Controlling Confounding by
Stratifying Data

Earlier we saw that the apparent effect of birth order on the prevalence
at birth of Down syndrome (Fig. 5-2) is attributable to confounding. As
demonstrated in Figure 5-3, maternal age has an extremely strong rela-
tion to the prevalence of Down syndrome. In Figure 5-4, which classifies
the Down syndrome data simultaneously by birth order and maternal
age, we can see that there is a maternal-age effect at every level of birth
order, but no clear birth-order effect at any level of maternal age. The
birth-order effect in the crude data is confounded by maternal age, which
is correlated with birth order.

Figure 5-4 is a graphic demonstration of stratification. Stratification is
basically the cross-tabulation of data; usually, stratification refers to
cross-tabulation of data on exposure and disease by categories of one or
more other variables that are potential confounding variables. We saw
another example of stratification in Chapter 1, which introduced the
concept of confounding. Stratification is an effective and straightforward
means to control confounding. In this chapter, we explore stratification
in greater detail and present simple formulas to derive an uncon-
founded estimate of an effect from stratified data.

An Example of Confounding

First, let us consider another example of confounding. The data in Table
8-1 are mortality rates for male and female patients with trigeminal
neuralgia, a recurrent paroxysmal pain of the face. The rate ratio of 1.10
indicates a slightly greater mortality rate for males than for females in
these crude data. (The male group may be thought of as the “exposed”
group and the female group as the “unexposed” group, to make this
example analogous to other settings in which the “exposure” variable is
a specific agent.) This estimate of the effect of being male on the death

rate of trigeminal neuralgia patients is confounded, however. Table 8-2
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Table 8-1. Mortality rates among patients with trigeminal neuralgia, by sex*

Males Females
Deaths 90 131
Person-years 2465 3946
Mortality rate 36.5/1000 person-years 33.2/1000 person-years
Rate ratio 1.10
90% CI 0.88-1.38

*Data from Rothman and Monson.'

one might predict, patients in the older age group have much high?r
death rates than those in the younger age group. The striking increase in
risk of death with age is typical of any population of older adults, even
adults in the general population. Second, the stratification shows a dif-
ference in the age distribution of the person-time of male and female
patients: the male person-time is mainly in the under 65 category,
whereas the female person-time is predominantly in the 65 or older cate-
gory. Thus, the female experience is older than the male experier}ce. This
age difference would tend to produce a lower overall death rate in males
relative to females, because to some extent comparing the death rate
among males with that among females is a comparison of young wifh
old. Third, in the crude data, the rate ratio (male/female) was 1.10 but in
the two age categories it was 1.57 and 1.49, respectively. This discrep-
ancy between the crude rate ratio and the rate ratios for each of the two
age categories is a result of the strong age effect and the fact that female
patients tend to be older than male patients. It is a googl example of
confounding by age, in this case biasing the crude rate ratio downward
because the male person-time experience is younger than that of the
females.

Table 8-2. Mortality rates among patients with trigeminal neuralgia, by sex
and age category”®

Age (years)

<65 =65
Males Females Males Females
Deaths 14 10 76 121
Person-years 1516 1701 949 2245
Mortality rate 9.2 5.9 80.1 53.9
(cases/ 1000 person-years)
Rate ratio 1.57 1.49
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Stratification into age categories allows us to assess the presence of
confounding. It also permits us to refine the estimate of the rate ratio by
controlling age confounding. Below, we use this trigeminal neuralgia ex-
ample and examples of other types of data to obtain unconfounded ef-
fect estimates using stratification.

Unconfounded Effect Estimates and Confidence Intervals from
Stratified Data

How does stratification control confounding? Confounding, as explained
in Chapter 5, comes from the mixing of the effect of the confounding
variable with the effect of the exposure. If a variable that is a risk factor
for the disease is associated with the exposure in the study population,
confounding will result. Confounding comes about because the compari-
son of exposed with unexposed people is also a comparison of those
with differing distributions of the confounding factor: in the trigeminal
neuralgia example above, comparing men with women was also a com-
parison of younger people (the men in the study) with older people (the
women in the study). Stratification creates subgroups in which the con-
founding factor either does not vary at all or does not vary much. Strati-
fication by nominal scale variables, such as sex or country of birth, theo-
retically results in strata in which the variables of sex or country of birth
do not vary; in actuality, there may still be some residual variability
because some people may be misclassified into the wrong strata. Strati-
fication by a continuously measured variable, such as age, will result in
age categories within which age can vary, but over a restricted range.
With either kind of variable, nominal scale or continuous, a stratified
analysis proceeds under the assumption that within the categories of the
stratification variable there is no meaningful variability of the potential
confounding factor. If the stratification variable is continuous, like age,
then the more categories that are used to form strata, the less variability
by age there will be within those categories.

