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4.5 Comparison of two proportions

As in the comparison of two means, considered in §4.3, we can distinguish
between two situations according to whether individual members of the two
samples are or are not paired.

Paired case

Suppose there are N observations in cach sample, forming therefore N pairs of
observations. Denoting the samples by 1 and 2, and describing each individual as
A or not A4, there are clearly four types of pairs:

Sample Number

Type 1 2 of pairs
1 A A k
2 A Not 4 r
3 Not 4 A N
4 Not 4 Not 4 m

If the number of pairs of the four types are as shown above, another way of
exhibiting the same results is in the form of a two-way table:

Sample 2
A Not 4
A k r | k4
Sample 1
Not 4 s m \ s+m
k-+s r-+m \ N

The proportions of A individuals in the two samples are (k + r)/N in sample 1
and (k + s)/N in sample 2. We are interested in the difference between the two
proportions, which is clearly (r — s)/N.

Consider first a significance test. The null hypothesis is that the expectation
of (r — 5)/N is zero, or in other words that the expectations of r and s are equal.
This can conveniently be tested by restricting our attention to the r + s pairs in
which the two members are of different types. Denote r + s by n. On the null
hypothesis, given n disparate or ‘untied’ pairs, the number of pairs of type 2 (or,
indeed, of type 3) would follow a binomial distribution with a parameter equal to
%. The test therefore follows precisely the methods of §4.4. A large-sample test is
obtained by regarding

(4.17)
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as a standardized normal deviate. A continuity correction may be applied by reduc-
ing the absolute value of r — %n by % This test is sometimes known as McNemar’s
test. An alternative form of (4.17), with continuity correction included, is

(s - 1?
Zz—T, (418)

where z2 may be regarded as a X%l) variate (§3.8). This is one of the few statistical
calculations that really can be done in one’s head; see also (5.8).

McNemar’s test is based on the normal approximation to the discrete bino-
mial distribution. The situation is similar to that considered in §4.4 except for the
complication of the tied pairs, k and m; with the correction for continuity, (4.17)
corresponds to (4.14) with wo = % The significance test (4.18) will be satisfactory
except for small values of r + s (less than about 10), and in such cases an exact
test may be carried out on the r+s untied pairs. For this purpose the F
distribution may be used, as in (19.28).

It should be noted that, although the significance test is based entirely on the
two frequencies r and s, the estimated difference between the proportions of
positives and therefore also its standard error depend also on N. That is,
evidence as to the existence of a difference is provided solely by the united
pairs; an assessment of the magnitude of that difference must allude to the
remainder of the data. The distinction between statistical and clinical signifi-
cance, referred to in §4.1, must be borne in mind.

The calculation of confidence limits for the difference between the two
proportions involves accounting for the variation in the number of united
pairs, r 4+ s. This may be achieved by deriving the standard error from the
properties of the multinomial distribution, which is an extension of the binomial
distribution when there are more than two classes. Approximate confidence
limits for the difference between the two proportions are then given by taking

its standard error to be
1 r — 872

(Fleiss, 1981), and using the usual normal theory. However, this method is
unreliable for small frequencies, when the probability that the parameter is
included within the interval tends to be considerably less than the nominal con-
fidence coefficient (Newcombe, 1998¢). In extreme cases the limits may fall outside
the permissible range of [0, 1]. More satisfactory methods, such as Newcombe’s
recommended Method 10, require extensive computation, and are best imple-
mented by a computer program such as that included in StatsDirect (1999).
There is a potential discrepancy between the test (4.17) and the confidence
limits obtained using (4.19). If the test is just significant at the 5% level. with
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z = 1.96, the lower confidence limit is higher than zero. This arises because of the
second term within the square root in (4.19). The discrepancy will be slight
except for large differences between r and s.

When data of this type are obtained in a case-control study, emphasis is
often directed to the odds ratio (see (4.22)), which can, for paired data, be
estimated by the simple ratio r/s (see (19.26)). Tests and confidence limits can
be obtained by the standard methods applied to the simple proportion r/(r + s)
(see (19.27)).

