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THE CHANGING FACE OF EPIDEMIOLOGY

Editors’ note: This series addresses topics that affect epidemiologists across a range
of specialties. Commentaries start as invited talks at symposia organized by the
Editors. This paper was presented at the 2009 Society for Epidemiologic Research
Annual Meeting in Anaheim, CA.

The Hazards of Hazard Ratios
Miguel A. Hernán

The hazard ratio (HR) is the main, and often the only, effect measure reported in many
epidemiologic studies. For dichotomous, non–time-varying exposures, the HR is

defined as the hazard in the exposed groups divided by the hazard in the unexposed
groups. For all practical purposes, hazards can be thought of as incidence rates and thus
the HR can be roughly interpreted as the incidence rate ratio. The HR is commonly and
conveniently estimated via a Cox proportional hazards model, which can include potential
confounders as covariates.

Unfortunately, the use of the HR for causal inference is not straightforward even in
the absence of unmeasured confounding, measurement error, and model misspecification.
Endowing a HR with a causal interpretation is risky for 2 key reasons: the HR may change
over time, and the HR has a built-in selection bias. Here I review these 2 problems and
some proposed solutions. As an example, I will use the findings from a Women’s Health
Initiative randomized experiment that compared the risk of coronary heart disease of
women assigned to combined (estrogen plus progestin) hormone therapy with that of
women assigned to placebo.1 By using a randomized experiment as an example, the
discussion can focus on the shortcomings of the HR, setting aside issues of confounding
and other serious problems that arise in observational studies.

The Women’s Health Initiative followed over 16,000 women for an average of 5.2
years before the study was halted due to safety concerns. The primary result from the trial
was a HR. As stated in the abstract1 and shown in Table 1 of the article, “Combined
hormone therapy was associated with a hazard ratio of 1.24.”1 In addition, Table 2
provided the HRs during each year of follow-up: 1.81, 1.34, 1.27, 1.25, 1.45, and 0.70 for
years 1, 2, 3, 4, 5, and 6�, respectively. Thus, the HR reported in the abstract and Table
1 can be viewed as some sort of weighted average of the period-specific HRs reported in
Table 2.

This bring us to Problem 1: although the HR may change over time, some studies
report only a single HR averaged over the duration of the study’s follow-up. As a result,
the conclusions from the study may critically depend on the duration of the follow-up. For
example, the average HR in the WHI would have been 1.8 if the study had been halted
after 1 year of follow-up, 1.7 after 2 years,2 1.2 after 5 years, and—who knows—perhaps
1.0 after 10 years. The 24% increase in the rate of coronary heart disease that many
researchers and journalists consider as the effect of combined hormone therapy is the
result of the arbitrary choice of an average follow-up period of 5.2 years. A trial with a
shorter follow-up could have reported an 80% increase, whereas a longer trial might have
found little or no increase at all.
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The magnitude of the average HR depends on the
length of follow-up because the average HR ignores the
distribution of events during the follow-up. The average HR
can take the value 1.0 if the hazard in the exposed is identical
to the hazard in the unexposed during the entire follow-up, or
if the hazard in the exposed is higher during, say, the first 5
years and lower afterward. Incidentally, the same problem
arises whether the average HR is directly estimated in a
cohort study, as discussed here, or estimated via the odds
ratio of a properly designed case-control study with incidence
density sampling.

One might then conclude that we should forget about
the average HR and restrict our attention to the period-
specific HRs, which seem to capture the potentially time-
varying magnitude of the effect. This brings us to Problem 2:
the period-specific HRs have a built-in selection bias. To
describe the bias, consider that the (discrete-time) hazard
during period t is defined as the risk of the outcome during
period t among those who reached period t free of the
outcome. In the Women’s Health Initiative, the calculation of
the HR during year t was restricted to women who did not
develop coronary heart disease—the “survivors”—between
baseline and the beginning of year t. The HR after year 5 was
0.7, which means that the disease rate after year 5 was lower
in the treatment arm (the hazard in the numerator of the HR)
than in the placebo arm (the hazard in the denominator).

However, this apparently protective effect of hormone
therapy after year 5 is hardly surprising if one bears in mind
that women vary in their susceptibility to heart disease. A
certain proportion of all women enrolled in the trial were
particularly prone to develop heart disease if they were
exposed to hormone therapy or other factors (for simplicity,
let’s refer to them as the “susceptible women”). The propor-
tion of susceptible women in the trial was of course unknown
but, because of randomization, it was expected to be the same
in both the treatment and placebo arms at baseline. However,
these susceptible women were preferentially excluded from
the treatment arm as they developed heart disease over
time—precisely because they were assigned to a therapy with
harmful effects to which they were susceptible (all other
factors to which they were susceptible were expected to be
equally distributed between the 2 arms). With time, the
proportion of susceptible women progressively increased in
the placebo arm compared with the treatment arm. The bias
due to the differential selection of less susceptible women
over time, because of differential depletion of susceptibles, is
the built-in selection bias of period-specific HRs. This bias
may explain that the HR after year 5 is less than 1.0 even if
hormone therapy has no truly preventive effect in any woman
at any time. This built-in selection bias of the HR has also
been described using causal diagrams.3,4

In short, the average HR may be uninformative because
of potentially time-varying period-specific HRs, and because

the period-specific HRs may be time-varying because of
built-in selection bias. These problems can be overcome by
summarizing the study findings as appropriately adjusted
survival curves, where the survival at time t is defined as the
proportion of individuals who are free of disease through time
t. Another alternative not discussed here is the comparison of
the distribution of survival times between the exposed and the
unexposed, which can be accomplished by using accelerated
failure time models5 rather than Cox models.

