Combining measures from several strata [cf. M&M 3§2.6, A&B3 §16.2, Rothman2002, Chapter 8]

Why not just add (sum, Σ) the 'a' frequencies across tables (strata), the 'b' frequencies across tables, ... the 'd' frequencies across tables, to make a single 2 x 2 table with entries

Σ a	Σb
Σ b	Σd

and use these 4 cell counts to perform the analyses?

e.g. 1 Batting Averages of Gehrig and Ruth

(see book "Innumeracy" by Paulos)

	Gehrig	Ruth
lst half of season	.290 <	.300
2nd half of season	.390 <	.400
Entire season	.357 >	.333 !!!

Explanation:

	Gehrig	Ruth
1st half of season		
Hits	29	60
AT BAT	100	200
2nd half of season		
hits	78	40
AT BAT	200	100
Entire season		
hits	107	100
AT BAT	300	300

<u>Two features, involving time, created this 'paradox'</u>

-1- batting averages increased from 1st to 2nd half of season

-2- Ruth had greater proportion of his AT BAT's in 1st half than Gehrig

<u>e.g. 2</u> Numbers of Applicants (n), and Admission rates (%) to Berkeley Graduate School

		Men	v	lomen
Faculty	n	% admitted	n	% admitted
A	825	62	108	82
В	560	63	25	68
С	325	37	593	34
D	417	33	375	35
E	191	28	393	27
F	373	6	341	7
Combined	2691	44	1835	30

(see early Chapter in text "Statistics" by Freedman et al)

Paradox: (admission | male) > (admission | male) overall, but, by an large, faculty by faculty, its the other way!!!

Explanation: Women are more likely than men to apply to the faculties that admit lower proportions of applicants.

Remedy: aggregate the within-strata comparisons [like vs. like], rather than make comparisons with aggregated raw data -- see next for classical ways of doing this; MH stands for "Mantel-Haenszel".

For other examples:-

1. See Moore and McCabe(3rd Ed) 2.6 (The Perils of Aggregation, including Simpson's paradox) They speak of 'lurking' variables; in epidemiology we speak of **'confounding'** variables.

2. See Rothman2002, p1 (death rates Panama vs. Sweden) and p2 (20-year mortality in female smokers and non-smokers in Whickham England)

Simpson's paradox is an **extreme form of confounding**. Some textbooks give made-up examples See web site for course 626 for several *real* examples.

Story 4: Does Smoking Improve Survival? in the EESEE Expansion Modules in the website for the text (link from course description) [also in Rothman2002, with finer age-categories]

http://WWW.WHFREEMAN.COM/STATISTICS/IPS/EESEE4/EESEES4.HTM

A survey concerned with thyroid and heart disease was conducted in 1972-74 in a district near Newcastle, United Kingdom by Tunbridge et al (1977). A follow-up study of the same subjects was conducted twenty years later by Vanderpump et al (1996). Here we explore data from the survey on the smoking habits of 1314 women who were classified as being a current smoker or as never having smoked at the time of the original survey. Of interest is whether or not they survived until the second survey.

Results

The following tables summarize the results of the experiment: [note from JH.. We would not call it "an experiment"; mathematical statisticians call any process for generating data "an experiment"]

Table 1: Relationship between smoking habits and 20-yearsurvival in 1314 women (582 Smokers, 732 Non-Smokers)

<u>Smoking Status</u>							
Survival Status	Smoker	Non-Smoker	Compared				
Dead	139	230					
Alive	443	502					
Risk = $\frac{\text{#dead}}{\text{#Tratel}}$	$\frac{139}{582} = 23.9\%$	$\frac{230}{722} = 31.4\%$	Diff: -7.5%				
#10tal	582	132	Ratio: 0.76				
$Odds = \frac{\#dead}{\#alive}$	$\frac{139}{732} = 0.314(:1)$	$\frac{230}{502} = 0.458(:1)$	Ratio: 0.68 *				
			,				

* shortcut:
$$\mathbf{or} = \frac{\mathbf{a} \times \mathbf{d}}{\mathbf{b} \times \mathbf{c}} = \frac{139 \times 502}{230 \times 443} = \frac{69778}{101890} = \mathbf{0.68}$$

A message the tobacco companies would love us to believe!

