140 . CONFOUNDING AND STANDARDIZATION

Solutions to the exercises

14.1 The estimated standardized rates are
(0.2 x 6.41) + (0.5 x 13.67) + (0.3 x 20.97) = 14.41
for the exposed group, and
(0.2 x 6.58) + (0.5 x 3.93) + (0.3 x 9.00) = 5.98

for the unexposed group.

14.2 The standard deviations of the age-specific rates are 3.29, 1.76, and
3.18 respectively. The standard deviation of the standardized rate is

/(0333 x 3.29)2 + (0.333 x 1.76)2 + (0.333 x 3.18)% = L.63.

14.3 The ratio of standardized rates is 13.67/6.50 = 2.10 and the 90%
range for this is from 2.10/1.696 = 1.24 to 2.10 x 1.696 = 3.56 .

-

15
Comparison of rates within strata

15.1 The proportional hazards model

Direct standardization is a very simple way of correcting for confounding
but it does have some limitations. This chapter deals with the alterna-
tive and more generally useful approach of stratification. We shall again
illustrate our argument using the study of the relationship between en-
ergy intake and IHD first introduced in Chapter 13 and further analysed
in Chapter 14. There, in Table 14.1, we showed the data stratified by
10-year age bands and demonstrated that the low energy intake group is,
on average, rather older. This might explain some, or all, of the increase
in THD incidence rate. The method of direct standardization predicts the
marginal rates for energy intake groups with the same standard age dis-
tribution. This chapter explores the alternative approach which compares
age-specific rates within strata. Table 15.1 extends Table 14.1 by calculat-
ing rate ratios within each age band. This demonstrates the main prob-
lem with this approach to confounding; holding age constant and making
comparisons within age strata leads to variable and unreliable estimates,
because the age-specific rates are based on so few data.

This problem is resolved is by combining the age-specific comparisons
from the separate strata, but any such procedure carries with it a further
modelling assumption, because combining the age-specific comparisons can
only be legitimate if we believe that they all estimate the same underlying
quantity. If we are prepared to believe that the rate ratio between exposure

Table 15.1. Rate ratios within age strata

Exposed Unexposed
(< 2750 kcal) (= 2750 kcal) Rate
Age D Y Rate D Y Rate ratio
40-49 2 311.9 6.41 4 6079  6.58  0.97
5
8

50-59 12 878.1 13.67 12721 393  3.48
60-69 14 667.5 20.97 888.9 9.00 2.33

Total 28 1857.5 1507 17 2768.9 6.4  2.45




142 COMPARISON OF RATES WITHIN STRATA

groups is.constant across age-bands, the evidence from the three bands can
be brought together to provide a single estimate of the (constant) age-
specific rate ratio. Of course the model on which the estimate is based, like
all models, is open to question and in later chapters we shall discuss ways

in which we can test whether it holds. For the present, we shall be content,

to believe that the model holds in our example, and that the fluctuation
of age-specific rate ratios in Table 15.1 is no more than we would expect
given the small numbers of cases in each age band.

" Qur notation follows naturally from earlier chapters. The age bands are
indexed by the superscript £ and exposure groups are indexed by subscripts,
so that A§ and A} are the rate parameters in age band ¢ for the unexposed
and exposed subjects respectively. We shall write the rate ratio parameter
as 0, so that the model of constant rate ratio may be written

)\t
A—%:G.

This is called the proportional hazards model. The parameter  is called
the rate ratio for exposure controlled for age, sometimes abbreviated to the
effect of exposure controlled for age. In this chapter we discuss how 6 can
be estimated.

15.2 The likelihood for 6

When the rate ratio is constant across age bands, we can replace the rate
parameters A% by #)5. In our example, this reparametrization replaces the
original six rate parameters, which we assume to be constrained to obey the
proportional hazards model, with four parameters which are free to take
any positive value. One parameter, namely the rate ratio 6, is our prime
interest, and the remaining three are regarded as nuisance parameters.

Since each age band serves as an independent study, it is a simple
matter to write down the log likelihood. for a stratified comparison. Con-
structing the log likelihood using the prospective argument, each age band
contributes a term which depends upon 8 and the appropriate A5. The
total likelihood is obtained by adding these terms over age bands. For
comparing rates between exposed and unexposed subjects, the parameters
A} are nuisance parameters. As'in Chapter 13, replacing these by their
most likely value for given @ leads to a profile log likelihood for §. With the
caveat expressed at the end of section 13.3, this log likelihood can also be
justified as a conditional likelihood based on the split of cases within each
stratum.

The log likelihood ratio curve for log(6) in our illustrative example is
shown in Figure 15.1. Using a computer, it is a simple matter to find
the most likely value, M, and to use the curvature of the log likelihood
ratio to compute a Gaussian approximation. In this case M = 0.8697
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Fig. 15.1. Log likelihood ratio for the common rate ratio.

and S = 0.3080, and this approximation is shown as a broken line in the
figure. The most likely value of the rate ratio is exp(0.8697) = 2.386 and
confidence intervals can be calculated using the error factor:

exp(1.645 x 0.3080) = 1.660.

The fact that the high energy-intake group is, on average, slightly younger
than the low energy-intake group is the reason why the estimate of the rate
ratio controlled for age is slightly smaller than the crude rate ratio (2.45).
However, the difference is extremely small. This is not unusual; rather large
differences between exposure groups in important variables are necessary
for the effect of confounding to be appreciable.

Unfortunately it is not possible to calculate the values of M and S by
hand using simple formulae. The computer programs which are used to
carry out such computations are very flexible and allow more complicated
models to be fitted. Accordingly discussion of these will be postponed
until Part II and the remainder of this chapter will deal with methods
which require only a hand calculator.

15.3 A nearly most likely value for 6

‘We saw in Chapter 13 that, in an unstratified analysis, both profile and
conditional arguments led to the Bernoulli likelihood

Dy log(2) — Dlog(l + ),
' ’
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where €, the odds for a case having been exposed, is 1) /Yo. The gradiént
of the curve of log likelihood versus log(6) is

Q

D, —D——
1= P
which, after substituting 8Y;/Y; for Q and rearranging becomes

1
Yo+ 01

where W = 1/(Yy + 6Y1). In a stratified analysis, the log likelihood is the
sum of contributions of each stratum,

> [D¥1og(€) — D*log(1+ Q"))

(D1Yy — 6DoYy) = W (D1 Yo — §DoY1),

and the gradient is similarly constructed by adding up gradient contribu-
tions:
S Wt (DiYs - 6DgYY)
where Wt = 1/(Y¢ + 0Y¢) are stratum weights.
The most likely value of § occurs where the gradient is zero, that is, at

,_ SWDi
> WDV

Since calculation of the weights Wt involves 6, and this equation cannot
be used directly to find the most likely value. However, it can be used
iteratively as follows:

1. guess a value for §, and use this to calculate initial weights;

2. using these, calculate a first estimate of 6;

3. using this new estimate, calculate more accurate weights.

The sequence of calculations may be repeated until there is no change in
the estimate. Computer programs for maximum likelihood estimation use
similar iterative methods of computation.

In practice, the estimate obtained is not very sensitive to changes in
the values of the weights — rather large changes make only a relatively
small difference to the estimate. Additionally, it may be argued that it
is only really important to achieve the closest approximation to the log
likelihood when estimating rate ratios which are fairly close to 1. These
considerations suggest using the weights corresponding to the choice 6 =1,
and to go no further with the calculations. These weights are the reciprocal
of the person-years observations in each age band:

1 1

t _ = .
W TYE+YyE Y
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Use of these weights leads to the Mantel-Haenszel estimate of the rate
ratio*,

> DiYg/Y®
2 DgY/Y®
In this expression, each age band makes contributions of
Div¢ DiYd
t_ Hifg t _ oty
=y F="y

to the top (numerator) and bottom (denominator) of the estimate respec-
tively. The estimate of the rate ratio for age band ¢ is Q*/R* and the
combined estimate of the constant rate ratio is Q/R, where @ = > @ and
R=> R.

Exercise 15.1. Calculate Q* and R’ for each of the three age bands in Table 15.1,
and hence calculate the Mantel-Haenszel estimate of the rate ratio. Compare this
with the most likely value.

15.4 Calculating p-values and confidence intervals

Approximate p-values are most easily calculated using the score test. Since
the log likelihood for # for the age-stratified comparison is the sum of
contributions from each age band, it follows that its gradient, and hence
the score, is the sum of scores for each stratum. Similarly, the curvature
is the sum of the curvatures of the separate contribution of each stratum
so that the overall score variance is the sum of score variances for each
stratum. That is,

U=>Y_ Ut v=> v

Thus to carry out the test we first calculate scores and score variances
for each stratum separately and then sum these over strata to obtain the
total score and score variance. We then compare (U)?/V with the chi-
squared distribution in the usual way. The contribution of stratum ¢ to
the score and score variance are of the same form as given at the end of
section 13.2, namely

Ut=D?! -~ Dt7rt®, Vt = Dirh(1 - 7rt®),

where 75, = Y /Y, the ratio of exposed to total person years.

Exercise 15.2. For our example, what is the p- va.lue for the null hypothesis
that, after controlling for age, the rate ratio is 1.

*In fact Mantel and Haenszel did not propose/ﬂ(zsﬁthod but an extremely similar
one for case-control studies. We shall discuss this in Chapter 18.
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As before, the value of U may be interpreted as the difference between the
number of cases who had been exposed and the number expected under
the null hypothesis, taking into account the age structures of exposed and
unexposed groups.

The calculation of the score variance, V, also allows us to calculate an,

approximate confidence interval around the Mantel-Haenszel estimate. A
Gaussian approximation on the log(#) scale, with

\4
S=4]==.
QR
can be used to calculate an error factor and the approximate confidence
interval in the usual way.t

Exercise 15.3. Calculate the standard deviation, S, of the log Mantel-Haenzsel
estimate for the energy intake data. Use this to calculate a 90% confidence
interval for the rate ratio adjusted for age.

These results are very close to those obtained using a computer program to
find the Gaussian approximation to the log likelihood curve. The computer
method is better in the sense that, as the quantity of data increases, the
approximate interval of support approachs the correct likelihood-based in-
terval, while the Mantel-Haenszel interval remains slightly wider no matter
how much data we collect. The discrepancy is rarely important.

15.5 The log-rank test

Our example in this ch?ﬁter has involved stratification by a time scale,
age, into three rather broad bands. In clinical follow-up studies time is
measured from diagnosis or start of treatment and the incidence of events
may vary rapidly, requiring the choice of narrow bands. This, together with
the fact that choice of bands may introduce an arbitrary element into the
analysis, has led to the popularity of a version of the test in which time
is stratified infinitely finely into clicks, with no click containing any more
than one event. This test is called the log rankt or Mantel-Coz test.
Derivation of this test from that of the previous section is straightfor-
ward. The first thing to notice is that clicks which contain no event (i-e.
with D* = 0) make no contribution either to the score, U, or the score vari-
ance, V. We therefore need only consider those clicks in which we observe
the occurrence of an event in one of the gr&m/:f) These are are

TThis approximation is not widely known, but it would not appropriate to justify it
here. Tt suffices to say that it is adequate for all our purposes.

1This nomenclature may seem rather obscure, since the calculation of the test requires
neither logarithms or ranks! It arises from an alternative derivation.
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Table 15.2. Survival times in two groups of patients
Group Time (days)
Test treatment  86,99*,119*,123*,139*,161*, 185*, 212*, 231, 253*,
(V = 20) 262*, 281*,303*, 355, 360, 380*, 392,467*, 499*, 514*
Control 73,91,102%,120%, 135, 160%, 194, 202*, 209*, 220*,
(N = 20) 252,270*,296,330*, 347*,375%, 390*, 414, 475*, 485*

known as informative time points.S Since each click is very short, we need
not consider variation in the time spent by different subjects in the band,
and the null probability that a failure was exposed becomes

. N{ Number of exposed subjects in study at time ¢

Ty = — =
@ Nt Total number of subjects in study at time ¢

Each failure makes a contrlbutlon to the score of the dlﬁerence between the

the expected number, w] which is sunply 7t To-
by adding the contributions T

The score variance is obtalned

V= b (1 — ).

Exercise 15.4. Table 15.2 shows times between entry to a clinical trial and
relapse for patients receiving two methods of therapy. (The data are only illus-
trative — a real trial with so much censoring would need to be much larger than
this!) The times marked with an asterisk represent times at which observation
ceased without occurrence of relapse. Construct a table showing the times of
occurrence of relapses, the number of patients in each group under study at each
of these times, and the corresponding observed and expected relapses in the test
group. Use this table to carry out the score test.

15.6 Comparison with reference rates: the SMR

An important special case concerns the comparison of age-specific rates in
a study cohort, A*, with those in a reference population, which we shall
denote by Af,. We have discussed this informally in Chapter 6. A more
formal treatment follows as a simple case of the methods discussed above.

The proportional hazards model holds that the ratio of age-specific rates
in the study cohort to the reference rates is constant across age bands,

8Since clicks have no duration, we assume that no more than one event occurs at any
time point.
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If we-observe D* failures in Y'¢ person years of observation in each age band
of the cohort, the log likelihood contribution is

Dtlog()?) — \fY?
and making the substitution A* = A% this becomes
D*log(6) + D log(\%) — OALY®.

Since the reference rates A% are calculated from very large populations, they
are effectively known constants, and the above log likelihood depends onty
on one unknown parameter, §. The second term in the log likelihood does
not depend on # and can be ignored, and the third term may be sir.npliﬁed
after noting that ALY"* is the expected number of failures o_btalned by
multiplying the age-specific reference rate by the correspondu.lg person-
years of observation of the study cohort (see Chapter 6). Denoting this by
E?, the log likelihood contribution of one age band becomes

D% log(6) — 0E*
and summation over age bands leads to the total log likelihood
Dlog(6) — 6F,

where D, F are the total observed and expected numbers of failures. This
is a Poisson log likelihood, but the rate ratio parameter 6 replaces the rate
parameter A, and the expected number of failures F replaces the person-
years Y. Thus estimating 6 in this case is just the same as estimating
a rate. The most likély value is the ratio of observed to expected cases,
D/E, and in epidemiology this is called the standardized mortality ratio,
or SMR. A 90% confidence interval can be calculated using the error factor

/1
exp (1.645 5) .

An approximate p-value for the null hypothesis § = 1 can be carried out
using the score and score variance -

Comparison of rates with reference rates in this way is known in epidemi-
ology as indirect standardization.

Exercise 15.5. In the follow-up study of ankylosing spondyliti.s patients d%s—
cussed in Chapter 6, the observed number of deaths from leukaemia was 31 while

COMPARING STANDARDIZED RATES 149

the expected number calculated from reference rates was 6.47. Calculate the 90%
confidence interval for the common ratio of cohort age-specific rates to reference
rates. Also calculate an approximate p-value for the null hypothesis 8 == 1.

Exercise 15.6. The calculation of the expected number of deaths in the anky-
losing spondilitis study was based on person-years classified by both age and
calendar period (see Chapter 6). What further modelling assumption is formally
necessary to justify the analysis carried out in the previous exercise?

' 15.7 Comparing standardized rates

We showed in Chapter 14 that standardized rates estimate the marginal
rates when the age distributions are corrected to a common standard.
These are weighted sums of age-specific rates. In the case of three age
bands, the marginal rate is

W1A1+W2)\2+W3>\3

where (W', W2, W?3) are the relative frequencies of the three age bands in
the standard distribution, and the ratio of two marginal rates, corrected to
the same age distribution, is

WA +W32A2 4 W3NS
WIN +W2AZ + W3S

When the proportional hazards model holds, every term in the numerator
of this expression is @ times the corresponding term in the denominator, and
it follows that the ratio of marginal rates will also be 8 — the relationship
between marginal rates is the same as that between the conditional (age-
specific) rates. Thus, the ratio of standardized rates can be used as an
estimate of §. However it may not be a very good estimate if the standard
age distribution gives high weight to age bands with few failures.

Note that the equivalence demonstrated above between the conditional
and marginal comparisons does not hold for all stratification models. For
example, if the ratio of the age-specific odds of failure for exposed and
unexposed subjects is a constant, 8, for all ages then the ratio of marginal
odds is not equal to 4, even when there is no confounding and the age
distributions are identical. Thus we cannot always rely on the method of
direct standardization if we are interested in comparisons within strata. In
Chapter 18 we shall encounter an important example of this.

15.8 Comparison of SMRs

Although the ratio of standardized rates can be used as an alternative
estimate of 6, there has been some controversy as to whether the ratio of
two SMRs can also be used in this way.
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An understanding of the formal model which lies behind indirect stan-
dardization clarifies this argument. Calculation of an SMR for an exposed
cohort, using reference rates AL implies the model

A= G0,

where 6; is the constant ratio of rates in this cohort to reference rates.
Similarly, calculation of an SMR for an unexposed cohort implies the model

A= o),

A direct consequence of these two models is that the ratio of rates for
the two cohorts is also constant across age. This can be demonstrated by
simply dividing the two equations, when AL cancels leaving

M6

X6

Thus if the age-specific rates for both exposed and unexposed cohorts are
proportional to the reference rates, the comparison of SMRs is legitimate.
Since the likelihoods for §; and 8y are Poisson in form, with expected
numbers of failures E; and Ej replacing person-years observation Y; and
Y,, the likelihood for their ratio, 6, is the same as for the rate ratio in
Chapter 13.

This method, however, relies on the assumption that both sets of age-
specific rates are proportional to the reference rates. If they are propor-
tional to each other, but not to the reference rates, then the ratio of SMRs
will not correctly estimate the rate ratio 6. Because of this additional as-
sumption concerning reference rates, estimation of d by the ratio of SMRs
is not usually to be recommended.

Solutions to the exercises

15.1 The calculations are as follows:
Age Qt R
40-49 2 % 607.9/919.8 =132 4 x 311.9/919.8 = 1.36
50-59 12 x 1272.1/2150.2 =7.10 5 x 878.1/2150.2 = 2.04
60-69 14 x 888.9/1556.4 =8.00 8 X 667.5/1556.4 = 3.43
Total 16.42 6.83

The Mantel-Haenszel estimate is 16.42/6.83 = 2.40 while the most likely
value is 2.39.

15.2 The score is:

311.9 878.1 667.5
v= (2 0 ) * (12 - 172150.2) * (14 -2 1556.4)

SOLUTIONS 151

= 28-1841
= 9.59

and the score variance is

311.9 x 607.9 878.1 x 1272.1 667.5 x 838.9
Vo= gx e XD g, SO X 212D £o7.0 x 8899
P98 X T aisae 22X (15564
— 13444114539
10.84.

The chi-squared value (1 degree of freedom) is (9.59)2/10.84 = 8.48 and
P < 0.005.

15.3 The standard deviation for the approximation is

Iy Ay ——
QR V1642x6.83 U7

The error factor for the 90% confidence interval is exp(1.645x0.311) = 1.67,
and recalling that the Mantel-Haenszel estimate was 2.40, the confidence
limits are 2.40/1.67 = 1.44 (lower limit) and 2.40 x 1.67 = 4.01 (upper
limit).

15.4 The times at which events occurred, the numbers of patients under
observation, and the observed and expected relapses in the test group are
shown below.

t NI N: N' Dt B
73 20 20 40 0 20/40 = 0.50
8 20 19 39 1 20/39=0.51
91 19 19 38 0 19/38=0.50
135 16 16 32 0 16/32=0.50
194 13 14 27 0 13/27=048
231 12 10 22 1 12/22=0.55
0

0

1

0

252 11 10 21 11/21 = 0.52
206 8 8 16 8/16 = 0.50
32 4 3 7 4/7 = 0.57
414 3 3 6 3/6 = 0.50

The overall score is

U=3-(.50+.51+.50+--- 4 .57+ .50) = —2.13
and the score variance is

V = (.50 x .50) + (.51 x .49) + - - - + (.50 x .50) = 2.49.
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The score test is (U)2/V = 1.82 and p > 0.10. This test is the score test
for 8 = 1 in the proportional hazards model which holds that the ratio of
the relapse rates of the two treatments is constant (at ¢) regardless of time
since entry into the trial.

15.5 The most likely value of 8 is the SMR,

31
647 = 4.791.

[1
1.6454/ — | = 1.
exp < 6 31> 1.344,

s6 that the 90% confidence interval is from 4.791/1.344 = 3.56 to 4.791 x
1.344 = 6.44.
The score test is

The error factor is

(31 — 6.47)?

64T = 93.00

and p < 0.001.

15.6 Follow-up was stratified by both age and calendar period when cal-
culating the expected number of deaths. The model which underlies the
above analysis therefore assumes that the ratio of rates in the ankylosing
spondilitis cohort to those in the reference population is constant for all
ages and for all calendar periods.

16
Case—control studies

In a cohort study, the relationship between exposure and disease incidence
is investigated by following the entire cohort and measuring the rate of
occurrence of new cases in the different exposure groups. The follow-up
allows the investigator to register those subjects who develop the disease
during the study period and to identify those who remain free of the disease.
In a case-control study the subjects who develop the disease (the cases) are
registered by some other mechanism than follow-up, and a group of healthy
subjects (the controls) is used to represent the subjects who do not develop
the disease. In this way the need for follow-up is eliminated. If there is
no relationship between exposure and disease incidence the distribution of
exposure among the cases should be the same as the distribution among
the controls.

Historically the aim of case-control studies was limited to testing for
association between exposure and disease. Often little thought went into
the selection of control groups, or even of cases to be studied. Frequently,
studies were carried out using whatever cases could be traced from medi-
cal rtlggi‘/ata__gi en centre. In this rather careless climate, case-control
studies into di‘é%ute. However, it is now understood that properly
conducted case-control studies allow quantitative estimates of exposure ef-
fects and this discovery has clarified the fundamental assumptions of the
method. It has also contributed to a clearer understanding of the design of
case-control studies issues and to a considerable improvement in the quality
of studies.

We shall look first at estimating exposure effects and then consider how
best to select controls. In the last section of the chapter there is a brief
account of some of the difficulties which arise when case-control studies are
based on prevalent rather than incident cases.

16.1 The probability model in the study base

Every case-control study of incidence can be seen within the context of an
underlying cohort which supplies the cases on which the case-control study
depends. A useful terminology refers to this underlying cohort, observed
for the duration of the study, as the study base.

To estimate the quantitative relationship between exposure and disease
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15 Comparisons of rates within strata

15.1 The proportional hazards model

“This problem is resolved by combining...” [beginning of second para-
graph]

Before we get to their modelling approach, it is appropriate to consider a
simpler, more transparent way of combining the comparisons, namely by a
precision-based weighted average of the observed stratum-specific rate
ratios, or better still by precision-based weighted average of the logs of the
stratum-specific rate ratios.

This too involves a model (a set of assumptions) in that it assumes (implicitly
at least) that one is combing estimates of the same single but unknown pa-

1 2 3
rameter, log[f] = log {%} = log {%} = log {%} In other words, it assumes
0 0 0

that each log [\{/Af] is an estimate of the unknown scalar log[6], as if we had
3 estimates of the speed of light. This implicitly is the proportional hazards
model.

Supplementary Exercise 15.1, using C&H’s 3-age-strata example

i. Compute the logs of the 3 observed (empirical) stratum-specific rate ra-
tios, and the variances of these.!

Take a weighted average of these, using the inverses of the 3 variances
as the weights.? Also, calculate the variance for this weighted average of
logs.

Finally, reverse scales by converting the point and interval estimate back
to the 6, i.e., Rate Ratio, scale, and compare with the result at the top
of column 2 of page 143.

ii. The reason for working in the log scale is that the distributions of the

log[A]’s (and their differences) are usually closer to Gaussian than the
distributions of A’s are. This parameter transformation is covered in

1Remember the exercises from earlier chapter where you worked out the variance of the
log of a rate ratio based on 2 Poisson r.v.’s D1 and Dy serving as numerators, and two
know quantities Y7 and Yj serving as the person-time denominators. Theoretically, it came
out to 1/u1 4+ 1/po, so to be practical you need to plug in estimates of muj and po.

2]t is a general result in statistics — and a commonly used question in exams to prove —
that the ‘best’ (in the sense of minimum variance) linear combination of several estimates
of the same parameter, where each estimate is accompanied by its own variance, is the one
that uses the inverses of these variances as the weights.

section 9.2.3

Spiegelhalter in his book and in his work, is very keen on using ‘Gaussian-
looking’ likelihoods — and Gaussian priors. Their ‘conjugancy’ in produc-
ing ’Gaussian-looking’ posterior distributions simplifies matters consid-
erably.

But stratum-specific ‘Gaussian-looking’ likelihoods are also important for
another reason, that is illustrated by this exercise.

Consider the 3 age-strata in Table 15.1. and refer to Gaussian log likeli-
hood in the first sentence of Chapter 9. In out case, their u is our log[d].
So lets pursue a Gaussian-likelihood-based estimate of p.

e Use the logs of the 3 observed log ratios calculated in part i above as
your My, My and Ms, (our 3 i’s) and use the 3 variances calculated from
part i as S7, S3, and S3.

e Plot the 3 separate log-likelihoods on the same graph, each with a dif-
ferent colour. (just by their widths, without the colours, can you identify
which it which?)

e Now plot the sum of the 3 log-likelihoods on this same graph, and
measure where its reaches its maximum, and what the curvature is at
this maximum.

e Compare this calculated curvature with the sum of the inverses of the
3 quantities, S7, S3, and S7. Comment.

This exercise was intended to emphasize that it is easier to add Gaussian-
based log-likelihoods if you write each one as —(1/2) 7 (M —0)?, where (as
in the Bayesian framework), T = 1/0? is referred to as the ‘precision.’

Now to the author’s model-based approach...

In this example, the p.h. model is used to reduce the dimension of the problem
from a likelihood with 6 parameters for 6 rates

stratum(s) - 1 As; 1 Asy0
stratum(s) - 2 Agy 1 Asy0
stratum(s) - 3 Agy1 Asy0

to one with 4 parameters for 6 rates

stratum(s) - 1 OXs; 0 Asy0
stratum(s) - 2 6A5,0  Asy0
stratum(s) - 3 OAs,0  Ass0

31t turns out that, especially for parameters such as rates, the 1/3 power is also a very
good ‘Gaussianizing’ transformation, but we will not pursue this further at this point.
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and from there, by use of either a profile likelihood or a likelihood based
on conditional distributions, to one with the 1 parameter of interest, #, the
(assumed constant over strata) rate ratio.

As we will see, in the case where the Poisson denominators are known (rather
than estimates based on sampling), one can also fit the 4 parameter model by
an unconditional approach but focus only on the parameter of interest, 6.

15.2 “The” likelihood for 6

JH put quotes around The, since we need to be a bit more careful here. There
are 3 possible likelihoods: 2 of them, the profile and ‘conditional’ likelihoods,
are 1-dimensional, and happen in this case to coincide with each other, and the
3rd just-mentioned one, the ‘unconditional’ likelihood, which is 4-dimensional.

C&H use the 1-dimensional likelihood, and in particular the profile version.

They start with the 4-D log-likelihood

LL(@, )\3170, )\52707 >\8370)

obtained as a sum of 6 cell-specific contributions. They then use profiling
within each stratum to eliminate the Ag;rqtum,0 S0 that the 2 cells in a stratum
contribute a stratum-specific LL,;ofi(0) and so that the profile likelihood
based on all 3 strata is

LLprogite(0) =Y {Ds,110g() — D, log(1 + Q;)},

where, in stratum i,
Qi = 0 x (Yo /Yir0).

Just as in chapter 13, with unstratified data, this profile log-likelihood is
exactly the same as the log-likelihood for 3 binomial observations, each with
its own 2. However, all all 3 Q’s are connected by the single parameter of
interest, 6, and three constants Y, 1/Ys, 0, Ys,1/Ys,.0, and Y, 1/Ys, 0, SO
we can write this as a generalized linear model, with 3 binomial observations,

stratum  denom(D) num(D;) Y.ratio= % log(Q2) = log (DIE(ED(ID)l))

1 6 2 0.513 log(6) + log(0.513)
2 17 12 0.690 log(6) + log(0.690)
3 22 14 0.751 log(é) + log(0.751)

Supplementary Exercise 15.2, based on C&H’s 3-age-strata example

i. Create the function log-likelihood(#) in R, and maximize it with respect
to 0 using optimize or otherwise. From the curvature, calculate the SE
for 9]\4[,.

Repeat, but focusing on log-likelihood(3), where 5 = log[f], and compare
your results with those of C&H.

Fig 15.1 shows both the ‘exact’ and Gaussian-based log-likelihood func-
tions of log[f]. Draw you own, to see if you get the same pattern.

ii. Did C&H pick a good example where a confounding factor (here age), if
ignored, would lead to a very different (and very wrong) answer? Answer
by calculating 61, for the aggregated data (as in Chapter 13, i.e. before
they segregated the data by age). Note the difference between aggregating
raw data across strata, and aggregating parameter estimates (by summing
likelihoods, or by some other weighting) across strata.

iii. Instead of explicitly defining and maximizing the conditional /profile like-
lihood, which simplifies in this example to a 1-parameter binomial-based
likelihood, obtain 6,7, using a GLM, for example, in R:

D1=c(2,12,14); D=c(6,17,22); X=c(1,1,1);
Y.ratio=c(311.9/607.9, 878.1/1272.1, 667.5/888.9);

fit=glm(cbind(D1,D-D1)"-1+X,family=binomial,offset=log(Y.ratio))

summary (fit)

beta.hat=log.theta.hat=fit$coefficients;
theta.hat=exp(log.theta.hat)
Var.beta.hat = summary(fit)$cov.unscaled[1,1]

c(beta.hat,theta.hat,Var.beta.hat)

and verify that fitting this GLM leads to the same log/(?’) = 0.8697

and SE(log(#)) = 0.3080 that C&H report at the bottom/top of page
142/143.

iv. What would happen if you used the same p.h. model but fitted all 4
parameters in an unconditional approach? Use this code to see: you
have 6 Poisson observations, the link is a log link, and the 6 log(y)’s
serve as offsets.

Comment on your results.
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D.all6é = c(D1,D-D1) ; Index.category=c(1,1,1,0,0,0);

Y.all6=c(311.9,878.1,667.5, 607.9,1272.1,888.9);

Stratum=c(1:3,1:3)

cbind (Stratum, Index.category,D.all6,Y.all6)

Poisson.fit=glm(D.all6 ~ as.factor(Stratum) + Index.category ,
family=poisson,offset=log(Y.all6))

summary (Poisson.fit)

exp(Poisson.fit$coefficients)

v. Remember to ask this term’s MATH523 (GLM) teacher to explain to
you why you get the (dis)agreement you get between the conditional and
unconditional approaches to Poisson data, when in the unconditional
approach you treat the stratum as a categorical variable.

[Optional] Also ask the teacher (or try it for yourself) whether you would
you get the same odds ratio if you fitted an unconditional (2-binomial)
model and the conditional (non-central hypergeometic) model to the fre-
quencies {a=3,b=2,c=1,d=1}? Hint: see Breslow and Day, Volume L.

ML POINT- (& INTERVAL) ESTIMATES VIA NEWTON-RAPHSON? METHOD

From http://en.wikipedia.org/wiki/Newton’s method ...

In numerical analysis, Newton’s method (also known as the Newton-
Raphson method, named after Isaac Newton and Joseph Raphson)
is perhaps the best known method for finding successively better ap-
proximations to the zeroes (or roots) of a real-valued function f(z).
Newton’s method can often converge remarkably quickly, especially
if the iteration begins “sufficiently near” the desired root. Just how
near “sufficiently near” needs to be, and just how quickly “remark-
ably quickly” can be, depends on the problem. This is discussed in
detail below. Unfortunately, when iteration begins far from the de-
sired root, Newton’s method can easily lead an unwary user astray
with little warning. Thus, good implementations of the method em-
bed it in a routine that also detects and perhaps overcomes possible
convergence failures.

Given a function f(z) and its derivative f’(z), we begin with a first
guess zg. A better approximation x; is

f(@o)
f' (o)
Newton’s method can also be used to find a minimum or maximum
of such a function, by finding a zero in the function’s first derivative.

T, = g —

In our case, we seek the root of the function f(6) = dLogL/df, so the iteration
takes the form

T R dLogL/df
new — previous d2LogL/d92 0_é

=bUprevious
Exercises in previous years: Using the Newton-Raphson method, repeat
Supplementary Exercise 3.1 (Estimation of ¢? from grouped data), Exercise
3.2 (Estimation of concentration via a dilution series) via the Newton-Raphson
method; Supplementary Exercise 5.1 (Estimation of (constant across time-
bands) rate parameter A from censored HIV data).

4JH included this NewtonRaphson technique in the early years of BIOS601, before he
was introduced to the optimize and optim functions in R. He still believes students should
know this technique and be able to ‘roll their own’ maximization routines when needed.
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15.3 6 = RateRatio — éMcmtel_Haemzel ~ éML almost !

The key is the form of the 8 estimator shown in the middle of page 144.

éML _ ZDsi,l X Yrsi,O/(}/si,O + éML}/si,l)
EDSz',l X YS@,O/(Y;i7O + QML}/Snl)

C&H note that the profile and conditional likelihoods are both the same, and
are based on the fitting of 3 binomials with different {2’s, as above. You can
work through their math at the top of page 144. You can also arrive at the
estimator by using an estimating equation directly. In this case, we are
estimating a single parameter 6 and so there is only 1 estimating equation,
and as in all generalized models, the first estimating equation is that the sum
of the observed y values must equal the sum of the fitted or expected values.
In our case, the 3 observed values are Dy, 1, D, 1 and D, 1, so the estimating

equation is -
> Dy1=> E[Dsa]l=> Ds..

Now R
0Y;

Dy1=D, x ———,
Yy 4 6Y;

and so our estimating equation is

_ i
Z:Dsi,l = Z:Dsi X T

If we now break up each Dj, into its two components, we get

0% %
ZDSM - ZDSnO X e +ZDSi,1 X
5 i Yo+0Y, = Yo + 0Y;

After re-arranging terms, we get

% 0Y;
S D1 ) = P
i YO + 9Y1 i YO + GYI

or

or as

or, with W; = 1/(Yy + 0Y1), as

_ Zz Wz X Dsi,l X YO
o ZZ Wl X Dsi,O X Y1.

>

One can also arrive at this as C&H did on p 144, by setting to zero the sums
of the 3 derivatives of the profile log likelihood with respect to log(8), or with
respect to 6 itself, and finding the root. Either way, the estimating equation
is always the ‘balancing equation’,

Z observed no. of exposed cases = Z fitted no. of exposed cases,

strata strata

used above.

Supplementary Exercise 15.3 Follow the iterative re-weighting scheme
1.2.3. described by C&H on the bottom of page 144 to arrive at p/r..

Note: This particular iterative re-weighting scheme produces the ML point
estimate, but does not provide a measure of precision for it. The Newton-
Raphson procedure and the optimize procedure do, since they use an analyt-
ical or numerical version of the second derivative of the log-likelihood.

Note also that if we write the log-likelihood as a function of 5 = log(6), rather
than 6 itself, and carry out the N-R (or optimize) procedure on the 3 scale to
obtain a ML point estimate of 3, then to get back to the CI on the Rate Ratio
scale, you would use the SE on the log scale to get a symmetric (z-based) CI
for 8, then convert it a CI for 6 = exp(f)

[For the curious] The genius behind the M-H method is its stability. Al-
though it can be algebraically re-written as a weighed sum of ratios (a dan-
gerous thing to do), such a re-expression goes against the very spirit of the
estimator: it is meant to be a single ratio of two sums, a ‘numerator’ sum,
and a ‘denominator’ sum. Miettinen, in his interview with JH, tells of his
conversation with Mantel, and Mantel’s explanation of how he came up with
what C&H calls the weights W = 1/(Yy + 6Y7). Mantel said that if he used
as a numerator the sum of products of the form DY}, and as a denominator
the sum of products of the form DyY7, these individual products would be too
volatile and ‘jumpy’ , and would ‘wobble’ by far more than their information
content justified. So he decided to divide each product by Yy + Y7 so as to
‘slap down’ the products, and not have them vary so much.

Exercise [Optional] Simulate the variability of a M-H-type estimator that does
not ‘slap down’ or ‘tame’ the products, i.e. an estimator of the form

Q=YD R=Y.Dovi; 0=
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Supplementary Exercise 15.4 See section (c) of section 3.6 of Breslow and
Day Vol I1.° There they say that the ML estimation of the rate ratio ¢ from
stratified PT data requires iterative calculations, so let’s iterate...

We will use B&D’s Example 3.11, with data, shown in Table 3.14, from J = 13
age-period strata.

Table 3.14 Series of 2 X 2 tables used in example 3.11. Low exposure ( —) means less -
than 1 year of heavy or moderate arsenic exposure; high exposure (+) means 15+
years :

to be constant over the J = 13 strata.

Thus, for each of the J strata, Oj1 | Dj ~ Binomial(D;,m;), where

Uy Z’(/J X Ple/(w X Ple +PTj0).

Note the switch of notation, from O; to D;, and subscripts 1 and 0 for exposed and not.

i.

Derive the ML estimating equation (3.15) for ﬁcondn/l,

=7

j=J j=J
Y Djp=0,=FE = E(ZDﬂ;w) =Y Dynj/(njo +dnju),
j=1 j=1

j=1

by obtaining the expression for dlog L/dvy and setting it to zero.

B&D say that

In large samples the most accurate estimator of v is the max-
imum likelihood estimate, obtained by setting the overall ob-
served number of deaths Dy in the exposed group (index cate-
gory) overall equal to its expected value.

ii. Use the Newton-Raphson iterative method to find the root of the
dlog L/dy function, ie

legL/dT/} _ 7 (k)
d?log L/dy? H(k)

sdlog L /di

7 (k+1) _ 7 (k) 4 i hatet =St N Ak .
1][] 1/} E]d2 IOgL]/d¢2 &(k)

iii. How does the iteration change if we rewrite the Likelihood, and thus the
log Likelihood, in terms of 8, where ¥ = exp(8)?

iv.

Obtain ﬁcondn/l from a generalized linear model (Binomial) fitted to the

Age (years) Calendar period
1938--1949 1950-1959 1960—-1969 1870-1977
. e
Exposure - + - +
40-49 d/d 2/1.50 |0/0.50|| 0/0.00 | 0/0.00
n 3075.27 | 337.29|} 936.75 | 121.00
v 0.00 —
Exposure - + - + - +
50-59 d/d 2/3.58 |4/2.42|| 3/4.02 |3/1.98/| 3/2.52 | 1/1.48
n 2849.76|626.72)| 2195.59 (349.53|| 747.77 | 142.33
¥ 9.0 6.3 1.8
Exposure - + - + - + - +
60-69 d/d 2/5.52 |9/5.48|| 7/7.73 |7/6.27|| 10/8.65 | 3/4.35)| 1/1.17 | 1/0.83
n 2085.43 | 672.09|| 1675.91(441.10|| 1501.73 _244.8% 440.21 | 100.64
P 14.0 38 18 44 ..
Exposure - + - + - + - + '
70-79 d/d 3/1.98 | 1/2.02|| 6/4.32 | 2/3.68|| 6/4.40 |1/2.60|| 6/5.62 | 2/2.38
n 833.61 | 277.25|| 973.32 | 268.27)| 1027.12 197.20| 674.44 | 92.75
" 1.0 1.2 0.9 2.4

.4 = observed deaths; d =fitted deaths under ML estimate of common rate ratio; n = person-years denominator;

4 = rate ratio in each table

Again interest is in the rate ratio parameter ¢ = A;1/\jo, assumed (for now)

5The various chapters can be found in the link to bios602-2009 in the Re-
sources for chapter 15. The 2 volume of Breslow and Day’s books (Vol I: case-
control studies; Vol II: cohort studies) are also now downloadable as .pdf files from
http://www.iarc.fr/en/publications/pdfs-online/stat/

13 binomial observations. Note that one can specify Binomial (rather than
Bernoulli) data by using as ‘y’ a matrix with 2 columns: the numbers positive and
negative, i.e.

-ve’ vector) ~ ...

glm(cbind(‘# +ve’ vector, ‘#no. , family=binomial, ...).

v. Obtain z/?mondn,l from a generalized linear model (Poisson, 14 param-
eters) fitted to the (j = 1,...,13) x (i = 0,1) = 26 observations
{0ji, PTji}.

Are your estimates in agreement with Breslow and Day’s statement (lines
5-6, page 109) that under the Poisson model, @condn/l = z/?umondn/l?

Note B&D’s comment that the same will not be true for conditional vs. unconditional
estimation of a common rate ratio when the PT’s are estimated from J stratified

denominator (‘control’) series, particularly if the strata are sparse.
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Supplementary Exercise 15.5: Is there a higher rate of autism in chil-
dren who have been vaccinated with MMR? And, does it matter whether we
correct/adjust for age?

Autism cases are shown as dots, and the vaccinated and unvaccinated child-
time as darker and lighter areas. Notice that the vaccinated child-years occur
at younger ages (average 2.35 years), where (as is shown at bottom) the rates
of autism diagnosis are lower — so a simple (age-blind) comparison of the
autism density in darker and lighter areas (average ages 2.35 and 4.04 years)
would also be a comparison of rates in older versus younger years, and so
reflect a mix of the effect of age and the effect of vaccination. ©.

316 Cases Randomly Generated from above Child-Time Distribution and with all Age-Specific Dx RR's = 1
Born

1998 .‘ *1 Case

1997

CHILDREN-YEARS

NV: Not Vaccinated [ 2.35 ]

IV : Vaccinated [ 4.04 ]

1996

1995

1994

Dec 31, 1999

1993

1992

1991

Dx Rate [V = NV]

1 2 3 4 5 6 7 8 9

The locations of the 316 cases in this modification of the Lexis diagram were randomly generated by ...

1 Calculating the “rate of diagnosis by age” curve (arbitrary scale) at ages=1.25 1o 8.25 in stops of 0.5 (i.e. at 15 age-points; to simplify your job of counting

ses in the various age cells, the diagram shows coarser, 1 year , e., birthday, boundaries)

2 Muliplying those "ratews by (he Tmivets of chiten i viow a1 Gach of these hat ages 1 get or each of he 15 verical age-slices of “cil-time", a number
proportional to the expected number of cases in that vertical child-time slice; then scaling the 15 expected numbers summing to 316.0: expect an average
51150 10 be clagnosed betwaen 1 and 1.5 years of age, 20.5 biw ages 1-6 and 2, - 31.1, 33.2, 36,6, G5.5, 36.6, 28,4, 25.9, 1.6, 13.3, 671, 4.76, 1 86,
0.992 between ages 8 and 8.5,

3 For each age-slice, randomly genarating a count ffom a Polsson distribution with the coresponding expected valuo. Repeat unii the sum of the observed
number of cases fsn fact 316, 25 t s n the actual study. This gave 19 between 1 and 1.5 years of age, 19 between ages 1.5 and 2,and so on. . 23, 27,
37,35, 42,31,27,24,13,7,5,5, .. 2 between ages 8 an

4 For each of these cases, randomly choose a year of birth (i.e. randcm\y along the vertical scale, without regard to whether the location will be in a
unvaccinated or a vaccinated child-time cell and a more refined age at diagnosis (randomly within the 0.25 age-band on each side of 1.25, or 1.75, or etc.
\without regard to light/dark). I the random location is in the darker(ighter) area, the case involves a child who was (un)vaccinated at the time of diagnosis.

EXERCISE: From the diagram, (manually) count the vaccinated and unvaccinated cases (numerators) in each vertical
age-slice. Estimate (roughly) the (relative) sizes of the corresponding vaccinated and unvaccinated
child-years (denominators) [hint: the proportions vaccinated by the end of the study range from 0.92
(1991 cohort) to 0.88 (1994 ), to 0.84 (1997), to 0.55 (1998)]. Using these numerators and
denominators, calculate an age-adjusted RR.

6 Just like the confusion in the case of the Belfast Catholic girl & Protestant boy.

ii.

iii.

iv.

On the website you will find R code to read the data into a data frame
with 72 records: 2 ‘exposure’ levels (vaccinated /un-vaccinated) x 36 cells.
The experience inside each cell is from the same Lexis square or rectangle,
where the child years come from children in a single-age and single year
‘bin’ or ‘rectangle’.

Analyze the data using (unconditional) Poisson regression, as the authors
did, using a 36-level variate for ‘cell’ and a binary indicator (dummy)
variate for the ‘vaccinated’ category (1=‘yes’; 0-‘no’). Don’t forget to
include the (36) offsets [see the simple 3-strata example above]

You can also use the R code provided later in the same file to set up
the data for the binomial-based analysis: 36 binomial observations, each
with its own offset, 1 per age-year cell.

Analyze the data using conditional Poisson regression, i.e. using a bi-
nomial model, a binary indicator (dummy) variate for the ‘vaccinated’
category (1=‘yes’; 0-‘no’), Don’t forget to include the (36) offsets [see the
simple 3-strata binomial example above]

Now use the same 36-row data frame to calculate RateRation _p, i.e.,
the ‘almost MLE’ (C&H’s name for the Mantel-Haenszel-type) Rate Ratio
estimate.

How close are the 3 estimates? Does it matter in this example that we
adjusted for age? (answer by comparing them with the ‘crude’ RateRatio,
which you will have already computed in an earlier exercise).
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Supplementary Exercise 15.6: Do Oscar Winners Live Longer than
Less Successful Peers? A Reanalysis of the Evidence

The aims are to carry out (1) the ‘P-Y’ analysis described in the 2006
‘McGill’ re-analysis, and (2) calculate the ‘fewer-assumptions involved’
Mantel-Haenszel summary ID ratio that the McGill authors calculated but
— not to confuse the reader with yet another analysis — omitted from the
article. Later on in the course, we will analyze the data with the same (time-
dependent Cox PH) model that was reported on in the 2006 article.

Under the EPIB634 Resources for regression models for (incidence) rates,
you will find (a) the Oscar data set” with one data-record per performer
(b) a dataset (with approx. 20,000 records) in which each the performer’s
data-record has been converted (split) into 1-year data-records, and classified
according to age, period, AND Oscar-status, (c) a smaller dataset in which the
individual performer-years (and numbers of deaths) have been aggregated into
‘sex-age-period-Oscar’ cells, with 5-year age-bands and 10 year calendar-year-
bands,® and (d) a file similar to (c), but where all of a performer’s performer-
time is allocated to the ‘winners’ category if that performer ever won an
Oscar, or to the ‘nominated’ category if (s)he was nominated but never won.’

In the description of (b) and (c) below, the name of the Oscar-status indicator
is shortened to O, with O = 0 indicating performer-time lived as a nominee,
and O = 1 indicating performer-time lived as an Oscar winner. In the actual
dataset to be analyzed, i.e. in (c), O = 0 corresponds to w.cat=0 and O =1
to w.cat=1.

In (b) each (Oscar-status-specific) record documents the experience in each
(age, period) ‘rectangle’!® traversed, i.e., the number of years spent in that
rectangle , and the Vital status (0 if alive, 1 if dead) at the end of these

"For reasons JH can better explain in person, this differs slightly from that analyzed in
the Redelmeier article.

8You are asked to the analyses with (c), which is  named
aggregated-Lexis-rectangles.txt. Nowadays, with fast computers and lots of live
memory / disk storage space for large datasets, you could do the analysis using (b).
Since it uses finer subdivisions of age and calendar period, you would get get slightly
different answers, and you would probably choose to model age and calendar-time with
(functions of) continuous variables, rather than with a very large number of indicator
variables — ‘dummy’ variables, if you insist on that meaningless term — for the finer age-
and calendar-period categories.

9The name of datafile (d), aggregated-Lexis-rectangles-r.txt, has the suffix
denote it as the ‘Redelmeier’ allocation of the performer-time.

10This terminology is from Lexis, who tended to use squares, e.g., 5-year age bands and
5-year calendar-year bands: since death rates vary faster over ages than over calendar time,
you want to make the age-bands (i.e., the age-matching) quite narrow: thus jh formed
rectangles that are 1 (age) year high by 10 (calendar) years wide, so in effect each slice was
1 year long: you could rerun the time-slicing program with other ‘cuts.’

‘-r’ to

years.!! Because the Lexis program is written for generic transitions (‘events’)
of any type (not necessarily bad ones), this status variable is called lex.Xst,
which refers to the status (in our example wvital status, 0 alive, 1 dead) at
the performer’s ‘exit’ (pardon the pun, but the ‘X’ in ‘Xst’ stands for an
epidemiologic ‘exit’ from the Lexis diagram, and the ‘st’ stands for status).
The other key variable is 1lex.dur, which refers to the duration or length of
the performer’s time-slice.

In (c), which is formed by summing the performer-time lex.dur and the
lex.Xst over all transits through the same sex-age-period-O cell, the two
sums are the total p-t and total deaths in this cell — remember that a sum of
0’s and 1’s is a count of the number of 1’s.

i. Use dataset version (¢) to compare the death rates in the performer-
years lived as nominees (reference category, w.cat=0) with those lived as
winners (index category, w.cat=1), by fitting the following multiplicative
(i.e. ‘rate ratio’) model'? to the numbers of deaths in each sex-age-period-
Oscar (shortened to s-a-p-O here, in order to fit the equation into one
line) ‘cell’.

Ratecell = Rateref.cell X Ms:ref X Ma:ref X Mp:'r‘ef X MO:refa

where the ref.cell is a suitably chosen reference ‘corner’ cell (Clayton
and Hills’ terminology), and each M (the rate ‘Multiplier’) is short for
Mortality Rate Ratio (M RR), — the theoretical, unknown, to be esti-
mated, ratio of the mortality rate in the category'® of the determinant
in question relative to the reference category of that determinant.

For fitting purposes, you translate the epidemiologic (rate) model above
into the following statistical model

E[#deaths] _ e{logRate,,wef +logMs X s+logMg X a+logMp X p+logMo x O+log(PT)} ,

HIf you want to see how these split records were created, you can look at and run the R
code shown in the resources. It uses the Lexis package that is available from the R site, and
developed by Carstensen (R ‘Epi’ package http://staff.pubhealth.ku.dk/~bxc/Epi/).
See also the survSplit function in the survival package — we used this to split
the time in the COMPARE (stents) study. One of the students in bios602
discovered two other options. One is a standalone Windows program, from
http://epi.klinikum.uni-muenster.de/pamcomp/pamcomp.html; the other is the pyears
function in the Survival package in R (jh doesn’t remember if Survival is part of the default
R installation, or needs to be added). Stata users: there is a time-slicing function used in
conjunction with survival analyses.

120ne could, and would if need be, refine this model further, e.g. by refining the rela-
tionship of rates with age, and allowing for the possibility of different effects of O in males
and females...

130r level, if we model the variable as an interval variable.
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so that
log{ E[#deaths]} = Bref + Bsxs + Baxa + fpxp + BoxO + log(PT).

Writing out both models lets you match the coefficients from the fitted
statistical (R) model with the fitted parameter value(s) of interest in the
epidemiological (rate) model. (def’n.: epidemiologist: a student of rates).

ii. Write out the fitted multiplicative model in the same way as Clayton and
Hills did in Table 22.7 in their Introduction to Regression chapter of their
Statistical Models for Epidemiology textbook. Comment on the MRR for
the ‘years lived as a winner’ vs. ‘years lived as a nominee’ contrast.

ili. Comment on the fitted effects of gender'#, age and calendar time,
and whether they ‘fit’ with what you expect, and have seen in other
datasets.!?

iv. From dataset (c) calculate the total performer-time lived as a nom-
inee (‘PThominee’), and the total performer-time lived as a winner
(‘PTwinner’). Compare these with the corresponding values calculated
from the ‘Redelmeier’ version, i.e., from dataset (d). Comment.'®

v. Fit the same multiplicative model fitted in (i) to the data in dataset (d).
Compare the fitted ‘O’ effect in this dataset — where w.cat is a fixed-
from-the-outset variable — with what you found in the (McGill) version
— where w.cat is a time-dependent variable. Comment.

vi. How would Mantel have analyzed these data? The R code file in resources
includes some that allows you to convert datafile (c) into a form where
you can treat sex, age and calendar period as stratifying variables — it
puts the ‘exposed’ PT and deaths in the exposed PT in the same data-
record as those for the un-exposed PT in the same stratum, making it
easy to obtain the stratum-specific products, and to obtain the numerator
and denominator sums used to calculate the ratio in formula 8.5 — déja
vu — in Rothman2002.

14Even though we used the term ‘sex’ above, one could make a good argument for pre-
ferring the term ‘gender’ in this context: Google ‘gender vs. sex’.

15The effects of gender, age and calendar time are secondary here, but if you do choose to
represent age and calendar-time as linear (continuous) variables, make sure you report their
effects correctly — they should broadly ‘line up’ with the fitted effects when using indicator
variables.

16For the principle behind the correct allocation of person-time, and early examples of
incorrect P-T allocation, see section 3.1 of Volume II of Breslow and Day’s text, available
in the resources for the bios602 course. See also the material on ‘immortal-time’ bias in the
‘Regression models for (incidence) rates’ resources on the 634 website.

Use this re-arranged dataset to calculate this Mantel-Haenszel mortality
rate ratio. How does it compare with the one obtained from Poisson
regression?

vii. Use this same re-arranged dataset to calculate separate Mantel-Haenszel
mortality rate ratios for actors and actresses. Based just on the numbers
of deaths involved, do you think they are statistically significantly
different?

If you wanted to pursue this effect-modification numerically, you
could use the formula to obtain the SE of each rate ratio (or rather
the SE of the log-rate-ratio). The formula is given in section 3.6(d) of
Breslow and Day Volume II. It is quite tedious to do by hand, but quite
easy with R or Excel.

viii. Use this same re-arranged dataset to obtain a ‘MLE’ from the profile (or
conditional) 1-parameter likelihood — i.e. ‘profile-out’ or ