The drawback of the mui~variate approach is the re- 
quireril.eirt.fdi.a compvteir and the necessary.software for the analysis; the 
convenrtonal stratified appr'oabh requires only a pericil and paper and per- 
haps a pocket calculator. . - 

' 

The consti.uaion of fie~multivxiate model, f6;r logistic regression anal- 
ysis is diicussed. iil the' next chtipter, ,do-ng.with the theory behind the 

. . approach.: ' ' . . . .  . 
. . 
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