Table 2: Twenty-year survival status for 1314 women categorizedby age and smoking habits at the time of the original survey.

Age Group	Smoking Status				
(Years)	<u>Survival</u> <u>Status</u>	Smoker	Non- Smoker		
18-44	Dead Alive	19 269	13 327		
			(or =1.78)		
44-64	Dead Alive	78 167	52 147		
			(or =1.32)		
>64	Dead Alive	42 7	165 28		
			(<i>or</i> =1.02)		

The odds ratio is > 1 in each age group!

Why the contradictory results?

Adjustment	(compare like with like, i.e. within-category estimates**)	Ratio**	Estimators ("M-H") [impli
We	ighted averages [explicit weights (w's)]	Risk Ratio	#cases _{index} × DEI
	Precision-based Investigator-chosen (inverse variance) ("Standardized")	Misk Malio	#cases _{ref} × DEN
Mean Difference	$\mathbf{w} \times \overline{\mathbf{y}}_{index} - \mathbf{w} \times \overline{\mathbf{y}}_{ref}$	Rate Ratio	same, except that de amounts of <i>person-t</i> a
	$=$ w × ($\overline{y}_{index} - \overline{y}_{ref}$)		
Risk Difference	$w \times risk_{index} - w \times risk_{ref}$	Odds Ratio	#cases _{index} × "de
	= $w \times (risk_{index} - risk_{ref})$	[case control s	#cases _{ref} × "denc tudy]
Odds Ratio ("Wo	oolf" method, precision based)		same as risk and ra
exp	$[w \times logodds_{index} - w \times logodds_{ref}]$		that "denominators"
= exp	[w × (log [odds ratio]) all logs to base e		ones estimated fro
where $w = 1 / w$	rar[log [odds ratio]] = 1 / (1/a + 1/b + 1/c + 1/d)		size of (stratum-sp

Note: Computational formulae often constructed to minimize number of steps, and avoid division, and so may hide real structure of the estimator.

e.g. 8.1 in Rothman p147, for risk diff. (precision weighting)

Var[risk diff] proportional to $1/N_0 + 1/N_1 = (N_0+N_1)/(N_0 N_1)$ So that the denominator contribution, i.e., the weight, is $w = 1/Var = (N_0 N_1)/(N_0+N_1) = (N_0 N_1)/T$ and numerator contribution is

 $(risk_{index} - risk_{ref}) \times w$ = $(a/N_1 - b/N_0) \times w = (a/N_1 - b/N_0) \times (N_0 N_1)/T$ = $(a N_0 / T - b N_1) / T$ (after some algebra)

icit precision weighting]

Diak Datia	$\text{#cases}_{\text{index}} \times \text{DENOM}_{\text{ref}} / \text{DENOM}_{\text{total}}$
RISK RATIO	#cases _{ref} × DENOM _{index} / DENOM _{total}
Rate Ratio sa	ame, except that denominators are
ar	mounts of <i>person-time</i> , not persons.
	#cases _{index} × "denom" _{ref} / "size" _{total}
Odds Ratio	#cases _{ref} × "denom" _{index} / "size" _{total}
[case control study]	
	same as risk and rate ratio above except
	that "denominators" are <u>partial</u> (pseudo)
	ones estimated from a denominator
	series*("controls"); "size" _{total} refers to the
	size of (stratum-specific) case series and
	denominator series combined. *MODERN
	way to view case-control studies.
	#casesindex × #"rest"ref / total
Odds Ratio	#cases _{ref} × #"rest" _{index} / total

[cohort/prevalence study]

Not that common to use this measure, since odds ratio more cumbersome to explain, and less 'natural'. Might use it to maintain comparability with results of a log-odds (logistic) regression. If #case a small fraction

**NOTE ON RATIO ESTIMATORS: Even though one could (if all denominators were obligingly non-zero) rewrite the ratio estimator as a weighted average of ratios, this would run counter to Mantel's express wishes.. to calculate just one ratio at the end, i.e. a ratio of two sums, rather than a sum of ratios. The main reason is statistical stability: imagine a (simpler, non-comparative) situation where one wished to estimate the overall sex ratio in small day-care facilities: would you average the ratios from each facility, or take a single ratio of the total number of males to the total number of females? The caveat does not apply to absolute differences, where the difference of two weighted averages (same set of weights for both) is the same as the weighed average of the differences.