Example 4.9

Fifty specimens of sputum are each cultured on two different media, A and B, the object
being to compare the ability of the two media to detect tubercle bacilli. The results are
shown in Table 4.4. The null hypothesis that the media are equally effective is tested by the
standardized normal deviate

C12-(H(14) 5
T ivia 18Tl
There is very little doubt that A is more effective than B. The continuity correction would

reduce the normal deviate to 4.5/1-871 = 2.41, still a significant result (P = 0-016).
The exact significance level is given by

=267 (P =0-008).

P=2x (1)*[1+14+ (14 x 13/2)] = 0-b13.

Table 4.4 Distribution of 50 specimens of sputum accord-
ing to results of culture on two media.

Medium
o —— Number of
Type A B sputa
1 + C o+ 20
2 + — 12
3 - + 2
4 - _ 16
50
Alternative layout
Medium B
+ - Total
Medium A+ 20 12 32
- 2 16 18

Total 22 28 50
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The mid-P value is obtained by taking only one-half of the last term in the above
expression and is 0-007, close to the approximate value 0-008 obtained above.

The approximate 95% confidence limits for the difference between the proportions of
positive sputum on the two media are, from (4.19),

(12-2) N 1:96+/(14 — 102/50)
50 50
=02040-14
= 0-06 and 0-34.

More exact limits (Newcombe, 1998¢) are 0-06 and 0-33 (StatsDirect, 1999).

Unpaired case: two independent samples

Suppose these are two populations in which the probabilities that an individual
shows characteristic 4 are 7 and . A random sample of size n; from the first
population has r; members showing the characteristic (and a proportion
p1 = r1/n1), while the corresponding values for an independent sample from
the second population are ny,r, and py = ry/ny. In the general formulae (4.8)
and (4.9),

my = and vy = m (1l — ) /ng;
My = T2 and Uy = '1T2(1 — ’ATQ)/HQ.
Hence,

E(Pl *Pz) = mp — M2

and . (4.20)
7T1(1 - ’lT]) +’7T7_(1 41T2)

var(py — p2) =
ny na

For confidence limits, 7, and w, are unknown and may be replaced by p; and p,
respectively, to give

var(py — pp) =ML 2B (4.21)
ny n
where
g=1-—p
and
¢ =1-ps.

Approximate limits then follow by applying the usual normal theory. Newcombe
(1998b) shows that this method tends to give confidence intervals with too low a
coverage probability. His paper describes another method (Method 10) with
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more acceptable properties. A more complex method of Miettenen and
Nurminen (1985). implemented in StatsDirect (1999), also has satisfactory cover-
age properties.

Suppose we wish to test the null hypothesis that ; = 2. Call the common
value 7. Then p, and p, are both estimates of m, and there is little point in
estimating 7 (as in (4.21)) by two different quantities in two different places in
the expression. If the null hypothesis is true, both samples are from effectively the
same population, and the best estimate of  will be obtained by pooling the two
samples, to give

it h
n1+l’12‘

This pooled estimate is now substituted for both ; and w3 to give

1 1
var(py — p2) —pq<;l+;2>,
writing as usual ¢ = 1 — p. The null hypothesis is thus tested approximately by
taking
pr—pm

Vo]

as a standardized normal deviate. .

Z =

Example 4.10

In a clinical trial to assess the value of a new method of treatment (A) in comparison with
the old method (B), patients were divided at random into two groups. Of 257 patients
treated by method A, 4! died; of 244 patients treated by method B, 64 died. Thus,
pi = 41/257 =0-1595 and p> = 64/244 = 0.2623.

The difference between the two fatality rates is estimated as 0-1595—0-2623
— —0-1028. For 95% confidence limits we take

(0-1595)(0-8405)  (0-2623)(0-7377)

var(pi = p2) = 257 + 244
— 00005216 + 0-0007930
— 0-0013146

and

SE(p; —p2) = 4/0-0013146 = 0-0363.
Thus, 95% confidence limits are

—0-1028 + (1-96)(0-0363) = —0-0317 and — 0-1739,
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the minus sign merely serving to indicate in which direction the difference lies.
For the significance test, we form the pooled proportion

p = 105/501 = 0-2096

and estimate SE(p; — p2) as

\/ [(02096)(0.7904) @—7 + ﬁ)]
= (-0364.

Thus, the normal deviate is
—0-1028

There is strong evidence of a difference in fatality rates, in favour of A.

