Correlation $M \& M \$ 2.2$

References: A\&B Ch 5,8,9,10; Colton Ch 6, M\&M Chapter 2.2

Similarities between Correlation and Regression

- Both involve relationships between pair of numerical variables.
- Both: "predictability", "reduction in uncertainty"; "explanation".
- Both involve straight line relationships [can get fancier too].

Differences

Correlation
Symmetric
(doesn't matter which is
on Y, which on X axis)
Chose n 'objects';
measure (X,Y) on each
Dimensionless (no units)
(-1 to +1)

Regression

Directional
(matters which is on Y , which on X axis)
(i) Choose n objects on basis of their X values; measure their Y ; or
(ii) Choose objects, (as with correlation); measure (X,Y)

Regard X value as 'fixed';
Can be extended to nonstraight line relationships
Can relate Y to multiple X variables.
$\Delta \mathrm{Y} / \Delta \mathrm{X}$ units e.g., $\mathrm{Kg} / \mathrm{cm}$

Measures of Correlation

Loose Definition of Correlation:

Degree to which, in observed (x, y) pairs, y value tends to be larger than average when x is larger (smaller) than average; extent to which larger than average x's are associated with larger (smaller) than average y's

Pearson Product-Moment Correlation Coefficient

Context	Symbol	Calculation
sample of n pairs	$r_{x y}$	$\frac{\sum\left\{x_{i}-\bar{x}\right\}\left\{y_{i}-\bar{y}\right\}}{\sqrt{\left(\sum\left\{x_{i}-\bar{x}\right\}^{2}\right)\left(\sum\left\{y_{i}-\bar{y}\right\}^{2}\right)}}$
"universe" of all pairs	ρ_{Xy}	$\frac{\mathrm{E}\left\{\left(\mathrm{X}-\mu_{\mathrm{X}}\right)\left(\mathrm{Y}-\mu_{\mathrm{Y}}\right)\right\}}{\sqrt{\mathrm{E}\left\{\left(\mathrm{X}-\mu_{\mathrm{X}}\right)^{2}\right\} \mathrm{E}\left\{\left(\mathrm{Y}-\mu_{\mathrm{Y}}\right)^{2}\right\}}}$

Notes: ${ }^{\circ} \rho$: Greek letter r, pronounced 'rho' ;
${ }^{\circ} \mathrm{E}$: Expected value ;
${ }^{\circ} \mu$: Greek letter 'mu'; denotes mean in universe.
${ }^{\circ}$ Think of r as an average product of scaled deviations [M\&M
p127 use $\mathrm{n}-1$ because the two SDs involved in creating Z scores implicitly involve $1 / \sqrt{ }(n-1)$; result is same as above]

Spearman's (Non-parametric) Rank Correlation Coefficient
x -> rank replace x 's by their ranks ($1=$ smallest to $\mathrm{n}=$ largest)
y -> rank replace y's by their ranks ($1=$ smallest to $\mathrm{n}=$ largest)
THEN calculate Pearson correlation for n pairs of ranks
(see later)

Correlation $M \& M \$ 2.2$

Correlation

Positive: larger than ave. X's with larger than ave. Y's; smaller than ave. X's with smaller than ave. Y's;
Negative: larger than ave. X's with smaller than ave. Y's; smaller than ave. X's with larger than ave. Y's;
None: \quad larger than ave. X's 'equally likely' to be coupled with larger as with smaller than ave. Y's

How r ranges from -1 (negative correlation) through 0 (zero correlation.) through +1 (positive correlation.) (r not tied to x or y scale)

\[

\]

PRODUCTS

ρ^{2} is a measure of how much the variance of Y is reduced by knowing what the value of \mathbf{X} is (or vice versa)

See article by Chatillon on "Balloon Rule" for visually estimating r. (cf. Resources for Session 1, course 678 web page)
$\operatorname{Var}(\mathrm{Y} \mid \mathrm{X})=\operatorname{Var}(\mathrm{Y}) \times\left(1-\rho^{2}\right)$
ρ^{2} called
"coefficient of
determination"

$$
\operatorname{Var}(X \mid Y)=\operatorname{Var}(X) \times\left(1-\rho^{2}\right)
$$

Large ρ^{2} (i.e. ρ close -1 or +1) - > close linear association of X and Y values; far less uncertain about value of one variable if told value of other.

