abm 4th edition

5.2 Inferences from counts 153

The reason here is similar to that advanced above. An estimate of variance

55 on v, = co DF must be exactly equal to the population variance o?. Thus,

F may be written as s?/o? = X(Zv,)/Vl (see p. 149).

The F test and the associated confidence limits provide an exact treatment of
the comparison of two variance estimates from two independent normal samples.
Unfortunately, the methods are rather sensitive to the assumption of normal-
ity—much more so than in the corresponding uses of the ¢ distribution to
compare two means. This defect is called a lack of robusiness.

The methods described in this section are appropriate only for the compari-
son of two independent estimates of variances. Sometimes this condition fails
because the observations in the two samples are paired, as in the first situation
considered in §4.2. The appropriate method for this case makes use of a tech-
nique described in Chapter 7, and is therefore postponed until p. 203.

A different use of the F distribution has already been noted on p. 117.

5.2 Inferences from counts

Suppose that x is a count, say, of the number of events occurring during a certain
period or a number of small objects observed in a biological specimen, which can
be assumed to follow the Poisson distribution with mean . (§3.7). What can be
said about n?

Suppose first that we wish to test a null hypothesis specifying that p is equal
to some value . On this hypothesis, x would follow a Poisson distribution with
expectation po. The departure of x from its expected value, . is measured by
the extent to which x falls into either of the tails of the hypothesized distribution.
The situation is similar to that of the binomial (§3.6). Thus if x > p, and the
probabilities in the Poisson distribution are Py, Py, ..., the P value for a one-
sided test will be

P+:Px+Px+l+Px+2+--v
— 1Py~ Py —...— Py

The possible methods of constructing a two-sided test follow the same principles
as for the binomial in §3.6.

Again considerable simplification is achieved by approximating the Poisson
distribution by the normal (§3.8). On the null hypothesis, and including a con-
tinuity correction,

— 1
;e 2 (5.5)
Vo
is approximately a standardized normal deviate. Excluding the continuity cor-
rection corresponds to the mid-P value obtained by including only %Px in the
summation of Poisson probabilities.
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x— ] —1
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L
is approximately a standardized normal deviate. Excluding the continuity cor-
rection corresponds to the mid-P value obtained by including only 1P, in the
summation of Poisson probabilities.
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Example 52

In a study of asbestos workers a large group was followed over several years and 33 died
of lung cancer. Making allowance for age, using national death rates, the expected
number of deaths due to lung cancer was 20-0. How strong is this evidence that there is
an excess risk of death due to lung cancer?

On the null hypothesis that the national death rates applied, the standard error of x is
V/20-0 = 4.47. The observed deviation is 33 —20-0=13-0. With continuity correc-
tion, the standardized normal deviate is (13-0 — 0.5)/4-47 =280, giving a one-sided
normal tail area of 0-0026. The exact one-sided value of P, from the Poisson distribution,
is 0-0047, so the normal test exaggerated the significance. Two-sided values may be
obtained by doubling these values, and both methods show that the evidence of excess

mortality due to lung cancer is strong.
The exact one-sided mid-P value is 0-0037 and the corresponding standardized normal

deviate is 13-0/4-47 = 2-91, giving a one-sided level of 0-0018.

The 95% confidence limits for . are the two values, p, and p.y, for which x is
just significant by a one-sided test at the 2%% Jevel. These values may be obtained
from tables of the Poisson distribution (e.g. Pearson & Hartley, 1966, Table 7)
and Bailar and Ederer (1964) give a table of confidence factors. Table VIII1 of
Fisher and Yates (1963) may also be used.

The normal approximation may be used in similar ways to the binomial case.
1 The tail areas could be estimated from (5.5). Thus approximations to the

95% limits are given by

1
XTHRLTo_ .96
VL

and

m:_l.%,

VPu

2 If x is large the continuity correction in method 1 may be omitted.
3 Replace /p and /py by v/x. This is only satisfactory for large values
(greater than 100).
The exact limits may be obtained by using tables of the x? distribution. This
follows from the mathematical link between the Poisson and the x? distributions
(see Liddell, 1984). The limits are

_ 1.2
B = 2X2x,0975
and : (5.6)

_ 12
P U = 2 X2x+2,0025
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Example 5.2, continued

With x = 33, the exact 95% confidence limits are found to be 227 and 46-3. Method 1 gives
23.1 and 469, method 2 gives 23-5 and 46-3, and method 3 gives 21.7 and 44-3. In this
example methods 1 and 2 are adequate. The 95% confidence limits for the relative death
rate due to lung cancer, expressed as the ratio of observed to expected, are 22-7/20-0 and
46-3/20-0 = 1-14 and 2-32. The mid-P limits are obtained from method 2 as 23-5/20-0
and 46-3/20-0 = 132.

