
If Nothing Goes Wrong, Is Everything All Right? Interpreting Zero Numerators
James A. Hanley and Abby Lippman-Hand, JAMA, April 1, 1983—Vol  249, No. 13 pp 1743-1745

page  1

From Department of Epidemiology and Health (Drs Hanley and Lippman-Hand) and
Centre tor Human Genetics (Dr Lippman-Hand), McGill University, Montreal.

PHYSICIANS frequently must provide patients with estimates of the risk of a
particular medical procedure or of the probability of a specific health outcome. To
do so, they may use data from their own experiences as well as those available in
the literature. A general goal is to locate the estimate within a fairly narrow range.

When the procedure or outcome of concern is relatively uncommon, precise
estimation, although desirable, may be difficult or impossible. Moreover, when the
only data available come from a study in which none of the events of concern
actually occurred—ie, a study in which a zero numerator is reported—making
inferences seems to be particularly problematic. Because the occurrence of "no
events" seems to be viewed as very different both quantitatively and qualitatively
from the occurrence of one or more events, it is useful to look into some of the
statistical and psychological issues that influence the interpretation of a zero
numerator. In particular, we would like to emphasize that (1) a zero numerator does
not necessarily mean "no risk," (2) a zero numerator does not preclude inferences
about the size of a risk, and (3) the principles of inferential statistics that apply to
nonzero numerators apply equally well to zero numerators. In fact, there is a quick
and simple rule that establishes the maximum long-run risk associated with an
observation of no effects in a sample of any given size.

Examples

Studies reporting a zero numerator are fairly common in the literature. The
following examples are from recent issues of major medical journals, including this
one. They have been arbitrarily chosen strictly for illustrative purposes. Thus, we
have reduced the details to a minimum. For each, the reader should consider the
inference that might be made from these data.

EXAMPLE 1.—Of 14 boys followed up for a median of 5 1/2 years after
chemotherapy for leukemia, none had abnormal testicular function (i.e., the
abnormality rate was 0/14).1 With what risk, if any, of testicular dysfunction might
these results be compatible?

EXAMPLE 2.—The status of 112 liveborn children whose mothers had been
immunized against rubella was studied to assess the risks of gestational exposure to
the vaccine.2 None of the infants born (0/112) had any congenital malformations
associated with congenital rubella. What is the maximum malformation risk
compatible with finding none of 112 infants with defects in a single study?

EXAMPLE 3.—The final example is one we will adapt to explain the inferences
that may be made when a zero numerator is found. In a study of siblings of 167
infants with tracheoesophageal dysraphism (TED), none was found to have a neural
tube defect.3 (We ignore here problems in defining the denominator for this study
and assume, for illustrative purposes, that 167 siblings were studied and that the
observed rate of neural tube defect was 0/167.) Is this evidence sufficient to say that
the risk of neural tube defect in siblings of children with TED is not increased over
the risk in the general population (1.5 per 1,000 births in the area studied)? Or is a
0/167 rate also compatible with a risk that would make parents of children with
TED eligible for the prenatal diagnosis of neural tube defects in subsequent
pregnancies?

Despite differences in focus, the three examples have the same structure: in each
study, no adverse effects were found—nothing happened. Only the denominators—
the sample sizes—differ. To illustrate the inferential process employed when there is
a zero numerator, we will use the numbers in the third example and consider how
these data might be used to evaluate the risk associated with a contrast medium used
by radiologists. (We chose a hypothetical example to avoid controversy about the
specific details of any reported study.) Suppose that the standard contrast agent used
by radiologists over a long period has been shown to cause a serious reaction in
about 15 of every 10,000 patients exposed to it. That is, the known risk with the
old agent is 1.5 per 1,000 (the same as the population risk for neural tube defects in
the third study cited). Suppose further that a new contrast agent is introduced. Soon
afterward, a report of its use in 167 patients appears: no patient has had the reaction
of concern. Can we infer from these data that, in the long run, the new medium will
carry less risk, more risk, or the same risk as the old agent?

 We can begin by assuming that the long-run risk with the new agent is no different
from that with the old. Under this trial assumption, each patient has a 0.0015
chance of reacting and, conversely, a 1-0.0015= 0.9985 chance of not reacting. The
chance that all 167 patients will avoid a reaction—that the reaction rate would be
0/167—is 0.9985167, or 78%. Thus, finding no reactions among this group is not
at all surprising. In fact, if the new agent carries the same risk as the old, it would
be more surprising if anyone did  react.

