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106 Observation and Inference

estimate, but its proper use presupposes that the only source of
discrepancy between the stratum-specific cumulative incidence
differences is chance.

Confounding. If the interest in Table 5.1 had focussed on the
cumulative incidence difference associated with attendance at the
dance, the investigators could have calculated estimates of (47/86) -
(8/23) or 20 percent in those who attended the luncheon and (11/77)
- (1/40) or 12 percent in those who did not. Any standardized
estimate of an overall effect would lie between these two values. If
luncheon attendance were ignored, a crude cumulative incidence
difference might also have been calculated as

47+11 8+1

CID = 2577 53+ 40

=0.213

or 21 percent. This value lies outside of the range of stratum-specific
estimates. Because luncheon attendance was more common among
dancers than among those who did not dance, the crude cumulative
incidence difference reflects a part of the cumulative incidence
associated with luncheon attendance, in addition to the effect of
dance attendance on risk. The crude cumulative incidence difference
therefore provides a biased estimate of the increase in probability
of pharyngitis associated with attendance at the dance.

Analysis of Open Cohort Studies

Example 5.2 will be used to illustrate the techniques presented
here.

Error estimates and comparisons of incidence rates. Just as the
observed proportion of the disease in a closed cohort study is an
estimate of the underlying probability of developing disease, so the
ratio of cases to person time, the incidence rate, provides an estimate
of the underlying hazard of disease. The most straightforward
technique for assessing the variability of incidence rates in open
cohort studies is based on a treatment of the incidence rate calculation
as if the numerator (the number of cases) were variable and the
denominator (the amount of person time) were fixed. If x is the
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pumber of otgserved events and P is the person time at risk, then x
is tht? rea.hzatxon of what is called a Poisson process. The probability
distribution from which x is drawn is the Poisson distribution.58

Poisson distribution is the probability distribution that describes the
number of events observed in a block of person time when the
expected number of events is directly proportional to the total
person time of observation. Let 6 be the expected number o f events
per unit of person time and X = 0P be the number of events expected
in a block of person time of size P.

X, ~A

A e
Pr(x)= |

E(X)=x

Var(X)=»xa

The range of possible values for x is [0, 0©). X is the Poisson
parameter. If P is imagined as being composed of a very large
number of .discrete units of person time, so that the probability
oj_’ an‘eveftt in any person time unit is very small, then the probability
dzstrzbufzon of the number of events in P may also be considered
tq be bzftomial, with N taken as the number of discrete person
tzme u_mts. All the formulas above are derivable from their
@mqnyal counterparts in the limiting case in which N approaches
infinity, with P and X constant.

The number of opserved events x is an estimate of a Poisson
parameter A. The incidence rate estimate /R is given by x/P, with
variance x/P2%.5% The mortality rate estimate and its variance for

the pfariod from 30 through 34 years since first exposure (Table 5.2)
are given by '

58. The development here
: presumes that the expected number of is di
Eg:gz;telgnfsl to thle amotun; of person time of observation. Put another :va:;swl: };11::::!]1};
there 18 no element of contagion, in which the probabili . ing i
function of the number of other cases that have occﬁrre; Hlity of & case occurring is a

59. c.f. Table 1.2 and Chapter 13. Note that

IR=X
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103

IR=——
11,598

=0.008881 cases per person year

103

Var(IR)= ————
(7R) (11,598)?

=7.657x1077
The 95 percent confidence bounds are

lower = 0.00881 - 1.96y7.657x 1077

=0.00717 cases per person year

upper = 0.00881 +1.96y7.657 x 1077
=0.01060 cases per person year

All the techniques for estimating incidence rate differences and
summary incidence rate changes over strata are precisely analogous
to those presented earlier for risks in closed cohort studies. The sole
differences are to introduce incidence rate estimates (x/P) in the
place of cumulative incidence estimates (x,/N) and variance estimates
for incidence rates (x/P2) in the place of variance estimates for
cumulative incidences (x(N-x)/N3) in all the formulae.