Example 5.3

As an example where exact limits should be calculated, suppose that, in a similar
situation to Example 5.2, there were two deaths compared with an expectation of 0-5.
Then

by = %X?&,O-WS =024
and

Ry = %Xé,oms =722

The limits for the ratio of observed to expected deaths are 0-24/0-5 and 7-22/0-5 = 0-5
and 14-4. The mid-P limits of w may be obtained by trial and error on a programmable
calculator or personal computer as those values for which P(x=0) +P(x=1)+
%P(x =2) = 0-975 or 0-025. This gives p, = 0-335 and pg = 6-61 so that the mid-P
limits of the ratio of observed to expected deaths are 0-7 and 13-2. The evidence of excess
mortality is weak but the data do not exclude the possibility of a large excess.

Suppose that in Example 5.3 there had been no deaths, then there is
some ambiguity on the calculation of a 95% confidence interval. The point
estimate of p is zero and, since the lower limit cannot exceed the point estim-
ate and also cannot be negative, its only possible value is zero. There s a
probability of zero that the lower limit exceeds the true value of  instead of
the nominal value of 2%%, and a possibility is to calculate the upper limit as
wy =3x3,005s = 3-00, rather than as 133,005 = 369, so that the probability
that the upper limit is less than the true value is approximately 5%, and
the interval has approximately 95% coverage. Whilst this is logical and pro-
vides the narrowest 95% confidence interval it seems preferable that the
upper limit corresponds to 2%" » in the upper tail to give a uniform interpreta-
tion. It turns out that the former value, = 3-00, is the upper mid-P limit.
Whilst it is impossible to find a lower limit with this interpretation, this
is clear from the fact that the limit equals the point estimate and that both are
at the extreme of possible values. This rationale is similar to that in our recom-
mendation that a two-sided significance level should be double the one-sided
level.
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Comparison of two counts

Suppose that x, is a count which can be assumed to follow a Poisson distribution
with mean ,. Similarly let x; be a count independently following a
Poisson distribution with mean w,. How might we test the null hypothesis that
py= 1!

One approach would be to use the fact that the variance of x; — xz is u; + py
(by virtue of (3.19) and (4.9)). The best estimate of w, + ., on the basis of
the available information is x; + x;. On the null hypothesis E(x| - x;) =
By — Ky = 0, and x; — x; can be taken to be approximately normally distributed
unless w, and p, are very small. Hence,

Xy — X2
I=——"> 57
V(X +x2) 67
can be taken as approximately a standardized normal deviate.
A second approach has already been indicated in the test for the comparison
of proportions in paired samples (§4.5). Of the total frequency x; + X2, a portion
x1 is observed in the first sample. Writing r = x| and n = x; + x in (4.17) we have

X1 -ixi4x) xa-x

Wxi+x) Vit x)

as in (5.7). The two approaches thus lead to exactly the same test procedure.

A third approach uses a rather different application of the x? test from that
described for the 2 x 2 table in §4.5, the total frequency of x| + x; now being
divided into two components rather than four. Corresponding to each observed
frequency we can consider the expected frequency, on the null hypothesis, to be
L + x2):

Z =

Observed X X2
Expected Hoxi +x2) x4+ x2)

Applying the usual formula (4.30) for a x* statistic, we have

JEN Rt 157 +x)]’ o —i0a + )
Lo+ x2) I(x1 +x2)

(5.8)
(x1 = x)°
X1+ x2

As for (4.30) X* follows the x,, distribution, which we already know to be
the distribution of the square of a standardized normal deviate. It is therefore
not surprising that X? given by (5.8) is precisely the square of z given by
(5.7). The third approach is thus equivalent to the other two, and forms a
particularly useful method of computation since no square root is involved

N et
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Consider now an estimation problem. What can be said about the ratio w;/p,?
The second approach described above can be generalized, when the null hypoth-
esis is not necessarily true, by saying that x; follows a binomial distribution with
parameters x| + xz (the n of §3.7) and w,/(, + p,) (the 7 of §3.6). The methods
of §4.4 thus provide confidence limits for w = /(| + 1), and hence for p,/p,
which is merely w/(1 — ). The method is illustrated in Example 5.4.