  If we are more pessimistic and believe that the long-run complication rate with
this new agent could be much higher than that with the old, we can assess a different
trial value, for example, a risk of one in 100. Here again, however, observing no
reactions in 167 patients would still not be that  surprising there would be a
0.99167, or 19%, chance that none of these 167 patients would react to the new
agent even if the true risk were one in 100.
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  Finally, we can take an even greater trial value, say a risk of four in 100. Were
this the true risk, then there would be just a 0.1% chance of finding no reactions in
a group of 167 patients, and we would express great surprise at an observation as
discrepant with the "truth" as this.

  How high we would go with these trial estimates of the true long-run risk depends
on what might be viewed as our "willingness to be surprised." This is the point at
which we decide that because a finding that should not happen (based on what we
posit as the truth) seems nevertheless to have happened, it is not just because we are
(un)lucky. Rather, since the observation really is too surprising if the long-run risk
we posited were correct, we decide that the real risk must be lower.   As a matter of
convention, a chance of 5% has come to be used as a limit to credibility; thus, a
finding that had at least a 5% chance of occurring is considered not that surprising
("it can happen"), but anything more extreme is. Table 1 presents a range of trial
values for the long-run risk and the chance of observing zero complications in 167
patients associated with each. As Table 1 shows, our limit for surprise of 5% is
reached when the true long-run risk is about two in 100. In other words, the findings
"fit" or are "not surprisingly different from" any long-run risk of 2/100 or less. This
"plausible range of possibilities for the truth," which extends from zero to the
maximum compatible with our 5% level of surprise, is usually termed a "95%
confidence interval."

Making Inferences: The Rule of Three

   In all of these examples, the event of interest failed to occur in a finite number of
subjects. In making inferences from observations with zero numerators, we want to
say with a certain degree of confidence that the true or long-run risk (of
chemotherapy, of rubella immunization, of having a sibling with NTD) is between
zero and some upper limit.

   To be 95% confident that our interval estimate of the long-run risk is correct, a
simple rule (of unknown origin) can be applied.4 This "rule of three" states that if
none of n  patients shows the event about which we are concerned, we can be 95%
confident that the chance of this event is at most three in n  (ie, 3/n). In other
words, the upper 95% confidence limit of a 0/n rate is approximately 3/n. (This
approximation is remarkably good: when n is larger than 30, the rule of three agrees
with the exact calculation to the nearest percentage point; below 30, it slightly
overestimates the risk, but then the  maximum risk [ie, 26% if n=10] is becoming
so high that the difference between it and that suggested by the rule [3/10=30%] is
not usually worth quibbling about.) The derivation of the "rule of three" is as
follows:

   To find the largest risk with which the finding of 0/n is compatible (ie, a level of
credibility of at least 5% or 0.05), one must either proceed by trial and error, as we
did, or else explicitly solve the following equation:

(1 — Maximum Risk) n  =  0.05

This can be rewritten, by taking the nth root of each side, as

1 — Maximum Risk = n√ 0.05                  (1)

The reader who uses a calculator to evaluate  n√ 0.05 or  0.051/n for n above 30  will
find that it comes remarkably close to (n—3)/n  or 1—(3 /n);  thus, equation 1 can
be rewritten as follows:

1—Maximum Risk = 1 —  (3/n)

or

Maximum Risk = 3/n

  The reader who would like to under stand "how the 3  got in there" can do so by
writing 0.051/n as an infinite series, ie,

0 051/n =1+[(ln 0.05)/n]  +[(ln 0.05)2/2n2]+ . . .    (2)

where  ln 0.05 refers to the natural logarithm of 0.05. Given that ln 0.05 is -2
9957, or -3  when rounded off to two decimal places, and given an n of 30 or more,
the terms involving divisors of n2 or bigger in the right-hand side of equation 2
make almost no contribution (ie, 0.051/n is very close to 1-[3/n]). For a 99%
confidence interval, the corresponding shortcut is a "rule of 4.6" (ln 0.01 =
–4.6051...), while for 99.9% confidence on uses a "rule of 6.9".

Some readers will wonder why one cannot immediately calculate the probability of
0/n  from the Poisson distribution: one can indeed do so, solving instead the
equation

exp(–n  ×  maximum risk) = 0.05.