If X and Y scores are standardized to have mean $=0$ and unit $S D=1$ it can be seen that ρ is like a "rate of exchange" ie the value of a standard deviation's worth of X in terms of PREDICTED standard deviation units of Y.

If we know observation is Z_{X} SD's from μ_{X}, then the least squares prediction of observation's Z_{Y} value (ie relative to μ_{Y}) is given by

$$
\text { predicted } Z_{Y}=\rho \cdot Z_{X}
$$

Notice the regression towards mean: ρ is always less than 1 in absolute value, and so the predicted Z_{Y} is closer to 0 (or equivalently make Y closer to μ_{Y}) than the Z_{X} was to 0 (or X was to μ_{X}).

Inferences re ρ [based on sample of $n(x, y)$ pairs]
Naturally, the observed r in any particular sample will not exactly match the ρ in the population (i.e. the coefficient one would get if one included everybody). The quantity r varies from one possible sample of n to another possible sample of n. i.e. r is subject to sampling fluctuations about ρ.
1 A question all too often asked of one's data is whether there is evidence of a non-zero correlation between 2 variables. To test this, one sets up the null hypothesis that ρ is zero and determines the probability, calculated under this null hypothesis that $\rho=\mathbf{0}$, of obtaining an r more extreme than we observed. If the null hypothesis is true, r would just be "randomly different" from zero, with the amount of the random variation governed by n.
This discrepancy of r from $\mathbf{0}$ can be measured as $\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}$ and should, if the null hypothesis of $\rho=\mathbf{0}$ is true, follow a t distribution with $\mathrm{n}-2 \mathrm{df}$.
[Colton's table A5 gives the smallest r which would be considered evidence that $\rho \neq \mathbf{0}$. For example, if $\mathrm{n}=20$, so that $\mathrm{df}=18$, an observed correlation of 0.44 or higher, or between -0.44 and -1 would be considered statistically significant at the $\mathrm{P}=0.05$ level (2-sided). NB: this t-test assumes that the pairs are from a Bivariate Normal distribution. Also, it is valid only for testing $\rho=0$, not for testing any other value of ρ.
JH has seen many the researcher scan a matrix of correlations, highlighting those with a small p-value and hoping to make something of them. But very often, that ρ was non-zero was never in doubt; the more important question is how nonzero the underlying ρ really was. A small p-value (from maybe a feeble r but a large n!) should not be taken as evidence of an important ρ ! JH has also observed several disappointed researchers who mistakenly see the small pvalues and think they are the correlations! (the p-values associated with the test of $\rho=0$ are often printed under the correlations)

Interesting example where $r \neq 0$, and not by chance alone!
1970 U.S. DRAFT LOTTERY during Vietnam War: See Moore and McCabe pp113-114, along with spreadsheet under Resources for Chapter 10, where the lottery is simulated using random numbers (Monte Carlo method)

2 Other common questions: given that r is based only on a sample, what interval should I put around r so it can be used as a (say 95\%) confidence interval for the "true" coefficient ρ ?

Or (answerable by the same technique): one observes a certain r_{1}; in another population, one observes a value r_{2}. Is there evidence that the ρ 's in the 2 populations we are studying are unequal?