The difference p; — w is estimated by x; — x;, and the usual normal theory
can be applied as an approximation, with the standard error of x; — x, esti-
mated as in (5.7) by /(x] + x3).

Example 5.4

Equal volumes of two bacterial cultures are spread on nutrient media and after incubation
the numbers of colonies growing on the two plates are 13 and 31. We require confidence
limits for the ratio of concentrations of the two cultures. ’

The estimated ratio is 13/31 = 0-4194. From the Geigy tables a binomial sample with
13 successes out of 44 provides the following 95% confidence limits for m: 0-1676 and
0-4520. Calculating /(1 — =) for each of these limits gives the following 95% confidence
limits for p;/py:

0-1676/0-8324 = 0-2013
and
0-4520,/0-5480 = 0-8248.

The mid-P limits for m, calculated exactly as described in §4.4, are 0-1752 and 0-4418,
leading to mid- P limits for p, /., of 0-2124 and 0-7915.

The normal approximations described in §4.4 can, of course. be used when the frequen-
cies are not too small.

Example 5.5

Just as the distribution of a proportion, when # is large and = is small, is well approxi-
mated by assuming that the number of successes, r, follows a Poisson distribution, so a
comparison of two proportions under these conditions can be effected by the methods of
this section. Suppose, for example, that, in a group of 1000 men observed during a
particular year, 20 incurred a certain disease, whereas, in a second group of 500 men,
four cases occurred. Is there a significant difference between these proportions? This
question could be answered by the methods of §4.5. As an approximation we could
compare the observed proportion of deaths falling into group 2, p = 4/24, with the
theoretical proportion = 500/1500 = 0-3333. The equivalent ¥’ test would run as
follows:

Group 1 Group 2 Total
Observed cases 20 4 24
1000 x 24 24
Expected cases b atn g 16 M =8 24

18500 1500
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With continuity correction

X2 = (39716 + (33)%/8
= 0766 4 1-531
=230 (P =0-13).

The difference is not significant. Without the continuity correction, X 2=3.00
(P =0-083).

If the full analysis for the 2 x 2 table is written out it will become clear that this
abbreviated analysis differs from the full version in omitting the contributions to X? from
the non-affected individuals. Since these are much more numerous than the cases, their
contributions to X? have large denominators and are therefore negligible in comparison
with the terms used above. This makes it clear that the short method described here must
be used only when the proportions concerned are very small.

Example 5.6

Consider a slightly different version of Example 5.5. Suppose that the first set of 20 cases
occurred during the follow-up of a large group of men for a total of 1000 man-years,
whilst the second set of four cases occurred amongst another large group followed for 500
man-years. Different men may have different risks of disease, but. under the assumptions
that each man has a constant risk during his period of observation and that the lengths of
follow-up are unrelated to the individual risks, the number of cases in each group will
approximately follow a Poisson distribution. As a test of the null hypothesis that the mean
risks per unit time in the two groups are equal, the x? test shown in Example 5.5 may be
applied.

Note, though, that a significant difference may be due to failure of the assumptions.
One possibility is that the risk varies with time, and that the observations for one group
are concentrated more heavily at the times of high risk than is the case for the other group;
an example would be the comparison of infant deaths, where one group might be observed
for a shorter period after birth, when the risk is high. Another possibility is that lengths of
follow-up are related to individual risk. Suppose, for example, that individuals with high
risk were observed for longer periods than those with low risk; the effect would be to
increase the expected number of cases in that group.

Further methods for analysing follow-up data are described in Chapter 17.

5 3 Ratios and other functions

We saw, in §4.2, that inferences about the population mean are conveniently
made by using the standard error of the sample mean. In §§4.4 and 5.2,
approximate methods for proportions and counts made use of the appropriate
standard errors, invoking the normal approximations to the sampling distribu-
tions. Similar normal approximations are widely used in other situations, and it
is therefore useful to obtain formulae for standard errors (or, equivalently, their
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