It is common practice to examine the ratios of incidence rates
in open cohort studies; this is the result of an empirical observation
in chronic disease research, that incidence rate ratios tend to be more
constant from study to study or from stratum to stratum of a single
study than are rate differences. The easiest way to account for
variability in incidence ratio estimates is on a logarithmic scale, in
which the ratio estimate can be examined as a difference between
the logarithms of the component incidence rate estimates. All of the
foregoing procedures can then be adapted to confidence interval
estimation on the log scale. Estimates, once obtained, are transformed
back to the natural scale by exponentiation.

Denote the natural logarithm of the incidence rate estimate as
In(x/P). The variance of this quantity is approximately 1/x. The
variance of the logarithm of the incidence rate ratio is the sum of
the variances of the logarithms of the component incidence rates.
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Thus, to compare the lung cancer rate at 30-34 years after first
exposure to that 20-24 vyears after first exposure, the procedure would

be as follows:
RR - (& 57
11,598 31,268

=4.87
In(RR)=1In(4.87)
=1.5834

Var[In(RR)] = %WL 517

=0.02725
The 95 percent confidence bounds for the logarithm of the ratio are

lower = 1.5834-1.96,/0.02725

-1.260
upper = 1.5834 + 1.960.02725
-1.907

The 95 percent confidence bounds for the ratio are then
lower = exp(1.260)
=3.52
upper =exp(1:907)
=6.73

; The ratio of lu.ng cancer mortality rates for insulation workers
0-34 years from first exposure to asbestos to that 20-24 years from

first exposure was approximatel 1 i
vy 4.9, with 95
bounds of 3.5 and 6.7. percent confidence

Strqti.fied'analysis. Two techniques are commonly used for
summarizing incidence rate ratios across strata. Consider the
h_ypothetlc.al data in Table 8.1. The first subscript on the symbols
displayed indicates the presence (1) or absence (0) of exposure, and
the second subscript indicates the age group: 50-54 (1) or 55—5§ 2)
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Table 8.1 Lung cancer mortality in men exposed and unexposed to
asbestos (hypothetical data)

Age Group
50 - 54 55-59
Quantity Symbol Quantity Symbol

Exposed

Person Years 1,000 P14 500 Pq2

Cases 40 X114 40 X42
Unexposed

Person Years 10,000 Po1 15,000 Po2

Cases 100 X01 200 Xx02

The summary technique most used in occupational health studies
is to compare the number of cases of disease in the exposed group
to that which would have been expected among the exposed, had the
incidence rates observed in unexposed persons applied to those
exposed. This expectation is obtained by multiplying the person
years at risk in each stratum of the exposed group by the incidence
rates observed in the unexposed group, and summing over all strata.
Thus, in exposed workers,

Observed = x;, + X,
=40+ 40
=80

X 01 X oz

—+ P, —
12
L Poz

=1,000 _1_0.9_- + 500 —g(—)g—
= ’ I0,000 15,000

16.67

Expected =P

]

The ratio of observed to expected cases is designated (for his-
torical reasons) as "the" standardized mortality (or morbidity) ratio
(SMR). The ratio is standardized because it is algebraically identical
to the ratio of age-standardized incidence rates in exposed and
unexposed study subjects, taking for each the age distribution among
exposed as the standard. In the present case

Estimation 111

SMR=ObS= 80
Exp 16.67
=4.80

Iln pracglce, the SMR is rarely used except when the unexposed
popu at}on Is very large (most commonly a geographically defined
populatlor} that encompasses the exposed persons). When th{e nznlxrl])e

of events is large in every stratum of the comparison population tlfer:

variance of the SMR is i
variance 1s approximately Obs/Exp2. In the present

Obs 80

Var(SMR) = -
Exp? (16.67)

