
M&M Ch 5  Sampling Distributions ... OVERVIEW

Examples of Sampling Distributions Standard Error (SE) of a sample statistic

What it is
An estimate of the SD of the different values of the sample statistic
one would obtain in different random samples of a given size n.

Since we observe only one of the many possible different random
samples of a given size, the SD of the sample statistic is not directly
measurable.
In this course, in computer simulations, and in mathematical statistics
courses, we have the luxury of knowing the relevant information
about each element in the population and thus the probabilities of all
the possible sample statistics. e.g. we say if individual Y's are
Gaussian with mean µ and standard deviation σ, then the different
possible ybars will vary from µ in a certain known way. In real life, we
don't know the value of µ and are interested in estimating it using the
one sample we are allowed to observe. Thus the SE is usually an
estimate or a projection of the variation in a conceptual distribution
i.e. the sd of all the "might-have-been" statistics.

Distribution statistic whose variability it describes

Binomial proportion in SRS

Hypergeometric proportion (finite N)

Poisson small expected proportion, or  rate

Gaussian mean, proportion, differences, etc. (n large)

Student's t  
y
–
 –   µ

SE {  y
–
 –   µ }

F ratio of variances (used for ANOVA)

Chi-Square proportion(s);  rate(s)   (nπ large)

Three ways of calculating sampling variability

1 directly  from the relevant discrete distribution by adding  probabilities of
the variations in question

Use
If n large enough, the different possible values of the statistic would
have a Gaussian distribution with a spread of 2-3 SE's on each side
of the "true" parameter value [note the "would have"]

So, can calculate chance of various deviations from true value.
Can infer what parameter values could/ could not have given rise to
the observed statistic

e.g. only 0.01 + 0.001 = 0.011 Binomial prob. of ≥ 9  [9 or 10] +ve / 10 if π = 0.5
2.5% probability of getting a Poisson count of 5 or more if µ = 1.624
2.5% probability of getting a Poisson count of 5 or less if µ = 11.668

2 from specially-worked out  distributions for more complex statistics
calculated from continuous or rank data  --

e.g. student 's  t, F ratio,  χ2,  Wilcoxon,

e.g .

if statistic is  y– , we talk of SE of the mean (SEM)

SE(y– ) describes variation of y–  from 

SD(y) describes variation of y from 
3 [very common] from the Gaussian approximation to the relevant

discrete or continuous distribution -- by using the standard deviation of
the variation in question and assuming the variation is reasonably
symmetric and bell-shaped [every sampling distribution has a standard
deviation -- its just that it isn't very useful if the distribution is quite
skewed or heavy-tailed]. We give a special name (standard error) to the
standard deviation of a sampling distribution in order to distinguish it from
the measure of variability of individuals.  Interestingly, we haven't given a
special name to the square of the SD of a statistic -- we use Variance to
denote both SE2 and SD2

Important, to avoid confusion in terms ...

See note [in material giving answer to Q5 of exercises on §5.2] on
variations in usage of term SE(y–) vs. SD(y–)
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M&M Ch 5.1   Sampling Distributions for Counts and Proportions

Variability of the Proportion / Count in a Sample :
The Binomial  Distribution

The Binomial  Distribution

Shorthand

if y = # positive out of n

then "y  ~ Binomial( n , )"

What it is

• The n+1 probabilities  p0 ,  p1 ,  . . .  py ,  . . .  pn
of observing

0  "positives"
1  "positive"
2  "positives"
. . .  

How it arises

Sample surveys
Clinical trials
Pilot studies

y  "positives"
.
. . .
n  "positives"

in n independent binary trials

Genetics
Epidemiology  ...

Use
- to make inferences about 

(after we have observed a proportion
   p = y/n in a sample of n)

(such as in simple random sample of n individuals)

• Each observed element is binary ( 0 or 1)

• 2
n

 possible sequences  ... but only n+1
 possible observable counts  or proportions

i.e.   0 / n,  1 / n,  ... , n / n
(can think of y as sum of n Bernoulli  random variables)

- to make inferences about more complex
  situations

e.g...   in Epidemiology

Risk Difference  RD  = 1  – 2

Risk Ratio RR  = 
 1  
 2  

Odds Ratio OR =  1[ 1  –  2]

2[ 1  –  1]

• Apart from sample size (n), the probabilities
 p0  to pn  depend on only 1 parameter

    the probability (individual element will be +)
or
    the proportion of "+" individuals in
    the population being sampled from trend in several 's

• Generally refer to this (usually unknowable)
parameter by Greek letter   ( sometimes  )

NOTE (see bottom of column opposite): M&M use the letter p for a
population proportion and p̂ or "p-hat" for the observed proportion in
a sample. Others use the Greek letter π for the population value
(parameter) and p for the sample proportion. Greek letters make the
distinction clearer; note that when referring to a population mean,
M&M do use the Greek letter µ (mu)!