As such readers might expect, the resulting answer of 3/n is the same.
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Table 1.—Probability That a
Sample of 167 Will Have No

Complications

Table 2.—Long-Run Risk
"Ruled Out" by 0/ n

(With 95% Confidence,
ie,  5% Limit of Credibility)

If Long-Run
Complication

Rate is...

Probability
(%) of

Observing 0
Complications

in 167 is...

Observed
Rate of...

Rules Out
Any Long-
Run Rate

(%) Higher
Than

1 in 10,000 98 0/10 26* (30)†
1 in 1000 85 0/20 14 (15)

1.5 in 1000 78 0/30 10 (10)
1 in 200 43 0/50  6 (6)
1 in 100 19 0/100 3 (3)
1 in 56   5 0/1,000 0.3 (0.3)
1 in 25   0.1

*(1—maximum rate)n = 0.05

†Derived from rule of three.

If we apply this rule to our examples, and confine our inferences to the
populations from which the patients derive, we can conclude with 95% confidence
as follows:

EXAMPLE 1.—The maximum risk of abnormal testicular function is not greater
than 21% (3/n=3/14=21% ) after chemotherapy. Here, the "correct" upper confidence
limit based on 0/14 is 19%. Interestingly, this "rule of 14 consecutive failures" is
commonly used in cancer treatment research5 to screen out agents that are unlikely
to show activity in at least one patient in five.

EXAMPLE 2.—The frequency of malformations does not exceed 2.7% in offspring
of women immunized against rubella during pregnancy.

EXAMPLE 3.—The frequency of neural tube defects is not greater than 1.8% in
siblings of patients with TED. Note that this 0% to 1.8% range includes the rate of
1.5 per 1,000 in the general population as well as the recurrence risk for
second-degree relatives of patients with neural tube defects.

Table 2 summarizes the rule of three and tabulates the "true" risks that can be
ruled out given the occurrence of zero events in series of different sizes.

Comment

Although the examples we have discussed reflect our own interests, one may
observe a zero numerator in very diverse contexts: a new diagnostic test that has not
yet misclassified a patient, a still-perfect surgical record, a field trial of a vaccine
that uncovered no major side effects, an ophthalmology practice in which no patient
with glaucoma was younger than 23 years, an airline that has never had a fatality.
Thus, understanding the limits of the inferences that can be made with such an
observation is important.

It is interesting that although a finding of 0 events in n observations can be
interpreted in much the same statistical way as any other binomial rate, it often
seems to have a qualitative impact far in excess of its quantitative meaning. A few
(sometimes contradictory) clues in the literature may help to explain this: (1)
People tend to ignore the size of the denominators on which rates are based.6 For
instance, a rate of 10% is given much the same credence whether it is observed in
20 or 200 cases. Presumably the same holds for the rate of 0%. (2) People tend to
focus on numerators. Parents who have had genetic counseling, for example,
generally view their risks in binary form: something either will or will not happen,
no matter what the actual risk is.' A "one" in the numerator never disappears, no
matter the size of the denominator. For them, it is not the odds that matter so much
as the knowledge that the disorder is possible. Perhaps a zero numerator carries
similar weight in that it suggests (falsely) that an event is impossible. (3) When
one is faced with a theoretical risk that has not yet manifested itself, ie, when
something possible has not yet happened, people may tend to expect that it cannot
happen in the future. Lacking evidence that responses may be variable, they then
underestimate what the real risk may be. (Interestingly, when the Marquis de
Laplace, statistical consultant to the gambling royalty of Europe and Russia, was
reminded circa 1800 that never once in the preceding 5,000 years had the sun failed
to rise—apparently earlier data were not considered reliable—and was asked to
provide odds that it would rise on the following day, he suggested odds of roughly
n:1, where n was the number of days in the series, as a fair bet. For someone
betting on sunrise who had less trust in nature, odds of n/3:1 would be an even safer
gamble.)



If Nothing Goes Wrong, Is Everything All Right? Interpreting Zero Numerators
James A. Hanley and Abby Lippman-Hand, JAMA, April 1, 1983—Vol  249, No. 13 pp 1743-1745

page  4

We urge a reformulation of the views of a zero numerator and encourage those
reporting such observations to consider the maximum risk with which their findings
are compatible. To this end, the confidence interval is helpful since it translates the
results of a sample not into a single number, but rather into a range that is quite
likely to contain the rate characteristic of the population. Because a confidence
interval may be constructed easily from a zero numerator using the "rule of three,"
we hope that those fortunate enough to be able to report "no problems so far" will
quantify the worst or best that a group of future patients can expect.
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