In this example, the frequencies are sufficiently large to justify the approximate
formula for confidence limits. Newcombe’s (1998b) Method 10 gives 95% limits as
(~0-0314, — 0-1736); the method of Miettenen and Nurminen (1985) gives (—0-0316,
—0-1743).

Note that, in Example 4.10, the use of p changed the standard error only
marginally, from 0-0363 to 0-0364. In fact, there is likely to be an appreciable
change only when n; and n are very unequal and when p; and p, differ
substantially. In other circumstances, either standard error formula may be
regarded as a good approximation to the other, and used accordingly.

In epidemiological studies it is often appropriate to measure the difference in
two proportions by their ratio, p1/p2, rather than their difference. This measure
is referred to as the risk ratio, rate ratio or relative risk, depending on the type of
study. In case—control studies the relative risk cannot be evaluated directly but,
in many circumstances, the odds ratio, defined by

_pi/(0=p)
OR= 7 ) (4.22)

is a good approximation to the relative risk (Chapter 19). From the point of
view of significance testing it makes no difference which measure is used and
the method above or the extensions given later in this section are appro-
priate.

The confidence limits for the risk ratio and odds ratio both involve the use of
logarithms, and the natural or Napierian logarithm must be used. In natural
logarithms the base is e (= 2-7183); log, x is usually written as Inx, and
Inx = 2-3026 log;,x. Most pocket calculators have a key for Inx and for the
antilogarithm, the exponential of x, often written as e*, so that the conversion
formula is not normally required.

Writing R for n1/p». we have
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_ ri/ny
ra/n

(4.23)

and approximately (using formula (5.19) given later)

1
SE(InR) = r 12 (4.24)
rnom o r m

and the 95% confidence interval for R is
exp[ln R = 1-96SE(In R)].

For more exact limits, see Koopman (1984), Miettenen and Nurminen (1985)
and Gart and Nam (19883).

For a case—control study (§19.4) we must change the notation since there are
no longer samples from the two populations, but instead cases of disease and
controls (non-cases) are sampled separately and their exposure to some factor
established. Suppose the frequencies are as follows:

Cases Controls
+ a c \ atc
Factor |
— b d ©ob+d
a+b c+d n

Then the observed odds ratio is given by

#ad

OR = —
be

(4.25)

and, approximately,

SE[In(OR)] = ¢<§+—};+%+%}. (4.26)

Confidence limits based on a normal approximation using (4.26) are some-
times known as logit limits; they are illustrated below in Example 4.1 1. If any of
the cell frequencies are small, more complex methods should be used. Exact
limits are mentioned later, on p. 137, but an adequate approximation 18 often
given by the method of Cornfield (1956). The expected values of the frequencies
used in (4.25) will give a ‘true’ odds ratio denoted by . The 95% confidence
limits are the two values of ¥ for which, given the marginal totals, the observed
value of @ has a one-sided P value of 0-025. That is, the limits are the solutions of

a— AW .
e = 96, (4.27)
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where A(() is the value of a which, with the observed marginal totals, would
give an odds ratio of U, and var (a; ) is the variance of a for that value of .
That is,

A(d —a+ A)
- == 4.28
(a+b-A)(a+c—A) b (4.28)
and
1 1 1 1 -
Vdf(“v“”—ﬁ*m*m*d;wﬂ)' (429)

It is tedious to solve (4.27), but the calculation can readily be set up as a
spreadsheet calculation and solved quickly by trial and error. Using a trial
value for A, Y is obtained from (4.28) and var(a; ) from (4.29). These are then
substituted in the left-hand side of (4.27). The aim 1s to choose values of A so that
(4.27) gives +1 .96. This is achieved by trying different values and iterating. See
also Breslow and Day (1980, §4.3) or Fleiss (1981, §5.6).

Example 4.11

Liddell er al. (1984) reported on a case-control study investigating the association of
bronchial carcinoma and asbestos exposure in the Canadian chrysolite mines and mills.
The data were as follows:

Asbestos exposure Lung cancer Controls
Exposed 148 (a) 372 (¢)
Not exposed 75 (b) 343 (d)

The calculations are:

OR = (148 x 343)/(75 x 372) = 1-82

In OR = 0-599
SE(In OR) = —1—+l+L+L = /002569 = 0-160
=@ istm ) Y S

95% confidence interval for In OR =0-599 £ 1.96 x 0 160
= 0285 to 0-913,
95% confidence interval for OR = exp(0-285) to exp (0-913)
=1-33 to 2-49.

