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—0-6111 +2-145 x 0-3879
= —1-4and 0-2.

In any of these approaches, if the sample means are sufficiently close and the
sample sizes are sufficiently large, the confidence interval for the difference in
means may be narrow enough to allow one to conclude that the means are
effectively equal for all practical purposes. The investigator must, however, be
careful not to conclude that the two populations are identical unless there is good
reason to believe that the variances are also equal.

4.4 Inferences from proportions

The sampling error of a proportion

This has already been fully discussed in §3.6. If individuals in an infinitely large
population are classified into two types 4 and B, with probabilities wand 1 — .
the number r of individuals of type 4 in a random sample of size n follows a
binomial distribution. We shall now apply the results of §4.2 to prove the
formulae previously given for the mean and variance of r.

Suppose we define a guantitative variable x, which takes the value 1 for each
A4 individual and 0 for each B. We may think of x as a score attached to each
member of the population. The point of doing this is that, in a sample of n
consisting of r As and n —r Bs,

Sox=(rx 4 [(n—r)x0]
=r
and
% =r/n, =p in the notation of §3.6.

The sample proportion p may therefore be identified with the sample mean of x,
and to study the sampling variation of p we can apply the general results
established in §4.2. We shall need to know the population mean and standard
deviation of x. From first principles these are

1l

E(x) = (m x 1)+ [(1 — 7) x 0]

(4.12)

and
var(x) = B(x*) — [E(x)’
= (wx 1))+ [(1-m) ><O2]—'n'2
w(l — ).
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From (4.1),

(1 —’iT)'

. (4.13)

var(X) =

Writing (4.12) and (4.13) in terms of p rather than x and X, we have

Ep)=m
and
_w(l —m)
var(p) ="
as in (3.15) and (3.16). Since r = np,
E(r) = nm

and
var(r) = nmw(l — ),

as in (3.13) and (3.14).

One more result may be taken from §4.2. As n approaches infinity, the
distribution of X (that is, of p) approaches the normal distribution, with the
corresponding mean and variance. The increasing symmetry has already been
noted in §3.6.

Inferences from the proportion in a sample

-

Suppose that, in a large population, individuals drawn at random have an
unknown probability 7 of being of type 4. In a random sample of » individuals,
a proportion p (== r/n) are of type 4. What can be said about =?

Suppose first that we wish to test a null hypothesis specifying that  is equal
to some value my. On this hypothesis, the number of type 4 individuals, r, found
in repeated random samples of size n would follow a binomial distribution. To
express the departure of any observed value, r, from its expected value, nmy, we
could state the extent to which r falls into either of the tails of its sampling
distribution. As in §4.1 this extent could be measured by calculating the prob-
ability in the tail area. The situation is a little different here because of the
discreteness of the distribution of . Do we calculate the probability of obtaining
a larger deviation than that observed, » — nmy, or the probability of a deviation
at least as great? Since we are saying something about the degree of surprise
elicited by a certain observed result, it seems reasonable to include the prob-
ability of this result in the summation. Thus, if r > ny and the probabilities in
the binomial distribution with parameters wy and n are Py, Py, ..., P,, the P
value for a one-sided test will be
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P+:Pr+Pr+1+...+Pn.

For a two-sided test we could add the probabilities of deviations at least as large
as that observed, in the other direction. The P value for the other tail is

P =P ' +Pi+...4 P,

where ' is equal to 2nmo — r if this is an integer, and the highest integer less than
this quantity otherwise. The P value for the two-sided test is then P = P_ 4+ P,.
For example, if r = 8,n = 10 and mg = L

P, =Pg+ Py+ Py
and

P_. =P+ P+ P
Ifr:17,n:20and7r0:%,

Py = Py7+ Pig+ Pro+ P
P_=0.

If r = 15,7 = 20 and wp = 0.42,

P, = Pis + Pig+ Py7+ Pig + Pig + Py
P_ =P, + Py.

An alternative, and perhaps preferable, approach is to regard a two-sided test
at level « as being essentially the combination of two one-sided tests each at level
la. The two-sided P value is then obtained simply by doubling the one-sided
value.

