Why not just add (sum, Σ) the 'a' frequencies across tables (strata), the ' b ' frequencies across tables, ... the ' d ' frequencies across tables, to make a single 2×2 table with entries

$\Sigma \mathbf{a}$	$\sum \mathbf{b}$
$\sum \mathbf{b}$	$\sum \mathbf{d}$

and use these 4 cell counts to perform the analyses?

e.g. 1 Batting Averages of Gehrig and Ruth
(see book "Innumeracy" by Paulos)

	Gehrig	Ruth	
1st half of season	.290	$<$.300
2nd half of season	.390	$<$.400
--			
Entire season	.357	$>$.333 !!

Explanation:

	Gehrig	Ruth
1st half of season		
Hits	29	60
AT BAT	100	200
2nd half of season	78	40
hits	200	100
AT BAT		
Entire season	107	300
hits		

Two features, involving time, created this 'paradox'

[^0]e.g. 2 Numbers of Applicants (n), and Admission rates (\%) to Berkeley Graduate School

Faculty	\mathbf{n}	Men \% admitted		\mathbf{n}
A	825	62	108	82
B	560	63	25	68
C	325	37	593	34
D	417	33	375	35
E	191	28	393	27
F	373	6	341	7
Combined	2691	$\mathbf{4 4}$	1835	$\mathbf{3 0}$

(see early Chapter in text "Statistics" by Freedman et al)
Paradox: $\pi($ admission \mid male $)>\pi($ admission \mid male) overall, but, by an large, faculty by faculty, its the other way!!!
Explanation: Women are more likely than men to apply to the faculties that admit lower proportions of applicants.
Remedy: aggregate the within-strata comparisons [like vs. like], rather than make comparisons with aggregated raw data -- see next for classical ways of doing this; MH stands for "Mantel-Haenszel".

For other examples:-

1. See Moore and McCabe(3rd Ed) 2.6 (The Perils of Aggregation, including Simpson's paradox) They speak of 'lurking' variables; in epidemiology we speak of 'confounding' variables.
2. See Rothman2002, p1 (death rates Panama vs. Sweden) and p2 (20-year mortality in female smokers and non-smokers in Whickham England)
Simpson's paradox is an extreme form of confounding. Some textbooks give made-up examples See web site for course 626 for several real examples.

Story 4: Does Smoking Improve Survival? in the EESEE Expansion Modules in the website for the text (link from course description) [also in Rothman2002, with finer age-categories]
http://WWW.WHFREEMAN.COM/STATISTICS/IPS/EESEE4/EESEES4.HTM
A survey concerned with thyroid and heart disease was conducted in 1972-74 in a district near Newcastle, United Kingdom by Tunbridge et al (1977). A follow-up study of the same subjects was conducted twenty years later by Vanderpump et al (1996). Here we explore data from the survey on the smoking habits of 1314 women who were classified as being a current smoker or as never having smoked at the time of the original survey. Of interest is whether or not they survived until the second survey.

Results
The following tables summarize the results of the experiment: [note from JH.. We would not call it "an experiment"; mathematical statisticians call any process for generating data "an experiment"]

Table 1: Relationship between smoking habits and 20-year survival in 1314 women (582 Smokers, 732 Non-Smokers)

Survival Status	Smoking Status		Compared...
	Smoker	Non-Smoker	
Dead	139	230	
Alive	443	502	
Risk $=\frac{\text { \#dead }}{\text { \#Total }}$	$\frac{139}{582}=23.9 \%$	$\frac{230}{732}=31.4 \%$	Diff: -7.5\%
			Ratio: 0.76
Odds $=\frac{\text { \#dead }}{\text { \#alive }}$	$\frac{139}{732}=0.314(: 1)$	$\frac{230}{502}=0.458(: 1)$	Ratio: 0.68*

* shortcut: or $=\frac{\mathrm{a} \times \mathrm{d}}{\mathrm{b} \times \mathrm{c}}=\frac{139 \times 502}{230 \times 443}=\frac{69778}{101890}=\mathbf{0 . 6 8}$

A message the tobacco companies would love us to believe!

Table 2: Twenty-year survival status for 1314 women categorized by age and smoking habits at the time of the original survey.