A stratified analysis can be as straightforward as a presentation of the
data within each of the strata. Often, however, the investigator hopes to
summarize the relation between exposure and disease in a simple way.
The way to do that is to make the essential comparisons within each
stratum and then to aggregate the information from these comparisons
over all strata. There are two methods to aggregate the information over
strata, pooling and standardization, each with its own formula for combin-
ing the data across strata.

Pooling

Pooling is one method for obtaining unconfounded estimates of effect
arrnce a eet of atrata When nanline is used. it comes with an important
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With this assumption, one can view each stratum as providing a sepa-
rate estimate (referred to as a stratum-specific estimate) of the overall
effect. With each stratum providing a separate estimate of effect, the
principle behind pooling is simply to take an average of these stratum-
specific estimates of effect. The average is taken as a weighted average,
which is a method of averaging that assigns more weight to some values
than others. In pooling, weights are assigned so that the strata providing
the most information, that is, the strata with the most data, get the most
weight. In the formulas presented below, this weighting is built directly
into the calculations. When the data do not conform to the assumption
necessary for pooling that the effect is constant across all strata, pooling
is not applicable. In such a situation, it is still possible to obtain an un-
confounded summary estimate of the effect over the strata using stan-
dardization, which is discussed later in this chapter.

Cohort Studies with Risk Data (or Prevalence Data)

Let us consider risk data. (Prevalence data may be treated the same as
risk data.) We use the same basic notation as we did for unstratified
data, but we add a stratum-identifying subscript, i, which ranges from 1
to the total number of strata. The notation for stratum 7 in a set of strata
of risk data would be as follows.

Exposed Unexposed Total
Cases a; b; My;
Noncases ¢ d; Moy;
Total at risk Ny; No; T;

For risk data, we can calculate a pooled estimate of the risk difference or
the risk ratio. The pooled risk difference may be estimated from strati-
fied data using the following formula.

EaiNOi — biNy;

RDpyy =~ (8-1)

Z signifies summation over all values of the stratum indicator i. The
subscript MH for the pooled risk difference measure refers to ‘Mantel-
Haenszel,” indicating that the formula is one of a group of formulas for
pooled estimates that derive from an approach originally introduced by
Mantel and Haenszel.?

The formula for the vooled risk ratio from stratified risk or prevalence
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(8-2)

“xample: Stratification of Risk Data

lo illustrate the stratification of risk data, let us revisit the example of
he University Group Diabetes Program (Tables 5-3 and 5-4). For con-
renience, the age-specific data are repeated here in Table 8-3. First, we
onsider the risk difference. From the crude data, the risk difference is
£5%. Contrary to expectations, the tolbutamide group experienced a
sreater risk of death than the placebo group, despite the fact that tol-
»utamide was thought to prevent complications of diabetes that might
ead to death. Critics of the study believed this finding to be erroneous
ind looked for explanations such as confounding. Age was one of the
»ossible confounding factors. By chance, the tolbutamide group tended
o be slightly older than the placebo group. This age difference is evi-
lent in Table 8-3: 48% (98/204) of the tolbutamide group is at least 55
rears of age, whereas only 41% (85/205) of the placebo group is at least
i5 years of age. We know that older people have a greater risk of death,
| relation that is also evident in Table 8-3. Consider the placebo group:
he risk of death during the study period was 18.8% for the older age
roup but only 4.2% for the younger age group. Therefore, we would
uspect that the greater risk of death in the tolbutamide group is in part
lue to confounding by age. We can explore this issue further by obtain-
ng a pooled estimate of the risk difference for tolbutamide compared
vith placebo after stratifying by the two age strata in Table 8-3.

‘able 8-3. Risk of death for groups receiving tolbutamide or placebo in the
Jniversity Group Diabetes Program, overall and by age category (1970)*

Age

<55 =55 Total

Tolb Placebo Tolb Placebo Tolb Placebo

Jeaths 8 5 22 16 30 21
otal at risk 106 120 98 85 204 205
dsk of death 0.076 0.042 0.224 0.188 0.147 0.102
sk difference 0.034 0.036 0.045

isk ratio 1.81 1.19 1.44
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We obtain a pooled estimate of the risk difference by applying for-
mula 8-1, as follows.