Matched-pairs: the limiting case of finely stratified data

Examples: pair-matched case-control studies; Mother -> infant transmission of HIV in twins in relation to order of delivery; & others... [see 607 notes for Ch 9] ALSO: **Case-crossover studies** (*self-matched* case-control studies)

eg" Redelmeier: auto accidents, while on/off cell phone when driving

e.g. Response of <u>same</u> subject in each of 2 conditions (self-paired) Responses of matched pair, one in 1 condition, 1 in other Δ 's in paired responses on interval scale, reduced to <u>sign</u> of Δ

The 4 possibilities for 2 pair-members are:

(using *generic* 2 x 2 table: 2nd row might be a 'denominator series' of 1 per case)

The contributions to or_{MH} from the 4 possibilities are ...

Odds Ratio estimator = $\frac{A \times 0 + B \times 1/2 + C \times 0 + D \times 0}{A \times 0 + B \times 0 + C \times 1/2 + D \times 0} = \frac{B}{C}$

Tabular format for displaying matched pair-data

* In matched (self- or other) case-control study, the "denominator series" is not limited to 1 "probe-for-exposure" per case... could ask about "usual" exposure (e.g. % time usually exposed) or sample several "person -moments" ['controls'] per case. i.e. the 2nd row total could be > 2. **Standardization of Rates** [proportion-type and incidence-type] [explicit, investigator-selected weights]

- Usual to first calculate standardized rate for index category (of the determinant) and standardized rate for reference category (of the determinant) separately, then compare the standardized rates.
- If one uses the confounder distribution in one of the two compared determinant categories as the common set of weights, then the standardized rate in this category remains unchanged from the crude rate in this category.
 See the worked example comparing death rates in Quebec males in 1971 and 1991 in the document "Direct" and "Indirect" Standardization:2 sides of same coin?(.pdf) under "Material from previous years" in the c626 web page. this is an interesting local case of natural confounding: relative to that 20 years earlier, the crude mortality rate in 1991 was 1.00. yet, in every age category, the rate in 1991 was at least 10% lower, and in many age-groups, more than 20% lower than in 1971 (in the table, the rate ratios in bold are 71/91, so take their reciprocals to see the rate ratios 91/71)
- Read Rothman's comment (p159) about the *uniformity of effect* (eg a constant rate ratio across age groups in the Que example). Why in his last sentence in that paragraph does he seem to "allow" a weighted average of very different rate ratios, if they were derived from standardization, but NOT if they were derived from (precision-weighted) pooling?
- Rothman (p161) emphasizes how "silly" the term "indirect" standardization used with standardized mortality ratio, is. He correctly points out that "the calculations for any rate standardization, "direct" or "indirect", are basically the same". He leaves it as an exercise (Q4 page 166) to work out what the weights are in the so-called "indirect" standardization used to compute an SMR (or SIR).

Hint: write the SMR (with denoting sum over strata) as

SMR =
$$\frac{\text{Total # cases observed}}{\text{Total # cases expected}}$$

= $\frac{\text{# observed}}{\text{# expected}}$ (*)
= $\frac{\text{observed #}}{\text{ref. rate × exposed PT}}$
= $\frac{\text{observed rate × exposed PT}}{\text{ref. rate × exposed PT}}$
= $\frac{\text{observed rate × w}}{\text{ref. rate × w}}$, with w = exposed PT

If one starts again from (*), one can show that the SMR can also be represented as a weighted average of rate ratios [as was mentioned in footnote to Quebec table*]

$$SMR = \frac{\# \text{ observed}}{\# \text{ expected}}$$

$$= \frac{\frac{\text{obs. rate} \times \text{exposed PT}}{\# \text{ expected}}$$

$$= \frac{\frac{\frac{\text{obs. rate}}{\text{ref. rate}} \times \text{ref. rate} \times \text{exposed PT}}{\# \text{ expected}} \quad (\text{divide & mult. by ref rate})$$

$$= \frac{\frac{\text{obs. rate}}{\text{ref. rate}} \times \# \text{ expected}}{\# \text{ expected}} = \text{weighted ave. of rate ratios}$$

*cf. Liddell FD. The measurement of occupational mortality. *Br J Ind Med.* 1960 Jul;17:228-33.