Age Group (Years)		Smoking Status	
	$\frac{\text { Survival }}{\underline{\text { Status }}}$	Smoker	Non- Smoker
18-44	Dead	19	13
	Alive	269	327
		$($ or $=1.78)$	
44-64	Dead	78	52
	Alive	167	147
		(or $=1.32$)	
>64	Dead	42	165
	Alive	7	28
		(or $=1.02$)	

The odds ratio is > $\mathbf{1}$ in each age group!
Why the contradictory results?

Adjustment	(compare like with like,
i.e. Σ within-category estimates**)	

Weighted averages [explicit weights (w's)]
Precision-based Investigator-chosen (inverse variance) ("Standardized")

Mean Difference

$$
\begin{aligned}
& \Sigma \mathrm{w} \times \overline{\mathrm{y}}_{\text {index }}-\Sigma \mathrm{w} \times \overline{\mathrm{y}}_{\text {ref }} \\
& =\Sigma \mathrm{w} \times\left(\overline{\mathrm{y}}_{\text {index }}-\overline{\mathrm{y}}_{\text {ref }}\right)
\end{aligned}
$$

$$
\Sigma \mathrm{w} \times \text { risk }_{\text {index }}-\Sigma \mathrm{w} \times \text { risk }_{\text {ref }}
$$

$$
=\Sigma \mathrm{w} \times\left(\text { risk }_{\text {index }}-\text { risk }_{\text {ref }}\right)
$$

Odds Ratio ("Woolf" method, precision based)

$$
\begin{array}{ll}
& \exp \left[\Sigma \mathrm{w} \times \operatorname{logodds}_{\text {index }}-\Sigma \mathrm{w} \times \text { logodds }_{\text {ref }}\right] \\
=\quad & \exp [\Sigma \mathrm{w} \times(\log [\text { odds ratio] }) \quad \text { all logs to base e }
\end{array}
$$

where $w=1 / \operatorname{var}[\log [$ odds ratio $]]=1 /(1 / a+1 / b+1 / c+1 / d)$
Note: Computational formulae often constructed to minimize number of steps, and avoid division, and so may hide real structure of the estimator.
e.g. 8.1 in Rothman p147, for risk diff. (precision weighting)
$\operatorname{Var[risk}$ diff] proportional to $1 / N_{0}+1 / N_{1}=\left(N_{0}+N_{1}\right) /\left(N_{0} N_{1}\right)$
So that the denominator contribution, i.e., the weight, is

$$
\mathrm{w}=1 / \operatorname{Var}=\left(\mathrm{N}_{0} \mathrm{~N}_{1}\right) /\left(\mathrm{N}_{0}+\mathrm{N}_{1}\right)=\left(\mathrm{N}_{0} \mathrm{~N}_{1}\right) / \mathrm{T}
$$

and numerator contribution is

$$
\begin{aligned}
& \left(\text { risk }_{\text {index }}-\text { risk }_{\text {ref }}\right) \times \mathrm{w} \\
& =\left(\mathrm{a} / \mathrm{N}_{1}-\mathrm{b} / \mathrm{N}_{0}\right) \times \mathrm{w}=\left(\mathrm{a} / \mathrm{N}_{1}-\mathrm{b} / \mathrm{N}_{0}\right) \times\left(\mathrm{N}_{0} \mathrm{~N}_{1}\right) / \mathrm{T} \\
& =\left(\mathrm{a} \mathrm{~N}_{0} / \mathrm{T}-\mathrm{b} \mathrm{~N}_{1}\right) / \mathrm{T} \quad(\text { after some algebra })
\end{aligned}
$$

Ratio** Estimators ("M-H") [implicit precision weighting]
Risk Ratio $\frac{\Sigma \text { \#cases }_{\text {index }} \times \text { DENOM }_{\text {ref }} / \text { DENOM }_{\text {total }}}{\Sigma \text { \#cases }_{\text {ref }} \times \text { DENOM }_{\text {index }} / \text { DENOM }_{\text {total }}}$

Rate Ratio

Odds Ratio
same, except that denominators are amounts of person-time, not persons.
[case control study]
same as risk and rate ratio above except that "denominators" are partial (pseudo) ones estimated from a denominator series*("controls"); "size"total refers to the size of (stratum-specific) case series and denominator series combined. *MODERN way to view case-control studies.