Some authors (e.g., Miettinen) use upper-case letters, [e.g. P, OR ] for
parameters and lower-case letters [ e.g. p , or ] for statistics (estimates
of parameters)

• Inferences concerning  through observed p

Parameter Statistic
Hanley et al.       π  p = y/n

M&M       p  p̂ = y/n

Miettinen       P  p = y/n
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M&M Ch 5.1   Sampling Distributions for Counts and Proportions
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BINOMIAL "TREE"

EXAMPLE WITH  = 0.5

n=1 n=2 n=3

Calculations greatly simplified by fact that π1 = π2 = π3.
Can calculate prob. of any one sequence of y +'s & (n–y) –'s.
Since all such sequences have same prob πy(1–π)n–y, in lieu of
adding, can multiply this prob. by number ,  i.e. nCy , of such
sequences

The Binomial  Distribution

Requirements for y to be Binomial( n , )

• Each element in "POPULATION" is binary
( 0 or 1), but interested only in estimating
proportion  ( ) that are 1

(not interested in individuals per se)

• fixed sample size n

• elements selected at random and
independently of each other*;

all elements have same probability
of being sampled.

• (thus) prob ( ) of a 1 is constant for each

sampling with replacement
(if N large relative to n, SRS close to with replacement!)

[generally we sample without replacement
but makes little  when N is large rel. to n]

• elements in population can be related
to each other [e.g. spatial distribution
of persons]

but if use simple random sampling,
results in the sample elements are
independent
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M&M Ch 5.1   Sampling Distributions for Counts and Proportions

?   ?  Binomial Variation ?   ? The Binomial  Distribution

Calculating Binomial probabilities Bin( n , π )

• Formula (or 1st principles)

Interested in π the proportion of 16 year old girls
in Québec protected against rubella

Choose 20 girls at random from each of
  5 randomly selected schools ( 'n' = 100)

y number, out of total sample of 100,
who are protected

 Prob(y out of n) = (  
n

y
  )  π

y
 ( 1 - π )

n-y
§

e.g .  if n=4 (so 5 probabilities) and π = 0.3Is y Binomial (n= 100 , π ) ??
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Auto-analyzer  ("SMAC")
18 chemistries on each person
  y number of positive components

Prob( 0 / 4 ) = (  
4

0
  ) 0.3

0
( 1 - 0.3 )

4-0
=  0 .2401

Prob( 1 / 4 ) = (  
4

1
  ) 0.3

1
( 1 - 0.3 )

4-1
=  0 .4116

Prob( 2 / 4 ) = (  
4

2
  ) 0.3

2
( 1 - 0.3 )

4-2
=  0 .2646

Prob( 3 / 4 ) = (  
4

3
  ) 0.3

3
( 1 - 0.3 )

4-3
=  0 .0756

Prob( 4 / 4 ) = (  
4

4
  ) 0.3

4
( 1 - 0.3 )

4-4
=  0 .0081

Is variation of y across persons
Binomial (n=18 , π = 0.03) ??
(from text Clinical  Biostatistics by Ingelfinger et al.)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Interested in

πu proportions in usual and
πe exptl. exercise classes who 'stay the course'

Randomly Allocate
  4 classes of
25 students to usual course

  4 classes of
25 students to experimental course

Are numbers who stay the course in 'u' and 'e' samples Binomial
with nu = 100 and ne = 100 ??