Table 2Worked	: Twent out calc	y-year su ulations (s	rvival status ee same calcu	for 13 lations	14 wome on sprea	en categ dsheet) f	o rized by ag or	ge and smoking h (* r1 r2 are row	abits at v totals; c	the time of the column the time of the column term of term o	ne original sum an totals) Se	rvey. ee Rothman Ch 8
Γ	Mantel-	Haensze	el summary	odds	ratio, o	r _{MH} ar	nd	× ·	Wool	f: exp[weig	ghted averag	ge of <i>In</i> or 's]
Γ	Mantel	Haensze	el (Chi-Squa	are) Te	est of O	R ₁ = 0	R ₂ = OR ₃ =	= 1	Var[weighted av	e] = 1/ {Sur	n of Weights}
Age Group		<u>Smoki</u>	ing Status	<u>Cal</u> Sumn	culation	<u>ns for</u> ds ratio	Calcul	ations for Test Statistic*		Calculations	for Woolf's I	<u>Method</u>
<u>(10ars)</u>	<u>Surv</u> Status	Smoker	Non- Smoker	n	$\frac{a d}{n}$	$\frac{b c}{n}$	E[a H ₀]	Var[a H ₀]	ln or (1)	Var[<i>ln</i> or]	$\frac{W}{(2)}$	$\underline{\mathbf{W}} \times ln$ or
							$\frac{r1 \bullet c1}{n}$	$\frac{r1 \cdot r2 \cdot c1 \cdot c2}{n^2 \cdot \{n-1\}}$		1/a + 1/b + 1/c + 1/d	$\frac{1}{\operatorname{Var}[\ln \operatorname{or}]}$	(1) × (2)
18-44	Dead Alive	19 269	$ \begin{array}{r} 13\\327\\\hline (or = 1.78)\end{array} $	628	9.89	5.59	14.7	7.6	0.575	0.1363	7.335	4.218
44-64	Dead Alive	78 167	52 147 (or =1.32)	444	25.82	19.56	71.7	22.8	0.278	0.0448	22.30	6.199
>64	Dead Alive	42 7	165 28 (or =1.02)	242	4.86	4.77	41.9	4.9	0.018	0.2084	4.798	0.086
		139	Sum	1314	40.57	29.92	128.3	35.2			34.433	10.503
MH Odds Ratio $\boxed{1.36}$ weighted ave. of ln or 's $10.503/34.433 = 0.305$ (40.57/29.92) exp[weighted ave. of ln or 's] $exp[0.305] = \boxed{1.36}$												
or _{MH}	$= \frac{a}{b}$	$\frac{d / n}{c / n} =$	$\frac{40.57}{29.92} = 1.$	36 ;	X^2	MH (1 df)	$=\frac{\{a-v\}}{v}$	$\frac{E[a H_0]}{ar[a H_0]}$	= {13	$\frac{9-128.3}{35.2}^2$	= 3.24 X	_{MH} = 1.80
(Miettin	nen) Te	st-based	100(1 -)	% CI f	for OR:	or _M	$_{\rm H}^{1 \pm z}$ /2 /	$X_{\rm MH} = 1.36^{1} \pm$	1.96/1.	80 = 0.97 t	o 1.89 (95%	% CI)
(Woolf) 100(1	-)% C	I for OR: e	xp[{we	eighted	ave. of	$ln \text{ or's} \} \pm 1$	z /2 Sqrt[1/34.43	33] = ex	$xp[0.305 \pm 1]$.96×0.170]	= 0.97 to 1.89

stratified data

Via SAS

data sasuser.simpson; input age \$ i_smoke i_dead number;

lines	;		
18-44	1	1	19
18-44	1	0	269
18-44	0	1	13
18-44	0	0	327
44-64	1	1	78
44-64	1	0	167
44-64	0	1	52
44-64	0	0	147
64-	1	1	42
64-	1	0	7
64-	0	1	165
64-	0	0	28
;			

run; options ls = 75 ps = 50; run; proc freq data=sasuser.simpson;

tables age * i_smoke * i_dead /
 nocol norow nopercent cmh expected;

weight number;
/* weight indicates multiples */

run;