Odds Ratio
Σ \#cases ${ }_{\text {index }} \times$ \#"rest" $_{\text {ref }} /$ total
[cohort/prevalence study]
Not that common to use this measure, since odds ratio more cumbersome to explain, and less 'natural'. Might use it to maintain comparability with results of a log-odds (logistic) regression. If \#case a small fraction
**NOTE ON RATIO ESTIMATORS: Even though one could (if all denominators were obligingly non-zero) rewrite the ratio estimator as a weighted average of ratios, this would run counter to Mantel's express wishes.. to calculate just one ratio at the end, i.e. a ratio of two sums, rather than a sum of ratios. The main reason is statistical stability: imagine a (simpler, non-comparative) situation where one wished to estimate the overall sex ratio in small day-care facilities: would you average the ratios from each facility, or take a single ratio of the total number of males to the total number of females? The caveat does not apply to absolute differences, where the difference of two weighted averages (same set of weights for both) is the same as the weighed average of the differences.

Matched-pairs: the limiting case of finely stratified data

Examples: pair-matched case-control studies; Mother -> infant transmission of HIV in twins in relation to order of delivery; \& others... [see 607 notes for Ch 9]
ALSO: Case-crossover studies (self-matched case-control studies) eg" Redelmeier: auto accidents, while on/off cell phone when driving

e.g.
Δ 'sesponsen in paired responses on same subject in each of 2 conditions (self-paired)

The 4 possibilities for 2 pair-members are:
(using generic 2×2 table: 2 nd row might be a 'denominator series' of 1 per case)

Outcome	Category of Determinant		Total
	Index	Reference	
Yes	$\mathrm{a}=1$ or 0	$\mathrm{b}=1$ or 0	1
No	$\mathrm{c}=0$ or 1	$\mathrm{d}=0$ or 1	1
	1	1	$\mathrm{T}=2$

The contributions to or $_{\text {MH }}$ from the 4 possibilities are ...

Determinant
No. Pairs

Outcome*	Index	Ref	Tot	$\frac{\mathrm{a} \times \mathrm{d}}{\mathrm{T}}$	$\frac{\mathrm{b} \times \mathrm{c}}{\mathrm{~T}}$	
Yes	1	1	1			
No	0	0	1			
	1	1	2	0	0	"A"
Yes	0	0	1			
No	1	1	1			
	1	1	2	0	0	"D"
Yes	1	0	1			
No	0	1	1			
	1	1	2	1/2	0	"B"
Yes	0	1	1			
No	1	0	1			
	1	1	2	0	1/2	"C"

Odds Ratio estimator $=\frac{A \times 0+B \times 1 / 2+C \times 0+D \times 0}{A \times 0+B \times 0+C \times 1 / 2+D \times 0}=\frac{B}{C}$
Tabular format for displaying matched pair-data

* In matched (self- or other) case-control study, the "denominator series" is not limited to 1 "probe-for-exposure" per case... could ask about "usual" exposure (e.g. \% time usually exposed) or sample several "person -moments" ['controls'] per case. i.e. the 2nd row total could be > 2.

Standardization of Rates [proportion-type and incidence-type] [explicit, investigator-selected weights]

- Usual to first calculate standardized rate for index category (of the determinant) and standardized rate for reference category (of the determinant) separately, then compare the standardized rates.
- If one uses the confounder distribution in one of the two compared determinant categories as the common set of weights, then the standardized rate in this category remains unchanged from the crude rate in this category.
See the worked example comparing death rates in Quebec males in 1971 and 1991 in the document "Direct" and "Indirect" Standardization:2 sides of same coin?(.pdf) under "Material from previous years" in the c626 web page. this is an interesting local case of natural confounding: relative to that 20 years earlier, the crude mortality rate in 1991 was 1.00. yet, in every age category, the rate in 1991 was at least 10% lower, and in many age-groups, more than 20% lower than in 1971 (in the table, the rate ratios in bold are 71/91, so take their reciprocals to see the rate ratios 91/71)
- Read Rothman's comment (p159) about the uniformity of effect (eg a constant rate ratio across age groups in the Que example). Why in his last sentence in that paragraph does he seem to "allow" a weighted average of very different rate ratios, if they were derived from standardization, but NOT if they were derived from (precision-weighted) pooling?
- Rothman (p161) emphasizes how "silly" the term "indirect" standardization used with standardized mortality ratio, is. He correctly points out that "the calculations for any rate standardization, "direct" or "indirect", are basically the same". He leaves it as an exercise (Q4 page 166) to work out what the weights are in the so-called "indirect" standardization used to compute an SMR (or SIR).