§  e.g.  (  
8

3
  ) , called '8 choose 3', = 

8x7x6
1x2x3  ;  (  

8

0
  )= 1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Sex Ratio 4 children in each family
y number of girls in family

Is variation of y across families
Binomial (n=4 ,  = 0.49) ??
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M&M Ch 5.1   Sampling Distributions for Counts and Proportions

Calculating Binomial probabilities Binomial( n , π ) ... continued

• Spreadsheet  ---  e . g . ,  Excel function

BINOMDIST(number_s,  trials, probability_s, cumulative)

BINOMDIST(        y      ,    n    ,         π          , cumulative)

BINOMDIST(        1      ,    4    ,         0.3        , FALSE) = 0.4116

BINOMDIST(        1      ,    4    ,         0.3        , TRUE)   = 0.6517

Cumulative Probability

Prob[  Y ≤ 1 ]  = Prob[  Y = 0 ] +  Prob[  Y = 1 ]

 =        0.2401 +       0.4116    = 0.6517

(the "s" stands for "success" )

• Tables for various configurations of n and π (M&M Table C)

Table uses X as the r.v. , p as the expected proportion, and k as the
possible realizations, while

JH uses Y,  π  and y respectively

 e.g. n=4, p T-7...  Table goes to  p = 0.5   but note mirror images*

  π = 0.3 π = 0.7
___________________ _________________

      y prob[y | π =0.3]  y      prob[y | π =0.7]

0         0.2401   0    0.0081
1         0.4116   1    0.0756
2         0.2646   2    0.2646
3         0.0756   3    0.4116
4         0.0081   4    0.2401

* for  > 0.5, Binomial_P(y |  ) = Binomial_P(n - y, 1 – )
• Statistical software - e .g .  SAS  PROBBNML(p, n, y) function

• Other Tables

• CRC Tables
• Fisher and Yates Tables
• Pearson and Hartley (Biometrika Tables..)
• Documenta Geigy

• Calculator  ...

• Approximations to Binomial

 -  Normal (Gaussian) Distribution (n large or midrange π )

 -  Poisson Distribution (n large and low π )
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M&M Ch 5.1   Sampling Distributions for Counts and Proportions

PROPORTION of MALE BIRTHS
1864-1979 {116 years}

Northern Ireland

(~ 24 000 - 39 000  live births per year)

<------proportion male------>
 =0.5144

0

2

4

6

8

10

12

14

16

18

??

The Binomial  Distribution

Prelude to using Normal (Gaussian) Distribution as
approximation to Binomial Distribution

• Need mean (E) and SD (or VAR ) of a proportion

• Have to specify SCALE  i.e. whether summary is a

y    count e.g .   2 in 10

p    proportion = y/n e.g .   0.2

%   percentage = 100p% e.g .   20%

• same core calculation for all 3  [only scale changes]

summary  E V=VAR SD= VAR

• count  n n • (1- ) n  ( 1 - ) =  n •  [1- ]

    (y)
        = n •SD(indiv. 0's and 1's)

Examination of the sex ratio was triggered by one very unusual year with
very low percentage of male births; epidemiologists consider the male
fetus more susceptible to environmental damage and searched for
possible causes, such as radiation leaks from UK nuclear plants, etc.

• prop'n    
 [1- ]

n
 [1- ]

n   = 
 [1- ]

n  
    (p) [most common statistic]

= 
SD( ind iv .  0 's  and  1 's )

nWhich raises the question: If we did not have historical data on the sex
ratio, could we figure out what fluctuations there might be --- just by
chance -- from year to year. The n's of births are fairly large so do you
expect the % male to go below 45%, 48%, 50% some years?

•  percent 100 100
2

Var(p) 100 SD(p)

    (100p)Take an n of 32000. var[proportion male] = π[1–π]    /   √32000;

π[1–π]   close to 0.5 since π close to 0.5;  So, SD[proportion] = 0.5/√n = 0.0028

2SD[proportion] = 0.0056 ; 0.5144 ± 0.0056 = proportion 0.5088 to 0.5200  in
95% of years if no trend over time

[sex ratio has  moved slightly downwards in most countries over the centuries]

See data on sex ratio in Canada and provinces 1931-90 (Resources Ch 5)

Note that all the VAR's have the same "kernel"  π (1-π) , which is

the variance of a random variable that takes the value 0 with

probability 1-π  and the value 1 with probability π. Statisticians call

this 0/1 or binary variable a Bernoulli Random Variable. Think of
π (1-π) as the "unit" variance.
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M&M Ch 5.1   Sampling Distributions for Counts and Proportions

Binomial 
n=10,  = 0.5

rectangles on 
x-0.5 , x+0.5

X

Area of
Normal Distrn 

between
x-0.5 & x+0.5

X

X

P(5)

P(6)

P(7)

P(8)

P(4)

P(3)

P(2)P(1)

NORMAL (GAUSSIAN) APPROXIMATION TO BINOMIAL 
and the "CONTINUITY CORRECTION"

0 1 2 3 4 5 6 7 8 9 10

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5-0.5 10.5

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5-0.5 10.5

X
 : integers 0–10

X : continuum 
– ∞ to + ∞

Integer 7 =>
Interval 6.5 
to 7.5

THE FIRST RECORDED P–VALUE???
by a physician no less!!