Cornfield’s method, using (4.27)—(4.29), gives the same Jimits of 1:33 and 2-49.

2 x 2 tables and x* tests

An alternative way of displaying the data of Example 4.10 is shown in Table 4.5.
This is called a 2 x 2. or sometimes a fourfold. contingency table. The total
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frequency, 501 in this example, is shown in the lower right corner of the table.
This total frequency or grand total is split into two different dichotomies repre-
sented by the two horizontal rows of the table and the two vertical columns. In
this example the rows represent the two treatments and the columns represent
the two outcomes of treatment. There are thus 2 x 2 =4 combinations of row
and column categories, and the corresponding frequencies occupy the four inner
cells in the body of the table. The total frequencies for the two row categories and
those for the two columns are shown at the right and at the foot, and are called
marginal totals.

We have already used a 2 x 2 table (Table 4.4) to display the results needed
for a comparison of proportions in paired samples, but the purpose was a little
different from the present approach, which is concerned solely with the unpaired
case.

We are concerned, in Table 4.5, with possible differences between the fatality
rates for the two treatments. Given the marginal totals in Table 4.5, we can easily
calculate what numbers would have had to be observed in the body of the table
to make the fatality rates for A and B exactly equal. In the top left cell, for
example, this expected number is

105 x 257
501

since the overall fatality rate is 105/501 and there are 257 ‘individuals treated
with A. Similar expected numbers can be obtained for each of the four inner
cells, and are shown in Table 4.6 (where the observed and expected numbers are
distinguished by the letters O and E). The expected numbers are not integers and
have been rounded off to 3 decimal places. Clearly one could not possibly observe
53.862 individuals in a particular cell. These expected numbers should be thought
of as expectations, or mean values, over a large number of possible tables with
the same marginal totals as those observed, when the null hypothesis is true.

Note that the values of E sum, over both rows and columns, to the observed
marginal totals. It follows that the discrepancies, measured by the differences
O — E, add to zero along rows and columns; in other words, the four discrepan-
cies are numerically the same (12.862 in this example), two being positive and
two negative.

In a rough sense, the greater the discrepancies, the more evidence we have
against the null hypothesis. It would therefore seem reasonable to base a sig-
nificance test somehow on these discrepancies. It also seems reasonable to take
account of the absolute size of the frequencies: a discrepancy of 5 is much more
important if E = 5 than if E = 100.

It turns out to be appropriate to calculate the following index:

X = Z(i'E—E—)i, (430)

= 53-862,
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Table 4.5 2 x 2 table showing results of a clinical trial.

Outcome
Treatment VDeath B 4;&2&7 Total
A - ‘7;*,4 216 ,25;
B 64 180 244
Total 105 396 ;(;

Table 4.6 Expected frequencies and contributions to X? for data in Table 4.5.

QOutcome

Treatment Death Survival Total

A 0 41 216 257
B 53.862 203138 257
O-E ~12.862 12:862 0
(0 - EY 165431 165-431
(0-EY/E 3.071 0-814

B 0 64 180 244
E 51-138 192-862 244
O-E 12-862 —12:862 0
(0 - EY 165-431 165-431
(0-EV/E 3235 0-858

Total 0] 105 396 501
E 105 396
0—E 0 0

the summation being over the four inner cells of the table. The contributions to
X2 from the four cells are shown in Table 4.6. The total is

x2 = 13.071 4 0-814 + 3-235+0-858
=7-978.

On the null hypothesis, X* follows the X{y distribution (see §3.8), the approxi-
mation improving as the expected numbers get larger. There is one degree of
freedom because only one of the values of E is necessary to complete the whole
tahle Reference to Table A2 shows that the observed value of 7-978 is bevond
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the 0-01 point of the xfl) distribution, and the difference between the two fatality
rates is therefore significant at the 1% level. The precise significance level may be
obtained by taking the square root of 7-978 (= 2-82) and referring to Table Al;
this gives 0-005.

On p. 126, we derived a standardized normal deviate by calculating the
standard error of the difference between the two proportions, obtaining the
numerical value of 2-82. This agrees with the value obtained as the square root
of X2. In fact it can be shown algebraically that the X 2 index is always the same
as the square of the normal deviate given by the first method. The probability
levels given by the two tests are therefore always in agreement.