Hint: write the SMR (with Σ denoting sum over strata) as

```
SMR \(=\frac{\text { Total \# cases observed }}{\text { Total \# cases expected }}\)
    \(=\frac{\Sigma \text { \# observed }}{\Sigma \# \text { expect }}\)
    \(\Sigma\) \# expected (*)
        \(\Sigma\) observed \#
    \(=\frac{\Sigma \text { ref. rate } \times \text { exposed } \mathrm{PT}}{}\)
    \(=\frac{\Sigma \text { observed rate } \times \text { exposed PT }}{\Sigma \text { ref. rate } \times \text { exposed } \mathrm{PT}}\)
    \(=\frac{\Sigma \text { observed rate } \times \mathrm{w}}{\sum \text { ref. rate } \times \mathrm{w}}, \quad\) with \(\mathrm{w}=\) exposed PT
```

If one starts again from (*), one can show that the SMR can also be represented as a weighted average of rate ratios [as was mentioned in footnote to Quebec table*]

```
SMR = \frac{\Sigma# observed}{\Sigma# expected}
= \frac{\Sigma obs. rate }{\times exposed PT}
= }\frac{\Sigma\frac{\mathrm{ obs. rate }}{\mathrm{ ref. rate }}\times\mathrm{ ref. rate }\times\mathrm{ exposed PT}}{\Sigma# expected }\quad\mathrm{ (divide & mult. by ref rate)
=}\frac{\Sigma\frac{\mathrm{ obs. rate }}{\mathrm{ ref. rate }}\times#\mathrm{ expected }}{\Sigma#\mathrm{ expected }}=\mathrm{ weighted ave. of rate ratios
```

*cf. Liddell FD. The measurement of occupational mortality. Br J Ind Med. 1960 Jul;17:228-33.

Table 2: Twenty-year survival status for 1314 women categorized by age and smoking habits at the time of the original survey.

Worked out calculations (see same calculations on spreadsheet) for...
Mantel-Haenszel summary odds ratio, or ${ }_{\mathrm{MH}}$ and
Mantel Haenszel (Chi-Square) Test of $\mathrm{OR}_{1}=\mathrm{OR}_{2}=\mathrm{OR}_{3}=1$

Age Group (Years)	$\underline{\text { Smoking Status }}$	$\underline{\text { Calculations for }}$	$\underline{\text { Calculations for Test }}$
$\underline{\text { Statistic* }}$			

(Years)

$\xrightarrow[\text { Surv }]{\text { Status }}$	Smoker	NonSmoker	n	ad	$\frac{\mathrm{b} \mathrm{c}}{\mathrm{n}}$	$\mathrm{E}\left[\mathrm{a} \mid \mathrm{H}_{0}\right.$]	$\operatorname{Var}\left[\mathrm{a} \mid \mathrm{H}_{0}\right.$]
						$\mathrm{r} 1 \cdot \mathrm{c} 1$	$\mathrm{r} 1 \cdot \mathrm{r} 2 \cdot \mathrm{c} 1 \cdot \mathrm{c} 2$
						n	$\mathrm{n}^{2} \cdot\{\mathrm{n}-1\}$

Woolf: exp[weighted average of In or 's]

$\operatorname{Var}[$ weighted ave] = 1 / $\{$ Sum of Weights \}

Calculations for Woolf's Method

$$
\ln \text { or } \quad \operatorname{Var}[\ln \text { or }] \quad \underline{\text { Weight }} \quad \underline{\mathrm{W}} \times \ln \text { or }
$$

(1)

$$
\begin{array}{rcc}
1 / \mathrm{a}+1 / \mathrm{b} & \frac{1}{\operatorname{Var}[\ln \mathrm{or}]} & (1) \times(2) \\
+1 / \mathrm{c}+1 / \mathrm{d}
\end{array}
$$

$18-44$	Dead	19	13
	Alive	369	327

$\begin{array}{llll}628 & 9.89 & 5.59 & 14.7\end{array}$
7.6
0.575
0.1363
7.335
4.218