"AN ARGUMENT FOR DIVINE PROVIDENCE, TAKEN
FROM THE CONSTANT REGULARITY OBSERV'D IN THE

BIRTHS OF BOTH SEXES."
John Arbuthnot, 1667-1735

physician to Queen Anne

Arbuthnot claimed to demonstrate that divine providence, not

chance, governed the sex ratio at birth.

To prove this point he represented a birth governed by chance as

being like the throw of a two-sided die, and he presented data on

the christenings in London for the 82-year period 1629-1710.

Under Arbuthnot's hypothesis of chance, for any one year male

births will exceed female births with a probability slightly less than

one-half. (It would be less than one-half by just half the very small

probability that the two numbers are exactly equal.)

But even when taking it as one-half Arbuthnot found that a unit bet

that male births would exceed female births for eighty-two years

running to be worth only (1/2)82 units in expectation, or

1
4 8360 0000 0000 0000 0000 0000

a vanishingly small number.

"From whence it follows, that it is Art, not Chance, that governs."

STIGLER :  HISTORY OF STATISTICS
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M&M Ch 5.2  Sampling Distribution for a Sample Mean

M&M §5.2 Variability of the Mean of a Sample  :

Expectation / SE / Shape of its Sampling Distribution

Relevance of knowing shape of sampling distribution:

We will only observe the mean in the one sample we chose;

however we can, with certain assumptions, mathematically

(beforehand) calculate how far the mean ( y– ) of a randomly

selected sample is likely to be from the mean (µ) οf the

population. Thus we can say with a specified probability

(95% for example) that the  y–  that we are about to observe

will be no more than Q (some constant, depending on

whether we use 90%, 95%, 99%, ... ) units from the

population mean µ. If we turn this statement around [and

speak loosely -- see later], we can say that there is a 95%

chance that the population mean µ (the quantity we would

like to make inferences about) will not be more than Q units

away from the sample mean ( y– ) we (are about to) observe.

This information is what we use in a confidence interval for

µ. We also use the sampling distribution to assess the

(probabilistic) distance of a sample mean from some "test" or

"Null Hypothesis" value in statistical tests.

• Quantitative variable (characteristic) of interest : Y

• N (effectively) infinite (or sampling with replacement)

• Mean of all Y values in population = µ

• Variance of all Y values in population =  σ2

• Sample of size n; observations y1, y2, ..., yn

• Sample mean = 
∑yi
n  = y–  ( read  "y-bar" )

Statistic E(Statistic) SD(Statistic)

"Standard Error of Mean"

      y– µy
y

n

But  what about the pattern (shape) of the
variability?

The sampling distribution is the frequency distribution
(histogram, etc...) we would get if we could observe the
mean (or other calculated statistic) of each of the (usually
infinite number of) different random samples of a given size.
It quantifies probabilistically how the statistic (used to
estimate a population parameter) would vary around the
"true parameter" from one possible sample to another. This
distribution is strictly conceptual (except, for illustration
purposes, in classroom exercises).
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M&M Ch 5.2  Sampling Distribution for a Sample Mean

Example of the distribution  of a sample mean: Suppose  that

50% have no car,
30% have 1 and
20% have 2:

i.e. of all the Y's, there are
0.5N 0's, 0.30N 1's and 0.20N 2's.

[you would be correct to object "but we don't know
this - this is the point of sampling"; however, as stated
above, this is purely a conceptual or "what if" exercise;
the relevance will become clear later]

When summing or averaging n 0/1 values, there are only n+1 unique

possibilities for the result. However, If we were studying a variable,

e.g. cholesterol or income, that was measured on a continuous scale,

the numbers of possible sample means would be very large and not

easy to tabulate, so instead we take a simpler variable, that is measured

on a discrete integer scale. However, the principle is the same as for a

truly continuous variable.