See for SAS 'trick' to produce Tables in an orientation that gives the ratios of interest (use PROC FORMAT to associate another values with each actual value; then use the ORDER=FORMATTED option in PROC FREQ)

TABI CC	LE 1 OF I_ ONTROLLING	_SMOKE BY G FOR AGE :	I_DEAD =18-44					
I_SMOKE I_DEAD								
Frequency Expected	0	0 1						
0	327 322.68	13 17.325	340					
1	269 273.32	19 14.675	288					
 Total	596	32	628					
TABLE 2 OF I_SMOKE BY I_DEAD CONTROLLING FOR AGE=44-64								
I_SMOKE	E I_DE	EAD						
Frequency Expected	0	1	Total					
0	147 140.73	52 58.266	199					
1	167 173.27	78 71.734	245					
 Total	314	130	444					
TABI (LE 3 OF I_ CONTROLLIN	_SMOKE BY IG FOR AG I	I_DEAD E=64-					
I_SMOKE	E I_DH	EAD						
Frequency Expected	0	1	Total					
0	28 27.913	165 165.09	193					
i	7.0868	42 41.913	49					
+ Total		++ 207	242					

SUMMARY STATISTICS FOR

I_SMOKE BY I_DEAD

CONTROLLING FOR AGE

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Alt. Hypothesis	DF	Value	Prob
Nonzero Correlation Row Mean Scores Differ General Association	1 1 1	3.239 3.239 3.239 3.239	0.072 0.072 0.072

Estimates of Common Relative Risk (Row1/Row2)

Type of Study	y Method H	Stimate	95% Conf Bo	ounds
Case-Control	Mantel-Haensz	el 1.357	0.973	1.892
(Odds Ratio)	Logit	1.357	0.971	1.894
Cohort	Mantel-Haensz	el 1.047	0.996	1.101
(Coll Risk)	Logit	1.034	0.998	1.072
Cohort	Mantel-Haensz	el 0.864	0.738	1.013
(Col2 Risk)	Logit	0.953	0.849	1.071
Confidence are test-ba	bounds for ased.	M-H est	timate	es

Breslow-Day Test for Homogeneity of

the Odds Ratios

Chi-Square = 0.950 DF = 2 Prob = 0.622

Total Sample Size = 1314

Via Stata

clear				
input	str5 age	i_smoke	i_dead	number
	18_44	1	1	19
	18_44	1	0	269
	18_44	0	1	13
	18_44	0	0	327
	44_64	1	1	78
	44_64	1	0	167
	44_64	0	1	52
	44_64	0	0	147
	64_	1	1	42
	64_	1	0	7
	64_	0	1	165
	64_	0	0	28
end				
cc i_c	dead i_smok	ke [freq=	=number],	by(age)
	age OR	[95% CI]	M-H Weigl	nt

age		[90% CI]	M-H WEIGHL	
18_{44} 44_64 64_	1.78 1.32 1.02	.87 3.61 .87 1.99 .42 2.43	5.57 19.56 4.77	(Cornfield) (Cornfield) (Cornfield)
Crude M-H combined	.68 1.36	.53 .88 .97 1.90		(Cornfield)
Test of homog	eneity (M	-H) chi2(2)	= 0.95 Pr>c	chi2 = 0.6234
	Test that	combined OF Mantel-Hae	R = 1: enszel chi2(1) Pr>chi2) = 3.24 2 = 0.0719
4.1 .1 1.1				

Also available...

i_dead i_smoke [freq=number], by(age) woolf CC i_dead i_smoke [freq=number], by(age) tb CC *tb = "test-based"