=0.2880
The 95 percent confidence bounds can be obtained therefore as

lower = 4.800-1.96y0.2880
=3.75

lower = 4.800+1.96/0.2880
=5.85

, beWhendthe sole sourcg of Stratum to stratum variation is thought
o be r:;l om error, an incidence rate ratio estimate whose form is
0 Mantel and Haenszel®0 is obtainable by summing the quantities

X1 Po;

A= 120
) Pll+P01 B‘

_ XOIPll
P11+P0|

. . « o4
over tlle St]ata, lIldexed ]le]e by i, a]ld dl\/ld]ng the sums. In the

60. The use of the procedure i i

o c n open cohort studies was first

P:;::;ralrannm:récli Jé)hn Boice. (Rothman KJ, Boice JR. Epidemioforgoipc)orr?a})};iKeq?}?th

Frogram, wased aiculator, NIHA Publication No. 79-1649, Washington 1}’9789 ! Tha

rationale wa eveloped by David Clayton. (Clayton DG. The analysis of ) ive
isease etiology. Commun Statist 1982;A11:2129-2155) Y prospective
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(40)(10,000) _(40)(15,000)
A=) A= +
=24 7710,000+ 1,000 15,000+500

=75.07

(100)(1,000)  (200)(S00)
B= ZB; +
{7 10,000+1,000 15,000+500

=15.54

(When a variable, here i, appears below a §ign}a without any ;?dlcat‘lbolrel
of the range of summation, the summation 1s taken over a lpossll X
values of the variable. In the present. example, the possible vatu?_
for 7 are 1 and 2.) The summary estimate, known as the Mante

Haenszel estimate of the ratio is

=4.831

The variance of the logarithm of the Mantel-Haenszel estimator
is obtained by taking a further sum,

2
C= Z(xli+xO:)PliPOi/(PIx+P0|)

The variance estimate is then®l

C
Var[In(RR ) 1= 1B

Here,
€ =(40+100)(1,000)(10,000)/(1,000+10,000)

2
2
+(40+200)(500)(15,000)/(500+15,000)

=19.06

and

19.06

e 22 _0.01634
Var[In(RRu)]= (75.07)(15.54)

61. Greenland S, Robins JM. Estimation of a common effect parameter from sparse
- ’

follow-up data. Biometrics 1985;41:55-68
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The natural logarithm of the hazard ratio estimate is In(4.831) =
1.575. Proceeding as before, the 95 percent confidence interval to
the logarithm of the incidence rate ratio can be found to be 1.325
to 1.826, yielding a corresponding interval on the ratio scale of 3.8
to 6.2.

When the ratios observed in the strata being summarized are not
very disparate, when the amounts of person time under study in each
exposure group do not vary greatly across strata, or when the person
time of the unexposed group is vastly larger than that of the exposed
in each stratum, the SMR and the Mantel-Haenszel estimate of the
incidence rate ratio will be very close to one another, and there is
little practical distinction to be made between the two. In the last
situation, the closeness of the Mantel- Haenszel estimator to the SMR
arises from the fact that both procedures give weight in approximate
proportion to the information contained in the exposed half of each
stratum.62 The theory underlying their respective derivations leads
to a choice of the SMR whenever the stratum-specific hazard ratios
are inconstant, and to the Mantel-Haenszel estimator when they do
not vary greatly.

Case-Control Studies

Random Error. Analysis of the variability of odds ratios and of
more complex functions involving odds ratios is almost always carried
out on a logarithmic scale. Expressed as a logarithm, the odds ratio
has a simple additive structure:

1n(RR)=1n(wﬁ)

YiXo
=In(x )+ In(y,)—In(y,)-In(x,)

Here as before "In(x)" stands for the natural logarithm of x.

An estimate of the variance of the logarithm of a count is given
by$3

62, Walker AM. Small sample properties of some estimators of a common hazard ratio.
Appl Statistics 1985;34:42-8

63. The capital X in the formula is the random variable, of which the value x is the
observed value.