The X2 index is often denoted by x*, although it seems slightly preferable
to reserve the latter for the theoretical distribution, denoting the calculated value
by X2

There are various alternative formulae for X2, of which we may note one.
Denote the entries in the table as follows:

Column

1 2

1 a b 1

Row
2 c d r
- Sll _ 12 N,
Then
2

Xzz(ad—bc)N (431)

r1ra2s152 ’ -

This version is particularly suitable for use with a calculator.

We have, then, two entirely equivalent significance tests. Which the user
chooses to use is to some extent a matter of taste and convenience. However,
there are two points to be made. First, the standard error method, as we have
seen, not only yields a significance test but also leads naturally into the calcula-
tion of confidence intervals. This, then, is a strong argument for calculating
differences and standard errors, and basing the test on these values rather than
on the X2 index. The main counter-argument is that, as we shall see in §8.5 and
§8.6 the X* method can be generalized to contingency tables with more than two
rows and columns.

It is important to remember that the X? index can only be calculated from
2 x 2 tables in which the entries are frequencies. A common error is to use itfora
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table in which the entries are mean values of a certain variable; this practice 1s
completely erroneous.

A closely related method of deriving a significance test is to work with one of
the frequencies in the 2 % 2 table. With the notation above, the frequency
denoted by a could be regarded as a random variable and its significance assessed
against its expectation and standard error calculated conditionally on the mar-
ginal totals. This method proceeds as follows, using O, E and V'to represent the
observed value, expected value and variance of a:

E:£a+b)(a+c)

N
C(atb)erd)at bt d)
Ve mv e | (4.32)
, (0-E)
|4

Apart from a factor of (N-1)/N, (4.32) is equivalent to (4.31). This form is
particularly convenient when combining the results of several studies since the
values of O, E and V may be summed over studies before calculating the test
statistic. Yusuf ef al. (1985) proposed an approximate method of estimating the
odds ratio and its standard error by

OR = exp (O I;E)

SE(in(OR)] = VIT/

(4.33)

This method was introduced for the combination of studies where the effect was
small, and is known to be biased when the odds ratio is not small (Greenland &
Salvan, 1990).

More details of such methods are given in §15.6 and of their application in
overviews or meta-analyses in §18.10.

Example 4.12
Consider the data of Example 4.11. We have

O=148, E=12362, V= 42038
and (4.33) gives

OR = exp(24-38/42-038) = 1.79
SE[In(OR)] = 0-154.

e eamn v Alacs t4 thace fannd in Examnle 4 11
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Both the standard error test and the x* test are based on approximations
which are valid particularly when the frequencies are high. In general, two
methods of improvement are widely used: the application of a continuity correc-
tion and the calculation of exact probabilities.

Continuity correction for 2 x 2 tables

This method was described by F. Yates and is often called Yates’s correction. The
X(zy, distribution has been used as an approximation to the distribution of X? on
the null hypothesis and subject to fixed marginal totals. Under the latter con-
straint only a finite number of tables are possible. For the marginal totals of
Table 4.5, for example, all the possible tables can be generated by increasing or
decreasing one of the entries by one unit at a time, until either that entry or some
other reaches zero. (A fuller discussion follows later in this section.) The position,
therefore, is rather like that discussed in §3.8 where a discrete distribution
(the binomial) was approximated by a continuous distribution (the normal). In
the present case one might base the significance test on the probability of the
observed table or one showing a more extreme departure from the null hypoth-
esis. An improvement in the estimation of this probability is-achieved by redu-
cing the absolute value of the discrepancy, O — E, by 1 before calculating X 2 In
Example 4.10, Table 4.6, this would mean taking |O — E| to be’'12:362 instead of
12-862, and the corrected value of X2, denoted by Xf, is 7-369, somewhat less
than the uncorrected value but still highly significant.

The continuity correction has a relatively greater effect when the expected
frequencies are small than when they are large. The use of the continuity correc-
tion gives an approximation to the P value in the exact test described below. As
in the analogous situations discussed carlier in this chapter (and see also p. 137),
we prefer the mid-P value, which corresponds to the uncorrected X2 test. We
therefore recommend that the continuity correction should not routinely be
employed.