44-64 $\begin{gathered}\text { Dead } \\ \\ \text { Alive } \\ \end{gathered}$
$444 \quad 25.82 \quad 19.56$
71.7
22.8
>64
$\boldsymbol{o r}_{\mathbf{M H}}=\frac{\sum \mathrm{ad} / \mathrm{n}}{\sum \mathrm{bc} / \mathrm{n}}=\frac{40.57}{29.92}=\mathbf{1 . 3 6} ; \quad \quad \mathrm{X}_{\mathrm{MH}(1 \mathrm{df})}^{2}=\frac{\left\{\sum \mathrm{a}-\sum \mathrm{E}\left[\mathrm{a} \mid \mathrm{H}_{0}\right]\right\}^{2}}{\sum \operatorname{Var}\left[\mathrm{a} \mid \mathrm{H}_{0}\right]}=\frac{\{139-128.3\}^{2}}{35.2}=3.24 \quad \mathrm{X}_{\mathrm{MH}}=1.80$
(Miettinen) Test-based $100(1-\alpha) \%$ CI for OR: $\quad \operatorname{or}_{\mathbf{M H}} 1 \pm \mathrm{Z} \alpha / 2 / \mathrm{XMH}_{\mathrm{MH}}=1.36^{1 \pm 1.96 / 1.80}=\mathbf{0 . 9 7}$ to $\mathbf{1 . 8 9}$ (95\% CI)
(Woolf) $100(1-\alpha) \% \mathbf{C I}$ for OR: $\exp \left[\{\right.$ weighted ave. of \ln or's $\} \pm z_{\alpha / 2} \operatorname{Sqrt}[1 / 34.433]=\exp [0.305 \pm 1.96 \times 0.170]=\mathbf{0 . 9 7}$ to $\mathbf{1 . 8 9}$

stratified data

Via SAS

data sasuser.simpson;
input age \$ i_smoke i_dead
number;
lines;

$18-44$	1	1	19
$18-44$	1	0	269
$18-44$	0	1	13
$18-44$	0	0	327
$44-64$	1	1	78
$44-64$	1	0	167
$44-64$	0	1	52
$44-64$	0	0	147
$64-$	1	1	42
$64-$	1	0	7
$64-$	0	1	165
$64-$	0	0	28

;
run;
options ls = $75 \mathrm{ps}=50$; run;
proc freq data=sasuser.simpson;
tables age * i_smoke * i_dead / nocol norow nopercent cmh expected;
weight number;
/* weight indicates multiples */
run;
See for SAS 'trick' to produce Tables in an orientation that gives the ratios of interest (use PROC FORMAT to associate another values with each actual value; then use the ORDER=FORMATTED option in PROC FREQ)

TABLE 1 OF I_SMOKE BY I_DEAD CONTROLLING FOR AGE=18-44
I_SMOKE
I_DEAD

Frequency Expected	0	1	Total
0	327 322.68	13 17.325	340
1	269 273.32	19 14.675	288

TABLE 2 OF I_SMOKE BY I_DEAD CONTROLLING FOR AGE=44-64			
I_SMOKE I_DEAD			
Frequency Expected	0	1	Total
0	147 140.73	52 58.266	199
1	167 173.27	78 71.734	245
Total	314	130	444
TABLE 3 OF I_SMOKE BY I_DEAD CONTROLLING FOR AGE=64-			
I_SMOKE I_DEAD			
Frequency Expected	0	1	Total
0	28 27.913	165 165.09	193
1	7.0868	42 41.913	49
Total	35	207	242

SUMMARY STATISTICS FOR

I_SMOKE BY I_DEAD
CONTROLLING FOR AGE
Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Alt. Hypothesis	DF Value	Prob
Nonzero Correlation	13.239	0.072
Row Mean Scores Differ	13.239	0.072
General Association	13.239	0.072

Estimates of Common Relative Risk (Row1/Row2)

95\%

Type of Study Method Estimate Conf Bounds
Case-Control Mantel-Haenszel 1.3570 .9731 .892 (Odds Ratio) Logit 1.3570 .9711 .894

Cohort Mantel-Haenszel 1.0470 .9961 .101 (Coll Risk) Logit $\quad 1.0340 .9981 .072$

Cohort Mantel-Haenszel 0.8640 .7381 .013
(Col2 Risk) Logit 0.9530 .8491 .071
Confidence bounds for M-H estimates are test-based.