Considerable simplification is achieved by approximating to the binomial
distribution by the normal (§3.8). On the null hypothesis

¥ — Nty

Vinmo(1 = mo)]

is approximately a standardized normal deviate. Using the continuity correction,
(p.80), the tail area required in the significance test is approximated by the area
beyond a standardized normal deviate

B ]r—nmﬂ—%

— Vo1 — )]’

and the result will be significant at, say, the 5% level if this probability is less than
0-05.

(4.14)



4.4 Inferences from proportions 115

Example 4.6

In a clinical trial to compare the effectiveness of two analgesic drugs, X and Y, each of 100
patients receives X for a period of 1 week and Y for another week, the order of admin-
istration being determined randomly. Each patient then states a preference for one of the
two drugs. Sixty-five patients prefer X and 35 prefer Y. Ts this strong evidence for the view
that, in the long run, more patients prefer X than Y?

Test the null hypothesis that the preferences form a random series in which the
probability of an X preference is 4. This would be true if X and Y were equally effective
in all respects affecting the patients’ judgements. The standard error of r is

V(100 x I}y =25 =35.
The observed deviation, r — ag, 1S
65 — 50 = 15.

With continuity correction, the standardized normal deviate is (15 —%/5=2.90. With-
out continuity correction, the value would have been 15/5=13-00, a rather trivial
difference. In this case the continuity correction could have been ignored. The normal
tail area for z = 2-90 is 0-0037; the departure from the null hypothesis is highly signifi-
cant, and the evidence in favour of X is strong. The exact value of P, from the binomial
distribution, is 0-0035, very close to the normal approximation.

The 95% confidence limits for w are the two values, 7w, and 7y, for which
the observed value of r is just significant on a one-sided test at the 2%% level
(Fig. 4.8). These values may be obtained fairly readily from tables of the
binomial distribution, and are tabulated in the Geigy Scientific Tables (1982,
Vol. 2, pp. 89-102). They may be obtained also from Fisher and Yates (1963,
Table VIIII).

The normal approximation may be used in a number of ways.

1 The tail areas could be estimated from (4.14). Thus, for 95% confidence
limits, approximations to 7y and mwy are given by the formulae

|
¥ —Hnmp -3
Vinmr(l - )]

and

r—n’rrUJr%

Vil all

2 In method 1, if » is large, the continuity correction of % may be omitted.

Method 1 involves the solution of a quadratic equation for each of 7, and
my; method 2 involves a single quadratic equation. A further simplification is as
follows.
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Fig. 4.8 Binomial distributions illustrating the 95% confidence limits for the parameter 7 based on a
sample with five individuals of a certain type out of 20. For n = ny = 0-09 the probability of 5 or
more is 0-025; for 7 = my = 0-49 the probability of 5 or less is 0-025. (— — =) mp = 0-09; (——)
Ty = 0-49.

3 Replace 7 (1 — ) and 7y (1 —7y) by p(1 — p). This is not too drastic a
step, as p(1 — p) changes rather slowly with changes in p, particularly for
values of p near % Ignoring the continuity correction, as in 2, we have the
most frequently used approximation to the 95% confidence limits:

p £ 1:96v/(pg/n),

where, as usual, ¢ = 1 — p. The simplification here is due to the replacement
of the standard error of p, which involves the unknown value m, by the
approximate form +/(pg/n), which can be calculated entirely from known

e malala
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Newcombe (1998a), in an extensive study of various methods, recommends
method 2. Method 3 has a coverage probability well below the nominal 95%,
tending to shorten the interval unduly in the direction from p towards %

Exact limits require the calculation of tail-area probabilities for the binomial
distribution. The lower limit ., for instance, is the solution of

é(j)ﬁ(l — )" = 0-025. (4.15)

The binomial tail areas can be obtained from many statistical packages.
Alternatively, they can be obtained from tables of another important distribu-
tion: the F distribution. This is described in more detail in §5.1. We note here that
the distribution is indexed by two parameters, v; and vy, called degrees of free-
dom (DF). Table A4 shows the value of F exceeded with probability P for various
combinations of v;,v; and P, denoted by Fp ., ,-

It can be shown that the left-hand side of (4.15) equals the probability that a
variable distributed as F with 2n — 2r + 2 and 2r degrees of freedom exceeds
r(1 — )/ (n —r+ 1)mp. Therefore

}"(1 — ’TFL) ; F
(n —r+ 1)7TL = I'0-025,2n—-2r+2,2r-
That is, .
p
Wy, =
L (n -+ D) Foozs,n2r 2,20
and similarly, (4.16)

r+1

1
r+ 1+ (n—7r)Fgos 22,002

Ty =

(Miettinen, 1970).