Because of the shortcomings of the HR, the analysis of
randomized experiments routinely include Kaplan-Meier sur-
vival curves—or their complement, the cumulative risk curve
(see Figure 2 of the Women’s Health Initiative trial report1).
In contrast (and despite multiple warnings in the epidemio-
logic literature3–6), the analysis of observational follow-up
studies are commonly summarized by HRs only. A possible
explanation for this practice in observational studies is the
need to deal with confounding.

The HRs presented in observational studies are not
simply the hazard in the exposed divided by the hazard in the
unexposed. Rather, these HRs are adjusted for measured
confounders by using regression models, inverse probability
weighting, or other methods. Unadjusted HRs would be of
little use for causal inference from observational data, as
would unadjusted survival curves. It is not unexpected that
most epidemiologic articles include HRs only, because epi-
demiology students are traditionally taught to estimate ad-
justed HRs but not adjusted survival curves.7 The next para-
graph sketches a general procedure to obtain survival curves
adjusted for baseline confounders.

First, fit a discrete-time hazards model (eg, a pooled
logistic model with relatively short periods) that estimates, at
each time and for each person, the conditional probability of
remaining free of the outcome given exposure, baseline
covariates, and time of follow-up. Allow for time-varying
hazards by modeling the variable “time of follow-up,” using
a flexible functional form (eg, cubic splines), and for time-
varying HRs by adding product terms between exposure and
“time of follow-up.” Second, for each subject, multiply the
model’s predicted values through time t to estimate the
survival at t for subjects with their same combination of
covariate values. One can then construct conditional (ad-
justed) survival curves under the conditions of exposure and
no exposure for each observed combination of values of the
baseline covariates (in randomized trials, the survival curves
are unconditional or marginal, ie, averaged over all the
individuals irrespective of their covariate values). Third,
predict the survival at time t for each subject both under
exposure and under no exposure, regardless of the subject’s
exposure status. Fourth, separately average the conditional
survivals under exposure and under no exposure, over all
subjects. This last step effectively standardizes the curves to
the empirical distribution of the covariates in the study, and
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results in 2 marginal survival curves: one under exposure,
another under no exposure.

The above procedure can be extended in a number of
ways. In settings with time-varying exposures and confound-
ers, the procedure can be combined with inverse probability
weighting of the hazards model. This procedure has been
used to present adjusted survival curves under continuous use
(“always exposed”) and no use of hormone therapy (“never
exposed”) in the analysis of both observational studies8 and
randomized experiments9 in which time-varying exposures
arise when considering adherence-adjusted analyses. In set-
tings with continuous rather than dichotomous exposures, the
procedure requires the choice of a finite number of levels of
exposure to be compared (“always versus never exposed”
will not do).10 One may then construct as many survival
curves as there are exposure levels of interest. For continuous
and time-varying exposures one needs to be especially careful
about dose-response assumptions. Sensitivity analyses can be
used to evaluate the possibility of model extrapolation be-
yond the observed data. Confidence intervals for the survival
curves can be obtained by bootstrapping.

So should we outlaw the use of HRs in epidemiologic
studies? Of course not. A single average HR through t may be
misleading, as explained above, but a single survival proba-
bility at t could be as misleading because both measures
ignore the distribution of events between baseline and t. On
the other hand, a series of average HRs for increasingly
longer periods of follow-up is informative. For example, in
the WHI the average HRs for 1, 2, and 5 years were approx-
imately 1.8, 1.7, and 1.2, which indicates that hormone
therapy increases the cumulative risk of heart disease in the
early part of the follow-up but probably not much over longer
periods. The same conclusion is drawn from the survival
curves for the treatment and placebo groups, which converge
after 8 years. In mortality studies with sufficiently long
follow-up, the survival probabilities in both groups are en-
sured to reach the value 0, and the average HR is ensured to
reach the value 1.

An advantage of the survival curves over a series of
average HRs is that the survival curves provide information
about the absolute risks. For example, in the Women’s Health
Initiative, the average HR of 1.8 during year 1 means that the
one-year risk was about 0.49% in the treatment group and
0.28% in the placebo group rather than, say, 49% versus 28%.

An advantage of the average HRs over the survival curves is
the readiness with which confidence intervals can be com-
puted in standard software.

What about period-specific HRs? Their built-in selec-
tion bias makes them difficult to interpret as a measure of
time-varying effect. For example, in the Women’s Health
Initiative, the HR goes from greater than 1.0 to less than 1.0
after year 5—that is, the hazards of the treatment and the
placebo groups cross at about year 5. However, this crossing
of hazards is essentially meaningless from a practical stand-
point. What really matters is that the survival is lower in the
placebo group compared with the treatment group until at
least year 8. Hazards may cross at some point during the
follow-up because of depletion of susceptibles even if the
survival curves never cross. Cumulative measures, such as a
series of average HRs or survival curves, are needed to
summarize the data in a meaningful way. On the other hand,
period-specific HRs are useful as an intermediate step to
estimate survival curves in the procedure described above.

In summary, survival curves are more informative than
HRs and can be easily generated. It would not be a bad thing
to see them more widely used in observational studies.
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