8120 - 5-106 22.-85 — 16-98
+
226 183 1.903 + 1.650
RDMH = = = 0.035
106 -120 98 - 85 56.283 + 45.519

226 183

The result, 3.5%, is smaller than the risk difference in the crude data,
4.5%. Note that 3.5% is within the narrow range of the two stratum-
specific risk differences in Table 8-3, 3.4% for age <55 and 3.6% for age
=55. Mathematically, the pooled estimate is a weighted average of the
stratum-specific values, so it will always be within the range of the stra-
tum-specific estimates of the effect. The crude estimate of effect, how-
ever, is not within this range. We should regard the 3.5% as a more
appropriate estimate than the estimate from the crude data, as it re-
moves age confounding. The crude risk difference differs from the un-
confounded estimate because the crude estimate reflects not only the
effect of tolbutamide (which we estimate to be 3.5% from this analysis)
but also the confounding effect of age. Because the tolbutamide group is
older on average than the placebo group, the risk difference in the crude
data is greater than the unconfounded risk difference. If the tolbutamide
group had been younger than the placebo group, then the confound-
ing would have worked in the opposite direction, resulting in a lower
risk difference in the crude data than from the pooled analysis after
stratification.

The unconfounded estimate of risk difference, 3.5%, is unconfounded
only to the extent that stratification into these two broad age categories
removes age confounding. It is likely that some residual confounding
remains (see box) and that the risk difference unconfounded by age is
smaller than 3.5%.

We can also calculate a pooled estimate of the risk ratio from the data
in Table 8-3, using formula 8--2.

8-120 22-85
+
226 183 4.248 + 10.219

RRMH = = = 133
5.106 16 98 2.345 + 8.568

+
226 183

This result, like that for the risk difference, is closer to the null value
than the crude risk ratio of 1.44. indicatine that age confoindine hac
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Residual confounding

The two age categories in Table 8-3 may not be sufficient to control all
of the age confounding in the data. In general, more strata, with nar-
rower boundaries, will control confounding more effectively than
fewer strata with broader boundaries. If age strata (or strata by any
continuous stratification factor) are broad, there may be Confounding
within them. A stratified analysis controls only between-stratum con.
founding, not within-stratum confounding. Within-stratum confound-
ing is often referred to as residual confounding. The same term is used to
describe confounding from factors that are not controlled at all in a
study or from factors that are controlled but are measured inaccurately
from the beginning.

To avoid within-stratum residual confounding, it is desirable to
carve the data into more strata and to avoid open-ended strata (such
as age =55) when possible. On the other hand, stratifying too finely
may stretch the data unreasonably, producing small frequencies of
events within cells and leading to imprecise results. Finding the best
number of strata to use in a given analysis often requires balancing the
need to control confounding against the need to avoid random error in

the estimation, and ends up being a compromise. ‘J

within the range of the stratum-specific estimates, as it must be. Note,
however, that for the risk ratio, the stratum-specific estimates for the
data in Table 8-3, 1.81 and 1.19, differ considerably from one another.
The wide range between them includes not only the pooled estimate but
also the estimate of effect from the crude data. When the stratum-
specific estimates of effect are nearly identical, as they were for the risk
differences in the data in Table 8-3, we have a good idea of what the
pooled estimate will be just from inspecting the stratum-specific data.
When the stratum-specific estimates vary, it will not be as clear on in-
spection what the pooled estimate will be.

As stated above, the formulas to obtain pooled estimates are prem-
ised on the assumption that the effect is constant across strata. Thus, the
pooled risk ratio of 1.33 for the above example is premised on the as-
sumption that there is a single value for the risk ratio that applies to
both the young and the old strata. This assumption seems reasonable for
the risk difference calculation, for which the two strata gave nearly the
same estimate of risk difference; but how can we use this assumption to
estimate the risk ratio when the two age strata give such different risk
ratio estimates? The assumption does not imply that the estimates of
effect will be the same, or even nearly the same, in each stratum. It
allows for statistical variation over the strata. It is possible to conduct a
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geneity, to determine whether the variation in gstimates from one stra_—
tum to another is compatible with the assqmpt{on that the effect is uni-
form.* In any event, it is helpful to keep in mind thgt the assim}phci(n
that the effect is uniform is probably wrong in most 51tuat10nSH t is ask-
ing too much to have the effect be absolutely Co'ns.tant over‘t e c;tego—
ries of some stratification factor. It is more reah.sfac to consider t et'as-
sumption as a fictional convenience, one that facilitates the compt:ta 101;
of a pooled estimate. Unless the data demonstrate some .Clear.pat ern o