Breslow-Day Test for Homogeneity of the Odds Ratios

Chi-Square $=0.950$ DF $=2$ Prob $=0.622$

Total Sample Size = 1314

Via Stata

clear				
input	str5 age	i_smoke	i_dead	number
	$18 _44$	1	1	19
	$18 _44$	1	0	269
	$18 _44$	0	1	13
	$18 _44$	0	0	327
	$44 _64$	1	1	78
	$44 _64$	1	0	167
	$44 _64$	0	1	52
	$44-64$	0	0	147
	$64-$	1	1	42
	$64-$	1	0	7
	$64-$	0	1	165
	$64-$	0	0	28

end
cc i_dead i_smoke [freq=number], by(age)

age	OR		CI]	M-H Weight	
18_44	1.78	. 87	3.61	5.57	(Cornfield)
44_64	1.32	. 87	1.99	19.56	(Cornfield)
64	1.02	. 42	2.43	4.77	(Cornfield)
Crude	. 68	. 53	. 88		(Cornfield)
M-H combined	1.36	. 97	1.90		

Test of homogeneity ($\mathrm{M}-\mathrm{H}$) chi2 (2) = 0.95 Pr>chi2 $=0.6234$ Test that combined $\mathrm{OR}=1$:

$$
\begin{array}{rrr}
\text { Mantel-Haenszel } \operatorname{chi2}(1)= & 3.24 \\
\operatorname{Pr}>\operatorname{chi} 2 & = & 0.0719
\end{array}
$$

Also available..
cc i_dead i_smoke [freq=number], by (age) woolf
cc i_dead i_smoke [freq=number], by (age) tb
*tb $=$ "test-based"

Aggregating Odds Ratio (OR)'s ...Woolf's Method

$\underline{\text { Recall: data from single } 2 \times 2 \text { table: } \text { or }=\frac{\mathrm{ad}}{\mathrm{bc}}}$

$$
\mathrm{SE}[\ln (\text { or })]=\sqrt{\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}+\frac{1}{\mathrm{~d}}}
$$

$$
\begin{aligned}
& \text { data from several (K) 2x2 tables: } \\
& \qquad \begin{array}{ll}
\ln \left(\mathrm{or}_{\mathrm{Woolf}}\right)=\frac{\sum \mathrm{W}_{\mathrm{k}} \ln \left(\mathrm{or}_{\mathrm{k}}\right)}{\sum \mathrm{w}_{\mathrm{k}}} & \text { (weighted average) } \\
\text { with } \mathrm{w}_{\mathrm{k}}=\frac{1}{\operatorname{Var}\left[\ln \left[\mathrm{or}_{\mathrm{k}}\right]\right]} & \text { (weight } \propto 1 / \text { variance) }
\end{array}
\end{aligned}
$$

$$
\left(\text { note: } \operatorname{Var}=\mathrm{SE}^{2}\right)
$$

$$
\mathrm{SE}\left[\ln \left(\text { or }_{\mathrm{Woolf}}\right)\right]=\sqrt{\frac{1}{\sum \mathrm{~W}_{\mathrm{k}}}}=\sqrt{\frac{\mathrm{Var}^{*}}{\mathrm{~K}}} \quad[\text { see drivation } \#]
$$

(Var* : harmonic mean of K Var's)

$$
\mathrm{CI}[\mathrm{OR}]=\exp \{\mathrm{CI}[\ln (\mathrm{OR})]\}
$$

\# Derivation: $\operatorname{Var}[\Sigma\{\mathrm{w} \times \ln \} / \Sigma \mathrm{w}]=(1 / \Sigma \mathrm{w}])^{2} \times \Sigma\left\{\mathrm{w}^{2} \times \operatorname{Var}[\ln]\right\}$

$$
=(1 / \Sigma \mathrm{w}])^{2} \times \Sigma\{1 / \mathrm{w}\}=1 / \Sigma \mathrm{w} \quad[\text { since } \mathrm{w}=1 / \operatorname{var}[\ln]]
$$

See worked example in Spreadsheet (under Resources Ch 9)
[Robins-Breslow-Greenland SE for \ln or ${ }_{\mathrm{MH}}$ not programmed]
References: A\&B Ch 4.8 and 16, Schlesselman, KKM, Rothman...

Summary Risk Ratio and Summary Rate Ratio

See Rothman pp 147- (Risk Ratio) and pp153- (Rate Ratio)

stratified data

Berkeley Data: M:F Comparative parameters Odds Ratio (OR), Risk Ratio (RR) and Risk Difference (R Δ)

stratified data

Test of equal M:F admission rates; Confidence Intervals for $\mathbf{O R}_{\text {MH }}$ (Berkeley data, KKM and A\&B notation; cf. Rothman'02,Table 8.4, p152)

[^0]: -1- batting averages increased from 1st to 2 nd half of season
 -2- Ruth had greater proportion of his AT BAT's in 1st half than Gehrig