Aggregating Odds Ratio (OR)'s ...Woolf's Method

$$\begin{array}{l} \underline{\text{Recall: data from single 2x2 table: } \text{ or } = \frac{\text{ad}}{\text{bc}} \\ \underline{\text{SE[} ln (\text{or})]} = \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}} \\ \underline{\text{data from several (K) 2x2 tables: } (: \text{summation over strata})} \\ \underline{ln (\text{or}_{\text{Woolf}})} = \frac{\underline{w_k ln (\text{or}_k)}}{w_k} \quad (\text{weighted average}) \\ \text{with } w_k = \frac{1}{\text{Var[} ln [\text{or}_k]]} \quad (\text{weight } 1/\text{variance}) \\ (\text{note: Var} = \text{SE}^2) \\ \underline{\text{SE[} ln (\text{or}_{\text{Woolf}})]} = \sqrt{\frac{1}{w_k}} = \sqrt{\frac{\text{Var}^*}{K}} \quad [\text{see drivation } \#] \\ (\text{Var}^* : \text{harmonic mean of K Var's}) \end{array}$$

 $CI[OR] = exp\{CI[ln(OR)]\}$

Derivation: Var[{ $w \times ln$ } / w] = $(1/w])^2 \times \{ w^2 \times Var[ln] \}$

 $= (1/w)^2 \times \{1/w\} = 1/w$ [since w = 1/var[ln]]

See worked example in Spreadsheet (under Resources Ch 9) [Robins-Breslow-Greenland SE for ln or_{MH} not programmed]

References: A&B Ch 4.8 and 16, Schlesselman, KKM, Rothman...

Summary Risk Ratio and Summary Rate Ratio

See Rothman pp 147- (Risk Ratio) and pp153- (Rate Ratio)

	D	E a	Е b	m1	(U:	sing K	KM table	e 17.16	notat	ion)						
	D	c n _l	n_	<u>m</u> 0 n	f	or $R\Delta$			for	OR	f	or RR	hana	for	RΔ	
Fac	ulty				a/n _l	b/n ₀	R	<u>a∙d</u> b∙c	n <u>a•d</u>	n n	$\begin{bmatrix} \frac{a \cdot n_0}{b \cdot n_1} \end{bmatrix}$	$\frac{\mathbf{a} \cdot \mathbf{n}_0}{\mathbf{n}}$	$\frac{D \cdot \Pi_1}{n}$	var(R)*	w = 1/var	w∙R
A	dmitted? Y <u>N</u> All	Men 512 <u>313</u> 825	Women 89 19 108	All 601 <u>332</u> 933	0.62	0.82	-0.20	0.35	10.4	29.9	0.75	59.3	78.7	1.63E-3	614	-125
В	Y <u>N</u> All	353 <u>207</u> 560	17 <u>8</u> 25	370 215 585	0.63	0.68	-0.05	0.80	4.8	6.0	0.93	15.1	16.3	9.12E-3	110	-5
С	Y <u>N</u> All	120 <u>205</u> 325	202 391 593	322 596 918	0.37	0.34	+0.03	1.13	51.1	45.1	1.08	77.5	71.5	1.10E-3	913	26
D	Y <u>N</u> All	138 <u>279</u> 417	131 244 375	269 <u>523</u> 792	0.33	0.35	-0.02	0.92	42.5	46.1	0.95	65.3	69.0	1.14E-3	879	-16
Е	Y <u>N</u> All	53 <u>138</u> 191	94 299 393	147 <u>437</u> 584	0.28	0.24	+0.04	1.22	27.1	22.2	1.16	35.7	30.7	1.51E-3	661	25
F	Y <u>N</u> All	22 <u>351</u> 373	24 317 341	101 668 769	0.06	0.07	-0.01	0.83	9.8	11.8	0.84	10.5	12.5	3.41E-4	2935	-33
All	Y <u>N</u> All	1198 <u>1493</u> 373	557 <u>1278 </u> 341	1755 <u>2771</u> 4526	0.44	0.30	+0.14	1.84			1.47 					
								:	145.8	161.1		263.4	278.7		6113	-129
								OR _{MH}	$=\frac{145.}{161.}$	$\frac{8}{1} = 0.91$	RR _{MH} =	$\frac{263.4}{278.7}$	= 0.94	R	$w = \frac{W \bullet R}{W}$	$=\frac{-129}{6113}=-0.02$

stratified data

Berkeley Data: M:F Comparative parameters Odds Ratio (OR), Risk Ratio (RR) and Risk Difference (RA)