variation that undermines the assumption that the effect is unlform ov}fr
the strata, it is usually reasonable to use a poolec? approach, degplte t e
fiction of the assumption. In Table 8-3, the variation of the risk ratio
estimates for the two age strata is not striking enox.Jgh to warrant con-
cern about the assumption that the risk ratio is uniform. .If one un‘der—
takes a more formal statistical evaluation of the assumption of.umf(f)r-
mity for these data, it would support the Vi.ew that the assumption of a
uniform risk ratio for the data in Table 8-3 is reasonable.

Confidence Intervals for Pooled Estimates

To obtain confidence intervals for the pooled estimates of effect, we nged
variance formulas to combine with the point estimates. Table 8—.4 hs'ts
variance formulas for the various pooled estimates that we consider in
thlsl’%‘l:t}l\laor:;}r; the formulas look complicated, they are easy fco apply. E.ach
variance formula corresponds to a particular type.of stratified data. First,
consider the pooled risk difference. For the data in Table 8—3., we f:alcu—
lated that RD,y was 0.035. We can derive the variance for this estimate,
and thus a confidence interval, by applying the first formula from Table
8—4 to the data in Table 8-3.

Var(RDy)

106 - 120\%( 8- 115 5.98 (98~85)2(22-69 N 16 - 76
+ +

( 226 )(1062~105 1202 - 119 183 98%.97  85%. 84

106 - 120 (98 . 85 )]2
+
226 183

= 0.001052

33761 + 7.5278
103637

This gives a standard error of (0.001052)V2 = 0.0324 and a 90% cc;nfl-
dence interval of 0.035 + 1.645 - 0.0324 = 0.035 * Q.OS?; = .—0.01 to
0.088. The confidence interval is broad enough to mdlc.:ate a fair amo;\mt
of statistical uncertainty in the finding that tolbutar.mde is worse than
placebo. Notablv. however. the data are not compatible with anv com-
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Table 8-4. Variance formulas for pooled analyses

E( N1;No;i )2[ a,d; + bic; ]
i T; Nliz Ny — 1) Noiz (Noi — 1)

By

i T,’

Risk difference: Var(RDypyy) =

Z(MliNliNOi/Tiz - abi/T))

P

i Ti 1 Ti

Risk ratio: Var[In(RRy)] =

E(PTliPTOi/Ti)Z (a;/PTif* + bi/PTo)

1

Incidence rate difference: Var(IDyyy) = >

(Z(PTHPTO,-/T,»

2 (My;PT3;PToi/ T

i

S

i T,' i Ti

Incidence rate ratio: Var{ln(IRyp)] =

2 GP 2GR+ HP) 2 HQ,

1

2(2 c,v)2 ’ 2(2 G,E H,-) ' 2(2 Hi)2

Odds ratio: Var{In(ORyy)] =

where
G; = (adi/ Ty H; = (bic;/T))
Pi=(a +d)/T;y Q= (b +c)/T;

One might also construct a confidence interval for the risk ratio esti-
mated from the same stratified data. In that case, one would use the
second formula in Table 8-4, setting limits on the log scale, as we did in
the previous chapter for crude data.

(13-106-120 8-5) (38498~85 22-16)
—— ——— + j—

2 2
Var{In(RRun)] = 226 226 183 183
(8~120 22-85) (5-106 16-98)
+ : +
226 183 226 183
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This result gives a standard error for the logarithm of the RR of (0.0671)"
= 0.259 and a 90% confidence interval of 0.87-2.0.

RRL — eln(l.33)f1.645-0.259 = 0.87

RRU - el.n(l.33)+l.645~0.259 =20

The interpretation for this result is similar to that for the confidence
interval of the risk difference, which is as one would expect since the
two measures of effect and their respective confidence intervals are alter-
native ways of expressing the same finding from the same set of data.

As another example, consider again the data in Table 1-2. We can
calculate the risk ratio for 20-year risk of death among smokers com-
pared with nonsmokers across the seven age strata using formula 8-2.
This calculation gives an overall Mantel-Haenszel risk ratio of 1.21, with
a 90% confidence interval of 1.06-1.38. The Mantel-Haenszel risk ratio
not only is different from the crude risk ratio of 0.76 but, as noted in
Chapter 1, it points in the opposite direction.