Imagine we are interested in the average number of
cars per household  in a city area with a large
number (N) of households.  (With an estimate of the
average number per household and the total number
of households we can then estimate the total number
of cars N ).  It is not easy to get data on every single
one of the N, so we draw a random sample, with
replacement, of size n. [The sampling with
replacement is simply for the sake of simplicity in this
example -- we would use sampling without
replacement in practice].

the mean [or expected value] of the entire set of Y's is

  = 0 × 0.5 + 1 × 0.3 + 2 × 0.2  =  0.7

The variance of  Y is

2 = (0 – 0.7)2 × 0.5 + (1 –  0.7)2 × 0.3 + (2 –  0.7)2 × 0.2

     = 0.49 ×  0.5  +  0.09 ×  0.3  + 1.69 ×  0.2  =  0.61

[  sd,   = 0.61 = 0.78  is slightly larger than µ ].

How much sampling variation can there be in the
estimates we might obtain from the sample? What
will the degree of "error" or "noise" depend on? Can
we anticipate the magnitude of possible error and the
pattern of the errors in estimation caused by use of a
finite sample?
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M&M Ch 5.2  Sampling Distribution for a Sample Mean

Example of the distribution  of a sample mean     continued... A sample of size n = 4 would give less variable estimates. The
distribution of the 34 = 81 possible sample configurations, and their
corresponding estimates of µ, can be enumerated manually as:

Suppose we take a sample of size n = 2, and use y–  = (y1+y2)/2 as our

µ̂ , what estimates might we obtain? [we write estimate as  µ̂  = y– ].

Distribution of all possible sample means when n=4Distribution of all possible sample means when n=2

probability
[frequency]

µ̂
[ i.e.,  y–  ]

error

[ y–  – µ̂ ]
% error
[% of µ]

probability
[frequency]

µ̂
[ i.e.,  y–  ]

error

[ y–  – µ̂ ]
% error
[% of µ]

25% 0
2 = 0.0

– 0.7 - 100  6.25% 0
4 = 0.00

– 0.70 - 100

 
 

15.00% 1
4 = 0.25

– 0.45 –  64

30% 1
2 = 0.5

– 0.2 –  29 23.50% 2
4 = 0.50

– 0.20 –  29

 
 

23.40% 3
4 = 0.75

+ 0.05 +   7

29% 2
2 = 1.0

+ 0.3 +  43 17.61% 4
4 = 1.00

+ 0.30 +  43

 
 

 9.36% 5
4 = 1.25

+ 0.55 +  79

12% 3
2 = 1.5

+ 0.8 + 114  3.76% 6
4 = 1.50

+ 0.80 + 114

 
 

 0.96% 7
4 = 1.75

+ 1.05 + 150

 4% 4
2 = 2.0

+ 1.3 + 186  0.16% 8
4 = 2.00

+ 1.30 + 186

Most of the possible estimates of µ from samples of size 2 will be "off
the target " by quite serious amounts. It's not much good saying that "on
average, over all possible samples" the sample will produce the correct
estimate.

Of course, there is still a good chance that the estimate will be a long
way from the correct value of µ = 0.7. But the variance or scatter of the
possible estimates is less than it would have been had one used n = 2.

Check:
Average[estimates] = 0 × 0.0625 + 0.25 × 0.15 + ... +  2 × 0.0016 = 0.7 = µ.
Variance[estimates] = (–0.7)2 × 0.0625 + (–0.45)2 × 0.15  ... = 0.1525 = σ2 / 4 .

Check: Average[estimates] = 0 × 0.25 + 0.5 × 0.30 + 1.0 × 0.29 + 1.5 × 0.12 +
2.0 × 0.04 = 0.7 = µ. Variance[estimates] = (–0.7)2 × 0.25 +  ... = 0.305 = σ2 / 2 .
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M&M Ch 5.2  Sampling Distribution for a Sample Mean

Example of the distribution  of a sample mean     continued... What about real situations with samples of 10's or 100's
from unknown distributions of Y's on a continuous scale?

If we are happy with an estimate that is not more than 50%
in error, then the above table says that with a sample of n=4,
there is a  23.50 +  23.40 +  17.61 or  ≈ 65% chance that
our sample will result in an "acceptable"  estimate (i.e. within
±50%  of µ). In other words, we can be 65% confident that
our sample will yield an estimate within 50%  of the
population parameter µ.

The answer can be seen by examining the sampling distributions as a
function of n in the 'cars per household' example, and in other examples
dealing with Y's with a more continuous distribution (see Colton p103-
108, A&B p80-83 and M&M 403-404). All the examples show the
following:

(1) As expected, the variation of possible sample means about
the (in practice, unknown) target is less in larger samples.
We can use variance or SD to measure this scatter. The SD
(scatter) in the possible  y– 's from samples of size n is

 / n, where   is the SD of the individual Y's.

This is true no matter what the shape of the distribution of
the individual Y's.

For a given n, we can trade a larger % error for a larger
degree of confidence and vice versa e.g. if n=4, we can be
89% confident that our sample will result in an estimate
within 80% of µ or be 25% confident that our sample will
result in an estimate within 10% of µ. (2) If the individual Y's DO are from a Gaussian distribution,

then the distribution of possible y– 's will be Gaussian.

BUT ...

even if the individual Y's ARE NOT from a Gaussian
distribution ...

the larger the n [and the more symmetric and unimodal the
distribution of the individual Y's ],  the more the
distribution of possible y– 's  resembles a Gaussian
distribution.

If we use a bigger n, we can increase the degree of
confidence, or narrow the margin of error (or a mix of the
two), since with a larger sample size, the distribution of
possible estimates is tighter around µ. With n=100, we can
associate a 20% error with a statement of 90% confidence or
a 10% error with a statement of 65% confidence.

But one could argue that there are two problems with these
calculations: first, they assumed that we knew both µ and the
distribution of the individual Y's before we start ; second,
they used manual enumeration of the possible configurations
for a small n and Y's with a small number (3) of integer
values.
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M&M Ch 5.2  Sampling Distribution for a Sample Mean

The fact that the sampling distribution of  y–  [or of

sample proportions, or sample slopes or correlations, or

other statistics created by aggregation of individual

observations ..] is, for a large enough n [and under

other conditions*], close to Gaussian in shape no matter

what the shape of the distribution of individual Y

values, is referred to as the Central Limit Theorem.

The Gaussian approximation to certain
Binomial distributions is an example of the
Central Limit Theorem in action.

Individual (Bernoulli) Y's have a 2-point distribution: a
proportion (1 – π) have the value Y=0 and the
remaining proportion π have Y=1.

The mean (  ) of all (0,1) Y values in population is  π .

The variance, 2, of all Y values in population
2 =  (0 – π)2  (1 – π) + (1 - π)2    π = π(1 – π).

If a sample of size n;

observations y1, y2, ..., yn (sequence of n  0's and 1's ).

sample mean  y–  = 
yi
n   = number of 1's

n   = p .

* relating to the degree of symmetry and dispersion of the
distribution of the individual Y's

We use the notation  Y ~ Distribution( y , y)

as shorthand to say that "Y has a certain type of

distribution with mean y and standard deviation y".

In this notation, the Central Limit Theorem says that

So ...

When Y ~ Bernoulli(  = π,    =  π[1 – π] ) , then

 p = y–  ~ GAUSSIAN( π , 
 [1 – π]

  n 
  )   if n 'large' and

π not extreme*.

* i.e. E[# 'positive'  = numerator =  yi ] sufficiently
far from the minimum  0, and the maximum, n.

if Y ~ ???????( Y,  Y ) , then

y–  ~ Gaussian( Y , 
 Y 

 n 
 ),  if n is large enough and ...
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M&M Ch 5.2  Sampling Distribution for a Sample Mean

Returning to the cars per apartment example above: Effect of n on Sampling behaviour of Sums & Means

If n = 100, then the SD of possible   y– 's  from samples of size
n=100 is / 100 = 0.78 / 10 = 0.078. Thus, we can approximate
the distribution of possible   y–'s   by a Gaussian distribution
with mean  = 0.7 and standard deviation of 0.078, to get ...

0.5
0.3

0.2

0 1 2

.25 .30 .29 .12 .04

0 1 2

. 125 .225 .285 .207
.114 .036 .008

3 4

0 1 2 3 4 65

. 063
.150 .255 .234

.176 .094 .038 .010

0 1 2 3 4 65 7

sum
of 1

sum
of 2

sum
of 3

sum
of 4

  Interval   Prob.  % Error

µ ± 1.00SD(y-) 0.7±0.078  0.62 to 0.77   68%     ±11%
µ ± 1.50SD(y-) 0.7±0.117  0.58 to 0.81   87%     ±17%
µ ± 1.96SD(y-) 0.7±0.143  0.55 to 0.84   95%     ±20%
µ ± 3.00SD(y-) 0.7±0.234  0.46 to 0.93   99.7%   ±33%

[The Gaussian-based intervals are only slightly different from the
results of a computer simulation in which we drew samples of size 100
from the above Y distribution]

If this variability in the possible estimates is still not acceptable and we
use a sample size of 200, the standard deviation of the possible y–  's is
not halved (divided by 2) but rather divided by √2=1.4.  We would need
to go to n = 400 to cut the s.d. down to half of what it is with n = 100.

0 1 2

0.5 1.50 21

0 21
0.33

0.67
1.33

1.67

0.5 1.50 21

mean of 1

mean of 2

mean of 3

mean of 4

Var = 0.610

Var = 0.305

Var = 0.203

Var = 0.153

[Notice that in all of this (as long as we sample with replacement, so that
the n members are drawn independently of each other), the size of the
population (N) didn't enter into the calculations at all.  The errors of our
estimates (i.e. how different we are from µ on randomly selected
samples) vary directly with σ and inversely with √n. However, if we
were interested in estimating Nµ rather than µ, the absolute error would
be N times larger, although the relative error would be the same in the
two scales.]

Message from diagram opposite:

Var (Sum)  > Var of Individuals by factor of  n
Var (Mean) < Var of individuals by same factor of   n

In addition, and also very important:  Variation of sample means
(or sums) is more Gaussian than variation of individuals
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M&M Ch 5.2  Sampling Distribution for a Sample Mean

Another Example of Central Limit Theorem at work

average length of 9 words
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The variability in length of individual words...

(average) length of 1 word
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ave. length of 20 words
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The variability in the average word length in samples of 4,
9, 20 words [Monte Carlo simulation]

average length of 4 words
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Variability in mean length of n=20 words

Mean [of means]  4.56
SD[of means]     0.56 Variance[of means] 0.3148

Quantiles  %ile  observed  fitted: mean+zSD  ( z   )
           99%     5.95     5.86       ( 2.32)

The variation of means is closer to Gaussian than the variation of
the individual observations, and the bigger the sample size, the
closer to Gaussian. [i.e. with large enough n, you could not tell
from the sampling distribution of the means what the shape of the
distribution of the individual 'parent' observations. Averages of n =
20 are essentially Gaussian (see observed vs fitted at right).

           95%     5.5     5.48 ( 1.96)
           90%     5.3     5.28 ( 1.28)
           75%     4.95     4.94 ( 0.67)
           50%     4.55     4.56 ( 0.00)
           25%     4.15     4.18 (–1.67)
           10%     3.85     3.84 (–1.28)
            5%     3.65     3.64 (–1.96)
            1%     3.35     3.26 (–2.32)
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M&M Ch 5.2  Sampling Distribution for a Sample Mean

Standard Error (SE) of the mean ... "SEM " Standard Error (SE) of commonly used estimates†

Statistic     Standard Error (SE)

Var( y
–

 ) = Var[ 
∑y i
n  ]

mean y
– y

n

= 
1
n2 Var[ ∑y i ]

proportion p
π{1-π}

n
    ( =  

SD{0s&1s}

n
  )

(binomial)= 
1
n2 [ ∑ var[yi]  ]

= 
1
n2 [ n var[yi]  ]       {..if y's uncorrelated}

proportion p SE binomial(p)• 1 -  
n
N

    ¶

(finite N)

= 
1
n  var[y]

( = regular SE • 1-sampling fraction  )

Sum /

=  
var[y]

n

Difference

 p1 ± p2 [SE{p1}]
2

+  [SE{p 2}]
2   §

SD( y
–

 ) = Var[( y
–

 )]  =    
var[y]

n
y
–

1 ± y
–

2 [SE{y
–

1}]
2

+  [SE{y
–

2}]
2   §

§ Remember...

=  
Var[y]

n
* SD's and SE's (which are SD's too) DO NOT ADD
   THEIR SQUARES,  i.e. VARIANCES, DO!

•  SE(SUM or DIFFERENCE)

=  SE 2  PLUS S E 2   if estimates uncorrelated

=   
SD[y]

n

SEM = Standard Error(sample mean)

= SD(sample mean)

=  
SD(individuals)

sample size

¶  
n
N often close to zero, so downward correction negligible.

† Ref : A & B Ch 3 (they also deal with SE's of ratios and other functions and
transformations of estimates)
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M&M Ch 5.2  Sampling Distribution for a Sample Mean

Standard Error (SE) of combination or weighted
average of estimates

COMBINING ESTIMATES FROM SUBPOPULATIONS TO FORM AN
ESTIMATE FOR THE ENTIRE POPULATION
If several (say k) sub-populations or "strata" of sizes N1, N2, ... Nk, form one entire
population of size ∑Nk = N.  Interested in quantitative or qualitative characteristic of
entire population.  Denote this numerical or binary characteristic in each individual by Y,
and an aggregate or summary (across all individuals in population) by θ, which could
stand for an average (µ), a total (Tamount = Nµ), a proportion (π), a percentage (% =
100π) or a total count (Tc = Nπ). Examples:

SE{∑ estimates} =  ∑{[SE of each estimate]
2
}

SE{constant x   estimate} = constant x SE{estimate}

SE{constant +  estimate} = SE{estimate}

SE{∑ wi x  estimatei} =  ∑{ w i
2
 x  [SE estimatei]

2  
}

This last one is important for combining estimates from
stratified samples, and for meta-analyses:

In an estimate for the overall population, derived from a stratified
sample, the weights are chosen so that the overall estimate is
unbiased i.e. the w's are the relative sizes of the segments (strata) of the
overall population (see "combining estimates ... entire population"
below).  The parameter values will likely differ between
strata. (this is why stratified sampling helps). The estimate for the
entire population parameter is formed as a weighted average of the age-
specific parameter estimates, with weights reflecting the proportions of
population in the various strata.

If instead, one had several estimates of the same parameter value (a big
assumption in the 'usual' approach to meta-analyses), but each
estimate had a different uncertainty (precision), one should take a
weighted average of them, but with the weights inversely proportional
to the amount of uncertainty in each. from the formula above one can
verify by algebra or trial and error that the smallest variance for the
weighted average is obtained by using weights proportional to the
inverse of the variance (squared standard error) of each estimate.
If there is variation in the parameter value, this SE is too
small. The 'random effects' approach to meta-analyses weights each
estimate in inverse relation to an amalgam of (i) each SE and (ii) the
'greater-than-random' variation between estimates [it allows for the
possibility that the parameter estimates from each study would not be
the same, even if each study used huge n's). The SE of this weighted
average is larger than that using the simpler (called fixed effects) model;
as a result, CI's are also wider.

If Y is a measured variable (i.e. "numerical")
µ: the annual (per capita) consumption of cigarettes
Tamount: the total undeclared yearly income

(Tamount = Nµ and conversely that µ =Tamount ÷ N)

If Y is a binary variable (i.e. "yes/no")
π: the proportion of persons who exercise regularly
100π %: the percentage of children who have been fully vaccinated
Nπ: the total number of persons who need Rx for hypertension

( Tc = Nπ ;  π = Tc ÷ N )
The sub-populations might be age groups, the 2 sexes, occupations, provinces, etc.
There is a corresponding θ for each of the K sub-populations, but one needs subscripts to
distinguish one stratum from another. Rather than study every individual, one might
instead measure Y in a sample from each stratum.

• Estimate overall , or  combine estimates :
  Sub           Relative Size   Sample   Estimate     SE of

 Popln   Size    Wi = Ni ÷ N     Size     of θi     estimate

   1     N1           W1         n1        e1         SE(e1)
  ...   ...          ...         ...       ...        ......

   k     Nk           Wk         nk        ek         SE(ek)

Total ∑N = N        ∑W=1       ∑n=n     ∑Wiei    ∑Wi2[SE(ei)]2

Note1-  To estimate Tamount  or Tc , use weights Wi = Ni ;
Note2:  If any sampling fraction fi = ni ÷ Ni is sizable, the SE of the ei should be scaled
down i.e. it should be multiplied by √(1-fi )
Note3: If variability in Y within a stratum is smaller than across strata, the smaller SE
obtained from the SE's of the individual stratum specific estimates more accurately
reflects the uncertainty in the overall estimate. Largest gain over SRS is when large
inter-stratum and low intra-stratum variability
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