* var(R) = Sum of 2 binomial variances

stratified data

Test of equal M:F admission rates; Confidence Intervals for OR_{MH} (Berkeley data, KKM and A&B notation; cf. Rothman'02, Table 8.4, p152)

	CI for OR _{MH} [notation from A&B p461]	
TEST $\pi_{M} = \pi_{F}$	(Method of Robins, Breslow & Greenland 1986 *)	CI OR _{MH} continued
Faculty $E[a H_0]$ Var[aH_1]	$\frac{a+d}{a} = \frac{b+c}{a} = \frac{a \cdot d}{a} = \frac{b \cdot c}{a}$	
Ndmittado Man Manan 1]	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$lnOR_{MH} = ln \ 0.91 = -0.10$
Admitted? Men women All A Y 512 89 601 531.4 21.9	0.57 0.43 10.4 29.9 5.9 17.0 4.5 12.9	Var[lnOR _{MH}] = 0.0066
All 825 108 933		SE[lnOR _{MH}] = Var = 0.08
B Y 353 17 370 354.2 5.6 N 207 8 215	0.62 0.38 4.8 6.0 3.0 3.7 1.8 2.3	$CI[lnOR_{MH}] = -0.10 \pm z \cdot 0.08$
All 560 25 585		= -0.26 to 0.06 (95%)
C Y 120 202 322 114.0 47.9 N 205 391 596	0.56 0.44 51.1 45.1 28.5 25.1 22.7 20.0	CI[OR _{MH}] =
All 325 593 918		exp[-0.26] to exp[0.06]
D Y 138 131 269 141.6 44.3 <u>N</u> 279 244 523 All 417 375 792	0.48 0.52 42.5 46.1 20.5 22.3 22.0 23.9	= 0.77 to 1.06
E Y 53 94 147 48.1 24.3 N 138 299 437	0.60 0.40 27.1 22.2 16.4 13.4 10.8 8.8	CI [OR _{MH}] " <u>test-based</u> " (Miettinen 1976)
All 191 393 584		Chi-MH = $ \ln or_{MH} / se[\ln or_{MH}] ==>$
F Y 22 24 101 24.0 10.8 N 351 317 668	0.47 0.53 9.8 11.8 4.6 5.6 5.1 6.2	$se[ln or_{MH}] = ln or_{MH} / Chi-MH \{0.10/1.52=0.08\}$
All 373 341 769	Rothnan2002, p152 uses different notation	$CI[ln OR_{MH}] = ln \text{ or } \pm z \text{ SE}[ln \text{ or}_{MH}]$
All Y 1198 557 1755 N 1493 1278 2771	A&B {R,S, P,Q} \rightarrow Rothman{G,H, P,Q}	CI[OR _{MH}] = CI [exp[ln or _{MH}]]
All 373 341 4526		$= \exp[CI \text{ for } \ln] = or_{MH} [1 \pm z/Chi-MH]$
• 1213.4 134.7	(R_{+}) (S_{+})	$= \text{or}_{MH} [1 \pm 1.96/\sqrt{1.52}]$ in our example
$\frac{\{ a - a H_0 \}^2}{\text{Var}[a H_0]} = \frac{\{1198 - 1213.4\}^2}{154.7} = 1.52 [#]$	Var[ln OR _{MH}] = $\frac{P \cdot R}{2R_{+}^2} + \frac{[P \cdot S + Q \cdot R]}{2R_{+} \cdot S_{+}} + \frac{Q \cdot S}{2S_{+}^2}$	
This MH X^2 of 1.52 is "NS" in the ² 1df distribution	$= \frac{78.9}{2^{\bullet}145.8^2} + \frac{87.1 + 66.9}{2^{\bullet}14.5.8 \cdot 161.1} + \frac{74.1}{2^{\bullet}161.1^2} = 0.0066$	CI $[\mathbf{R}\Delta]$ (continued from last column, previous page)
[#] see Rothman2002, p162	continued at top of next column	$\mathbf{SE}[\mathbf{R}\Delta] = \sqrt{1}/\Sigma \mathbf{w} = 0.013$
		CI $[\mathbf{R}\Delta] = -0.02 \pm z \times 0.013$