Example 4.6, continued

With # = 100, p = 0-65, the exact 95% confidence limits are found to be 0-548 and 0-743.
Method 1 will be found to give 0-548 and 0-741, method 2 gives 0-552 and 0-736, and
method 3 gives

100
=0-65 4 (1-96)(0-0477)
= 0-557 and 0-743

0-65+ 1‘96\/{@;@@}

In this example method 3 is quite adequate.
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Example 4.7

As a contrasting example with small numbers, suppose n =20 and p = 0-25. The exact
95% confidence limits are 0-087 and 0-491 (see Fig. 4.8).

Method 1 gives 0-096 and 0-494, method 2 gives 0-112 and 0-469, method 3 gives 0-060
and 0-440. Method 3 is clearly less appropriate here than in Example 4.6. In general,
method 3 should be avoided if either np or n(1 — p) is small (say, less than 10). Methods 2
and 3 may also be unreliable when either nary or n(1 — wy) is less than 5. In this case, nmp
is about 2 so it is not surprising that the lower confidence limit is not too well approxi-
mated by the normal approximation.

Example 4.8

As an exampte of finding the exact limits using the F distribution, consider the data of
Fig. 4.8, where r = 5 and n = 20. Then,

7 = 5/(5 + 16F025,32,10)
and
7y = 6/(6+ 15F50s.12.30)-

The value of Fy.o2s,32, 10 Can be obtained by interpolation in Table A4 where interpolation
is linear in the reciprocal of the degrees of freedom. Thus,

i 1 1

g =337 — (337 -3 ——%1/5

Fogs, 32,10 = 3:37 = (337 308)X(24 32> 24
= 3.30.

Therefore 7, = 0-0865 and, since Fo.025,12,30 = 2.41,wy = 0-4908. In this example, inter-
polation was required for one of the F values and then only in the first of the degrees of
freedom, but in general interpolation would be required for both F values and in both the
degrees of freedom. This is tedious and can be avoided by using a method based on the
normal approximation except when this method gives values such that either nw; or
n(1 — wy) is small (say, less than 5).

It was remarked earlier that the discreteness of the distribution of r made
inferences from proportions a little different from those based on a variable with
a continuous distribution, and we now discuss these differences. For a continu-
ous variable an exact significance test would give the result P < 0-05 for exactly
5% of random samples drawn from a population in which the null hypothesis
were true, and a 95% confidence interval would contain the population value of
the estimated parameter for exactly 95% of random samples. Neither of these
properties is generally true for a discrete variable. Consider a binomial variable
from a distribution with n =10 and 7 = 0-5 (Table 3.4, p. 76). Using the exact
test, for the hypothesis that ™ = 0-5, significance at the 5% level is found only for
»—0 1.9 or 10 and the orobability of one or other of these values is 0-022.
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Therefore, a result significant at the 5% level would be found in only 2-2% of
random samples if the null hypothesis were true. This causes no difficulty if the
precise level of P is stated. Thus if r =1 we have P =0-022, and a result
significant at a level of 0-022 or less would occur in exactly 2:2% of random
samples. The normal approximation with continuity correction is then the best
approximate test, giving, in this case, P = 0.027.

A similar situation arises with the confidence interval. The exact confidence
limits for the binomial parameter are conservative in the sense that the prob-
ability of including the true value is at least as great as the nominal confidence
coefficient. This fact arises from the debatable decision to include the observed
value in the calculation of tail-area probabilities. The limits are termed ‘exact’
because they are obtained from exact calculations of the binomial distribution,
rather than from an approximation, but not because the confidence coefficient is
achieved exactly. This problem cannot be resolved, in the same way as for the
significance test, by changing the confidence coefficient. First, this is difficult to
do but, secondly and more importantly, whilst for a significance test it is desir-
able to estimate P as precisely as possible, in the confidence interval approach it
is perfectly reasonable to specify the confidence coefficient in advance at some
conventional value, such as 95%. The approximate limits using the continuity
correction also tend to be conservative. The limits obtained by methods 2 and 3,
however, which ignore the continuity correction, will tend to have a probability
of inclusion nearer to the nominal value. This suggests that the neglect of
the continuity correction is not a serious matter, and may, indeed, be an advan-
tage.

The problems discussed above, due to the discreteness of the distribution,
have caused much controversy in the statistical literature, particularly with the
analysis of data collected to compare two proportions, to be discussed in §4.5.
One approach, suggested by Lancaster (1952, 1961), is to use mid-P values, and
this approach has been advocated more widely recently (Williams, 1988; Bar-
nard, 1989; Hirji, 1991; Upton, 1992; Berry & Armitage, 1995; Newcombe,
1998a). The mid-P value for a one-sided test is obtained by including in the tail
only one-half of the probability of the observed sample. Thus, for a binomial
sample with r observed out of n, where r > nm, the one-sided mid-P value for
testing the hypothesis that w = o will be

mid-P+~:%Pr+Pr+l+...+Pn.

It has to be noted that the mid-P value is not the probability of obtaining a
significant result by chance when the null hypothesis is true. Again, consider
a binomial variable from a distribution with n =10 and = = 0-5 (Table 3.4,
p. 76). For the hypothesis that m = 0-5, a mid-P value less than 0-05 would
be found only for r = 0,1,9 or 10, since the mid-P value for r = 2 is 2[0-0010
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+0-0098 + £ (0-0439)] = 0-0655, and the probability of one or other of these
values is 0-022.

Barnard (1989) has recommended quoting both the P and the mid-P values,
on the basis that the former is a measure of the statistical significance when the
data under analysis are judged alone, whereas the latter is the appropriate
measure of the strength of evidence against the hypothesis under test to be
used in combination with evidence from other studies. This arises because the
mid-P value has the desirable feature that, when the null hypothesis is true, its
average value is 0-5 and this property makes it particularly suitable as a measure
to be used when combining results from several studies in making an overall
assessment (meta-analysis; §18.10). Since it is rare that the results of a single
study are used without support from other studies, our recommendation is also
to give both the P and mid-P values, but to give more emphasis to the latter.

Corresponding to mid-P values are mid-P confidence limits, calculated as
those values which, if taken as the null hypothesis value, give a corresponding
mid- P value; that is, the 95% limits correspond to one-sided mid-P values of 0-025.

Where a normal approximation is adequate, P values and mid-P values
correspond to test statistics calculated with and without the correction for
continuity, respectively. Correspondingly, confidence intervals and mid-# con-
fidence intervals can be based on normal approximations, using and ignoring the
continuity correction, respectively. Thus, the mid-P confidence limits for a
binomial probability would be obtained using method 2 rather than method 1
(p. 115).

Where normal approximations are inadequate, the mid-P values are calcu-
lated by summing the appropriate probabilities. The mid-P limits are more
tedious to calculate, as they are not included in standard sets of tables and
there is no direct formula corresponding to (4.16). The limits may be obtained
fairly readily using a personal computer or programmable calculator by setting
up the expression to be evaluated using a general argument, and then by trial and
error finding the values that give tails of 0-025.

Example 4.7, continued

The mid-P limits are given by
Py + Py +P2+P3+P4+%P5 = 0-975 or 0-025,

where P; is the binomial probability (as in (3.12)) for i events with n =20 and
@ = wy or wy. This expression was set up on a personal computer for general m, and
starting with the knowledge that the confidence interval would be slightly narrower than
the limits of 0-0865 and 0-4908 found earlier the exact 95% mid-P confidence limits were
found as 0-098 and 0-470. Method 2 gives the best approximation to these limits but, as
noted earlier, the lower confidence limit is less well approximated by the normal approxi-
mation. because n, is onlv about 2.