The continuity-corrected version of (4.31) 1s

(lad — be| — A N)*N
F1r25182 '

X? =

c

(4.34)

If the continuity correction is applied in the x? test, it should logically be
applied in the standard error test. The procedure there is to calculate p1 — p2
after the frequencies have been moved half a unit nearer their expected
values, the standard error remaining unchanged. Thus, in Example 4.10, we
should have pyy = 41.5/257 = 0-1615,py(¢) = 63-5/244 = 0-2602, giving z(
— —0-0987/0-0364 = —2-71. Since (—2-71)2 = 7-34, the result agrees with that
for X? apart from rounding errors.
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The exact test for 2 x 2 tables

Even with the continuity correction there will be some doubt about the adequacy
of the x? approximation when the frequencies are particularly small. An exact
test was suggested almost simultaneously in the mid-1930s by R.A. Fisher,
1.0. Irwin and F. Yates, and is often called ‘Fisher’s exact test’. Tt consists in
calculating the exact probabilities of the possible tables described in the previous
subsection. The probability of a table with frequencies

a b r

is given by the formula

7'1! I"z! Sl‘. Sz‘.

Ntal bl cld! (435)

This is, in fact, the probability of the observed cell frequencies conditional on the
observed marginal totals, under the null hypothesis of no association between
the row and column classifications.

Given any observed table, the probabilities of all tables with the same
marginal totals can be calculated, and the P value for the significance test
calculated by summation. Example 4.13 illustrates the calculations and some of
the difficulties of interpretation which may arise.

Example 4.13

The data in Table 4.7, due to M. Hellman, are discussed by Yates (1934).

There are six possible tables with the same marginal totals as those observed, since
neither a nor ¢ (in the notation given above) can fall below 0 or exceed 5, the smallest
marginal total in the table. The cell frequencies in each of these tables are shown in Table
4.8.

The probability that a = 0 is, from (4.35),

e 201 22! 51 37!
07 42100 201 51 17!

Tables of log factorials (Fisher & Yates, 1963, Table XXX) are often useful for this
calculation, and many scientific calculators have a factorial key (although it may only
function correctly for integers less than 70). Alternatively the expression for Py can be
calculated without factorials by repeated multiplication and division after cancelling
common factors:

= 0-03096.

22 x 21 x 20 x 19 x 18
_ 22X AX VXTI X0y,
01&’1«4\\//“\\,10‘/2%'003096_
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Table 4.7 Data on malocclusion of teeth in infants (reproduced from

Yates (1934) with permission from the author and publishers).

Infants with

Normal teeth Malocclusion Total
Breast-fed 4 16 20
Bottle-fed 1 21 22
Total 5 37 42

Table 4.8 Cell frequencies in tables with the same marginal totals as those in Table 4.7.

0 20 20 1 19 20 18 20
5 17 22 4 18 22 19 22
5 37 42 5 37 42 5 37 42
3 17 20 4 16 20 5 15 20
2 20 22 1 21 22 22 22
S 37 42 5 37 42 5 37 42
The probabilities for a = 1, 2. ...,5 can be obtained in succession. Thus,
_5x20 “
TR R
4 %19
= x Py,etc.
27 %197 !

The results are:

Probability
' 0-0310
0-1720
0-3440
0-3096
0-1253
0-0182

wn AW —= O R

1-0001

This is the complete conditional distribution for the observed marginal totals, and the
probabilities sum to unity, as would be expected. Note the importance of carrying enough
significant digits in the first probability to be calculated; the above calculations were
carried out with more decimal places than recorded by retaining each probability in the

calculator for the next stage.
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The observed table has a probability of 0-1253. To assess its significance we could
measure the extent to which it falls into the tail of the distribution by calculating the
probability of that table or of one more extreme. For a one-sided test the procedure
clearly gives

P =0-1253 +0-0182 = 0-1435.

The result is not significant at even the 10% level.

For a two-sided test the other tail of the distribution must be taken into account, and
here some ambiguity arises. Many authors advocate that the one-tailed P value should be
doubled. In the present example, the one-tailed test gave P = 0-1435 and the two-tailed
test would give P = 0-2870. An alternative approach is to calculate P as the total prob-
ability of tables, in either tail, which are at least as extreme as that observed in the sense of
having a probability at least as small. In the present example we should have

P =0-1253 +0-0182 + 0-0310 = 0-1745.