Cohort Studies with Incidence Rate Data

For rate data, we have the following notation for stratum i of a stratified
analysis.

Exposed Unexposed Total
Cases a; b; M;
Person-time at risk PTy; PTy; T;

As for risk data, we can calculate a pooled estimate of the rate difference
or the rate ratio. The pooled rate difference may be estimated from strat-
ified data using the following formula.

a;PTo; — b;PTy;
i T;
Dypy = —————— (8-4)
PTy;PTy;

T;

A pooled estimate of the rate ratio may be estimated as follows:

aiP Tgi

Ry = S (8-5)
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-able 8-5. Mortality rates for current and past clozapine users, overall and by
1ge category*

Age (years)

10-54 55-94 Total

Current Past Current Past Current Past

Jeaths 196 111 167 157 363 268
derson-years 62,119 15,763 6085 2780 68,204 18,543
Rate (X 10° years) 3155 7042 2744 5647 5322 1445
Rate difference (X 10° years) —388.7 —2903 -912.8

Rate ratio 0.45 0.49 0.37

Data from Walker et al®

As an illustration, consider the rate data in Table 8-5. These data come
rom a study of mortality rates among current users and past users of
“lozapine, a drug used to treat schizophrenia. As clozapine is thought to
affect mortality primarily for current users, the experience of past users
was used as the reference by which to judge the effect of current use. As
‘or the tolbutamide example, the data are stratified into two broad age
-ategories.

The death rates are much greater for older patients than for younger
patients, as one would expect: among schizophrenia patients, just as for
the general population, death rates climb strikingly with age. There is
also an association between age and current versus past use of cloz-
apine. Among current users, 9% (6085/68,204) of the person-time is in
the older age category, whereas among past users 15% (2780/18,543) of
the person-time is in the older age category. This difference is enough to
introduce some confounding, although it is not large enough to produce
more than a modest amount. Because the person-time for past use has
an older age distribution, the age differences will lead to lower death
rates among current users. The crude data do indicate a lower death rate
among current users, with a rate difference of 912.8 cases per 100,000
person-years. At least some of this difference is attributable to age con-
founding. We can estimate the mortality rate difference that is uncon-
founded by age (apart from any residual age confounding within these
broad age categories) from formula 8-4.

196 - 15,763 — 111 - 62,119 167 - 2780 — 157 - 6085
+
77,882 8865

IDMH =

62,119 - 15,763 6085 - 2780

=y [
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—48.864 — 55.396

= = — 7200 X 107 % yr~!
12,572.633 + 1908.212

This result is smaller than the crude rate difference of —912.8 X 107°
person-years, as was predictable from the direction of the difference in
the age distributions. The amount of the confounding is modest, despite
age being a strong risk factor, because the difference in the age distribu-
tions between current and past use is also modest. We cannot say that
the remaining difference of —720.0 X 107> person-years is completely
unconfounded by age because our age categorization comprises only
two broad categories, but the pooled estimate removes some of the age
confounding. Further control of age confounding might move the esti-
mate further in the same direction, but it is unlikely that age confound-
ing could account for the entire effect of current use on mortality.

What is the confidence interval for the pooled estimate? To obtain the
interval, we use the third variance formula in Table 8-4.

(62,119-15,763)2( 196 111 ) (6085-780)2( 167 157 )
+ + +
77882 [le219 15763 8865 6085 27807

Var(IDy) =

(62,119 -15763 6085 - 2780 )2
+
77,882 8865

78.644 + 90.394
- =806l x1077
209,694,871.6

The square root of the variance gives a standard error of 89.8 x 107°
person-years, for a 90% confidence interval of (—720.0 £ 1.645 -
89.8) X 107° person-years = —867.7 X 107° person-years, —572.3 X
107 person-years. The narrow confidence interval is the result of the
large numbers of observations in the two strata.

The pooled incidence rate ratio for these same data is calculated from
formula 8-5 as follows.

196 - 15,763 167 - 2780

+
77,882 8865 39.67 + 52.37
IRMH = = = 047
88.53 + 107.77
111 - 62,119 157 - 6085
+
77,882 8865

This value indicates that after control of confounding by age in these
two age categories, current users have half the mortality rate of past