From our experience with the binomial statistic, which is limited to $\{0, \mathrm{n}\}$ or $\{0,1\}$, it is no surprise that the r statistic, limited as it is to \{minus 1 , plus 1 \}, also has a pattern of sampling variation that is not symmetric unless ρ is right in the middle, i.e. unless $\rho=0$. The following transformation of r will lead to a statistic which is approximately normal even if the $\rho($'s) in the population(s) we are studying is(are) quite distant from 0 :

$$
\frac{1}{2} \ln \left\{\frac{1+\mathrm{r}}{1-\mathrm{r}}\right\} \text { [where } \ln \text { is } \log \text { to the base e or natural } \log \text {]. }
$$

It is known as Fisher's transformation of r; the observed r, transformed to this new scale, should be compared against a Gaussian distribution with

$$
\text { mean }=\frac{1}{2} \ln \left\{\frac{1+\rho}{1-\rho}\right\} \text { and } \mathrm{SD}=\sqrt{\frac{1}{\mathrm{n}-3}}
$$

Correlation M\&M §2.2
Inferences re ρ [continued...]
e.g. 2a: Testing $\mathbf{H}_{0}: \rho=0.5$

Observe $\mathrm{r}=0.4$ in sample of $\mathrm{n}=20$.
Compute $\frac{\frac{1}{2} \ln \left\{\frac{1+0.4}{1-0.4}\right\}-\frac{1}{2} \ln \left\{\frac{1+0.5}{1-0.5}\right\}}{\sqrt{\frac{1}{n-3}}}$.
and compare with Gaussian $(0,1)$ tables. Extreme values of the standardized Z are taken as evidence against $\mathbf{H}_{\mathbf{0}}$. Often, the alternative hypothesis concerning ρ is 1 -sided, of the form $\rho>$ some quantity.

e.g. 2b: Testing $\mathbf{H}_{0}: \rho_{1}=\rho_{2}$

$r_{1} \& r_{2}$ in independent samples of $n_{1} \& n_{2}$
Remembering that "variances add; SD's do not", compute the test statistic

$$
\frac{\frac{1}{2} \ln \left\{\frac{1+\mathrm{r}_{1}}{1-\mathrm{r}_{1}}\right\}-\frac{1}{2} \ln \left\{\frac{1+\mathrm{r}_{2}}{1-\mathrm{r}_{2}}\right\}-[0]}{\sqrt{\frac{1}{\mathrm{n}_{1}-3}+\frac{1}{\mathrm{n}_{2}-3}}}
$$

and compare with Gaussian $(0,1)$ tables.
e.g. 2c: 100(1- α)\% CI for ρ from $\mathrm{r}=0.4$ in sample of $\mathrm{n}=20$.

By solving the double inequality

$$
-\mathrm{z}_{\alpha / 2} \leq \frac{\frac{1}{2} \ln \left\{\frac{1+\mathrm{r}}{1-\mathrm{r}}\right\}-\frac{1}{2} \ln \left\{\frac{1+\rho}{1-\rho}\right\}}{\sqrt{\frac{1}{\mathrm{n}-3}}} \leq \mathrm{z}_{\alpha / 2}
$$

so that the middle term is ρ, we can construct a CI for ρ :
$\rho_{[\text {High, Low }]}=\frac{1+r-\{1-r\} e^{[\pm 2 \mathrm{Z} \alpha / 2 / \operatorname{Sqrt}[\mathrm{n}-3]]}}{1+r+\{1-r\} \mathrm{e}^{[\pm 2 \mathrm{Z} \alpha / 2 / \operatorname{Sqrt}[\mathrm{n}-3]]}}$
Worked e.g. $95 \% \mathbf{C I}(\rho)$ based on $\mathrm{r}=0.55$ in sample of $\mathrm{n}=12$.
With $\alpha=0.05, \mathrm{z}_{\alpha / 2}=1.96$, lower $\&$ upper bounds for ρ :
$=\frac{1+0.55-\{1-0.55\} \mathrm{e}^{[\pm 2 \cdot 1.96 / \sqrt{ } 9]}}{1+0.55+\{1-0.55\} \mathrm{e}^{[\pm 2 \cdot 1.96 / \sqrt{ } 9]}}$
$=\frac{1.55-0.45 \mathrm{e}^{[\pm 2 \cdot 1.96 / \sqrt{ } 9]}}{1.55+0.45 \mathrm{e}^{[\pm 2 \cdot 1.96 / \sqrt{ } 9]}}=\frac{1.55-0.45 \mathrm{e}^{ \pm 1.307}}{1.55+0.45 \mathrm{e}^{ \pm 1.307}}$
$=\frac{1.55-0.45 \cdot 3.69}{1.55+0.45 \cdot 3.69}, \frac{1.55-0.45 / 3.69}{1.55+0.45 / 3.69}=-\mathbf{0 . 0 4}$ to $\mathbf{0 . 8 4}$
This CI, which overlaps zero, agrees with the test of $\rho=0$ described above.
For if we evaluate $\frac{0.55 \sqrt{12-2}}{\sqrt{1-0.55^{2}}}$, we get a value of 2.08 ,
which is not as extreme as the tabulated $\mathrm{t}_{10,0.05(2 \text {-sided) }}$ value of 2.23 .
Note: There will be some slight discrepancies between the t-test of $\rho=0$ and the zbased CI's. The latter are only approximate. Note also that both assume we have data which have a bivariate Gaussian distribution.
(Partial) NOMOGRAM for 95% Cl's for ρ
$\mathrm{n}=10,15,25,50,150$
It is based on Fisher's transformation of r. In addition to reading it vertically to get a CI for ρ (vertical axis) based on an observed r (horizontal axis), one can also use it to test whether an observed r is compatible with, or significantly different at the $\alpha=$ 0.05 level, from some specific ρ value, ρ_{0} say, on the vertical axis: simply read across from $\rho=$ ρ_{0} and see if the observed r falls within the horizontal range appropriate to the sample size involved. Note that this test of a nonzero ρ is not possible via the t -test. Books of statistical tables have fuller nomograms.

Shown: CI if observe

 $r=0.5$ (o) with $\mathrm{n}=25$.Could aldo use nomogram to gauge the approx. 95% limits of variation for the correlation in a draft lottery. The $n=366$ is a little more than 2.44 times the $n=150$ here. So the (horizontal) variations around $\rho=0$ should be only $1 / \sqrt{ } 2.44$ or 64% as wide as those shown here for $\mathrm{n}=150$. Thus the 95% range of r would be approx. -0.1 to +0.1 . (since X and Y are uniform, rather than Gaussian, theory may be a little "off"). Observed r was -0.23 .
\{1+r-(1-r)Exp[$\pm 2 z / S q r t[n-3]]\} /\{1+r+(1-r) \operatorname{Exp}[\pm 2 z / S q r t[n-3]]\}$

Spearman's (Non-parametric) Rank Correlation Coefficient

How Calculated:

(i) replace x 's and y's by their ranks (1=smallest to $n=l a r g e s t)$
(ii) calculate Pearson correlation using the pairs of ranks.

Advantages

- Easy to do manually (if ranking not a chore);

$$
\mathrm{r}_{\text {Spearman }}=1-\frac{6 \sum \mathrm{~d}^{2}}{\mathrm{n}\left\{\mathrm{n}^{2}-1\right\}}
$$

$\{d=\Delta$ between "X rank" \& "Y rank" for each observation $\}$

- Less sensitive to outliers (x -> rank

$$
\text { ==> variance fixed (for a given } n \text {). }
$$

Extreme $\left\{\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right\}$ or $\left\{\mathrm{y}_{\mathrm{i}}-\bar{y}\right\}$ can exert considerable influence on ${ }^{\mathrm{r}}$ Pearson ${ }^{\text {. }}$

- Picks up on non-linear patterns e.g. the $\mathrm{r}_{\text {Spearman }}$ for the following data is 1 , whereas the $\mathrm{r}_{\text {Pearson. }}$. is less.

Correlations -- obscured and artifactual

(i) Diluted / attenuated

Examples:

(i) Diluted / attenuated / obscured

1 Relationship, in McGill Engineering students, between their first year university grades and their CEGEP grades

2 Relationship between heights of offspring and heights of their parents
$\mathrm{X}=$ average height of 2 parents
$\mathrm{Y}=$ height of offspring (ignore sex of offspring)
Galton's solution
'transmute' female heights to male heights

$$
\text { 'transmuted' height }=\text { height } \times 1.08
$$

(ii) Artifact / artificially induced

1. Blood Pressure of unrelated (male, female) 'couples'