The first procedure is probably to be preferred on the grounds that a significant result
is interpreted as strong evidence for a difference in the observed direction, and there is
some merit in controlling the chance probability of such a result to no more than half the
two-sided significance level. The tables of Finney et al. (1963) enable one-sided tests at
various significance levels to be made without computation provided the frequencies are
not too great.

To calculate the mid-P value only half the probability of the observed table is included
and we have

mid-P = %(0-1253) +0-0182 = 0-0808

as the one-sided value, and the two-sided value may be obtained by doubling this to give
0-1617.

The results of applying the exact test in this example may be compared with those
obtained by the x? test with Yates’s correction. We find X2 =2.39(P = 0-12) without
correction and X2 = 1-14(P = 0-29) with correction. The probability level of 0-29 for X2
agrees well with the two-sided value 0-29 from the exact test, and the probability level of
0-12 for X2 is a fair approximation to the exact mid-P value of 0-16.

Cochran (1954) recommends the use of the exact test, in preference to the X2
test with continuity correction, (i) if N <20, or (i) if 20 < N < 40 and the
smallest expected value is less than 5. With modern scientific calculators and
statistical software the exact test is much easier to calculate than previously and
should be used for any table with an expected value less than 5.

The exact test and therefore the x? test with Yates’s correction for continuity
have been criticized over the last 50 years on the grounds that they are con-
servative in the sense that a result significant at, say, the 5% level will be found in
less than 5% of hypothetical repeated random samples from a population in

which the null hypothesis is true. This feature was discussed in §4.4 and it was
1A 4Lt 4lam menklam wace a rancanmience nf the dicerete nature of the data
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and causes no difficulty if the precise level of P is stated. Another source of
criticism has been that the tests are conditional on the observed margins, which
frequently would not all be fixed. For example, in Example 4.13 one could
imagine repetitions of sampling in which 20 breast-fed infants were compared
with 22 bottle-fed infants but in many of these samples the number of infants
with normal teeth would differ from 5. The conditional argument is that, what-
ever inference can be made about the association between breast-feeding and
tooth decay, it has to be made within the context that exactly five children had
normal teeth. If this number had been different then the inference would have
been made in this different context, but that is irrelevant to inferences that can be
made when there are five children with normal teeth. Therefore, we do not accept
the various arguments that have been put forward for rejecting the exact test
hased on consideration of possible samples with different totals in one of the
margins. The issues were discussed by Yates (1984) and in the ensuing discussion,
and by Barnard (1989) and Upton (1992), and we shall not pursue this point
further. Nevertheless, the exact test and the corrected x* test have the under-
sirable feature that the average value of the significance level, when the null
hypothesis is true, exceeds 0.5. The mid- value avoids this problem, and so is
more appropriate when combining results from several studies (see §4 4). Asfora
single proportion, the mid-P value corresponds to an uncorrected x° test, whilst
the exact P value corresponds to the corrected X’ test.

The probability distribution generated by (4.35), for different values of the cell
frequencies, a, b, ¢ and d, is called the hypergeometric distribution. When the null
hypothesis is not true, the expected frequencies will have an odds ratio, s, different
from 1. In that case, the probabilities for the various values of @ are proportional
to the expression (4.35) multiplied by * and are somewhat awkward to evaluate.
Nevertheless, an exact test for the non-null hypothesis that s = {, can, in princi-
ple, be obtained in a manner similar to that used for the exact test of the null
hypothesis. This enables exact confidence limits to be obtained by finding those
values of {s, denoted by {s; and Ui, that give the appropriate tail-area probabilities
in the two directions. Mid-P significance levels will, in large samples, give con-
fidence limits similar to the approximate limits given by (4.26)—(4.29). The inclu-
sion of the observed table in the tail-area calculations will give rather wider limits.
In Example 4.11, these wider 95% limits (obtained from an algorithm of Thomas
(1971) and implemented in StatsDirect (1999)) are 1.32 and 2-53; Cornfield’s
(1956) method (4.27)(4.29), with a continuity correction reducing by 4 5 the abso-
lute value of the numerator a — 4A(\) in (4.27), gives 1-31 and 2-52.

4.6 Sample-size determination

One of the questions most commonly asked about the planning of a statistical
study, and one of the most difficult to answer, is: how many observations should





