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3.7 The Poisson distribution

This distribution is named after S.D. Poisson (1781-1840), a French mathem-
atician. It is sometimes useful as a limiting form of the binomial, but it is
important also in its own right as a distribution arising when events of some
sort occur randomly in time, or when small particles are distributed randomly in
space.

We shall first consider random events in time. Suppose that a certain type of
event occurs repeatedly, with an average rate of A per unit time but in an entirely
random fashion. To make the idea of randomness rather more precise we can
postulate that in any very small interval of time of length 4 (say 1ms) the
probability that an event occurs is approximately proportional to h, say M.
(For example, if 4 is doubled the very small probability that the interval contains
an event is also doubled.) The probability that the interval contains more than
one event is supposed to be proportionately smaller and smaller as & gets smaller,
and can therefore be ignored. Furthermore, we suppose that what happens in
any small interval is independent of what happens in any other small interval
which does not overlap the first.

A very good instance of this probability model is that of the emission of
radioactive particles from some radioactive material. The rate of emission, X, will
be constant, but the particles will be emitted in a purely random way, each
successive small interval of time being on exactly the same footing, rather than
in a regular pattern. The model is the analogy, in continuous time, of the
random sequence of independent trials discussed in §3.1, and is called the Poisson
process.

Suppose that we observe repeated stretches of time, of length 7' time units,
from a Poisson process with a rate . The number, x, of events occurring in an
interval of length T will vary from one interval to another. In fact, it is a random
variable, the possible values of which are 0, 1, 2,.... What is the probability of a
particular value x?

A natural guess at the value of x would be AT, the rate of occurrence
multiplied by the time interval. We shall see later that A7 is the mean of the
distribution of x, and it will be convenient to denote AT by the single symbol .

Let us split any one interval of length T into a large number n of subintervals
each of length T/n (Fig. 3.8). Then, if » is sufficiently large, the number of events
in the subinterval will almost always be 0, will occasionally be 1 and will hardly
ever be more than 1. The situation is therefore almost exactly the same as a
sequence of n binomial trials (a trial being the observation of a subinterval), in
each of which there is a probability N(T'/n) = p/n of there being an event and
1 — /n of there being no event. The probability that the whole series of n trials
provides exactly x events is, in this approximation, given by the binomial
distribution:
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Fig. 3.8 The occurrence of events in a Poisson process, with the time-scale subdivided into small
intervals.
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Now, this binomial approximation will get better and better as n increases.
What happens to (3.17) as n increases indefinitely? We can replace

nn—1)...(n—x+1)

by n* since x will be negligible in comparison with n. Similarly we can replace
(1 —p/n)"" by (1 — p/n)" since (1 — w/n)* will approach 1 as n increases. Itis a
standard mathematical result that, as n increases indefinitely, (1 —p/n)"
approaches e *, where e is the base of natural (or Napierian) logarithms
(e=2-718..)).

Finally, then, in the limit as n increases indefinitely, the probability of x
events approaches

nx

P, =

Tl

The expression (3.18) defines the Poisson probability distribution. The random
variable x takes the values 0, 1, 2,...with the successive probabilities obtained
by putting these values of x in (3.18). Thus,

Py=¢e™*
P] == pu€7pL
Py =1pfe ¥ ete.
Note that, for x = 0, we replace x! in (3.18) by the value 1, as was found to be

appropriate for the binomial distribution. To verify that the sum of the prob-
abilities is 1,
Po+Pi+Pr+...=e*(I+p+ip’+..)
=e " xet

=1,

the replacement of the infinite series on the right-hand side by e* being a
standard mathematical result.

Before proceeding to further consideration of the properties of the Poisson
distribution we mav note that a similar derivation mav be applied to the
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situation in which particles are randomly distributed in space. If the space is one-
dimensional (for instance the length of a cotton thread along which flaws may
occur with constant probability at all points), the analogy is immediate. With
two-dimensional space (for instance a microscopic slide over which bacteria are
distributed at random with perfect mixing technique) the total area of size 4 may
be divided into a large number » of subdivisions each of area 4/n; the argument
then carries through with A replacing T. Similarly, with three-dimensional space
(bacteria well mixed in a fluid suspension), the total volume V is divided into »n
small volumes of size ¥'/n. In all these situations the model envisages particles
distributed at random with density A per unit length (area or volume). The
number of particles found in a length (area or volume) of size / (4 or V)
will follow the Poisson distribution (3.18) where the parameter p. = N (A4 or
AV).

The shapes of the distribution for w = 1, 4 and 15 are shown in Fig. 3.9. Note
that for p = 1 the distribution is very skew, for p = 4 the skewness is much less
and for p = 15 it is almost absent.

The distribution (3.18) is determined entirely by the one parameter, . It
follows that all the features of the distribution in which one might be interested
are functions only of . In particular the mean and variance must be functions of
. The mean is

E(x) = > xP,
x=0
=

this result following after a little algebraic manipulation.
By similar manipulation we find

E(x?) = p? +p
and
var(x) = E(x?) — u?
=n

(3.19)

Thus, the variance of x, like the mean, is equal to w. The standard deviation is
therefore | /.

Much use is made of the Poisson distribution in bacteriology. To estimate
the density of live organisms in a suspension the bacteriologist may dilute the
suspension by a factor of, say, 1077, take samples of, say, 1 cm® in a pipette and
drop the contents of the pipette on to a plate containing a nutrient medium on
which the bacteria grow. After some time each organism dropped on to the plate
will have formed a colony and these colonies can be counted. If the original
suspension was well mixed, the volumes sampled are accurately determined and
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Fig. 3.9 Poisson distribution for various values of p. The horizontal scale in each diagram shows

values of x.

the medium is uniformly adequate to sustain growth, the number of colonies in a
large series of plates could be expected to follow a Poisson distribution. The
mean colony count per plate, X, is an estimate of the mean number of bacteria
per 10->cm? of the original suspension, and a knowledge of the theoretical
properties of the Poisson distribution permits one to measure the precision of
this estimate (see §5.2).

Similarly, for total counts of live and dead organisms, repeated samples of
constant volume may be examined under the microscope and the organisms
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Example 3.7

As an example, Table 3.3 shows a distribution observed during a count of the root nodule
bacterium (Rhizobium trifolii) in a Petroff-Hausser counting chamber. The ‘expected’
frequencies are obtained by calculating the mean number of organisms per square, X,
from the frequency distribution (giving X = 2-50) and calculating the probabilities P, of
the Poisson distribution with p replaced by X. The expected frequencies are then given by
400 P,. The observed and expected frequencies agree quite well. This organism normally
produces gum and therefore clumps readily. Under these circumstances one would not
expect a Poisson distribution, but the data in Table 3.3 were collected to show the
effectiveness of a method of overcoming the clumping.

In the derivation of the Poisson distribution use was made of the fact that the
binomial distribution with a large » and small 7 is an approximation to the
Poisson with mean g = nr.

Conversely, when the correct distribution is a binomial with large n and small
7, one can approximate this by a Poisson with mean n. For example, the
number of deaths from a certain disease, in a large population of n individuals
subject to a probability of death , is really binomially distributed but may be
taken as approximately a Poisson variable with mean u = nw. Note that the
standard deviation on the binomial assumption is /[nm(l — )], whereas the
Poisson standard deviation is v/(nm). When i is very small these two expressions
are almost equal. Table 3.4 shows the probabilities for the Poisson distribution
with p =5, and those for various binomial distributions with nw = 5. The
similarity between the binomial and the Poisson improves with increases in n
(and corresponding decreases in ).

Table 3.3 Distribution of counts of root nodule bacterium
(Rhizobium trifolii) in a Petroff-Hausser counting chamber
(data from Wilson and Kullman, 1931).

Number of Number of squares
bacteria per
square Observed Expected

0 34 32.8
| 68 82-1
2 112 102-6
3 94 855
4 55 534
5 21 26-7
6 12 111
7- 4 57

400 399-9
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Table 3.4 Binomial and Poisson distributions with p. = 5.

p 05 0-10 005

r n 10 50 100 Poisson
0 00010 00052 00059  0.0067
1 00098  0.0286 00312 00337
2 00439 00779  0-0812  0-0842
3 01172 01386 01396 0-1404
4 02051 01809  0-1781  0-1755
5 02461  0.1849  0-1800  0-1755
6 02051 01541  0-1500  0-1462
7 01172 01076 01060  0-1044
8 004390 00643 00649  0-0653
9 00098  0-0333 00340 00363
10 00010 00152 00167 00181
>10 0 00094 00115  0.0137

1-0000 1-0000 1-0000 1-0000

Probabilities for the Poisson distribution may be obtained from many statis-
tical packages.

3.8 The normal (or Gaussian) distribution

The binomial and Poisson distributions both relate to a discrete random variable.
The most important continuous probability distribution is the Gaussian (C.F.
Gauss, 1777-1855, German mathematician) or, as it is frequently called, the
normal distribution. Figures 3.10 and 3.11 show two frequency distributions, of
height and of blood pressure, which are similar in shape. They are both approxi-
mately symmetrical about the middle and exhibit a shape rather like a bell, with a
pronounced peak in the middle and a gradual falling off of the frequency in the
two tails. The observed frequencies have been approximated by a smooth curve.
which is in each case the probability density of a normal distribution.

Frequency distributions resembling the normal probability distribution in
shape are often observed, but this form should not be taken as the norm, as the
name ‘normal’ might lead one to suppose. Many observed distributions are
undeniably far from ‘normal’ in shape and yet cannot be said to be abnormal
in the ordinary sense of the word. The importance of the normal distribution lies
not so much in any claim to represent a wide range of observed frequency
distributions but in the central place it occupies in sampling theory, as we shall
see in Chapters 4 and 5. For the purposes of the present discussion we shall
regard the normal distribution as one of a number of theoretical forms for a
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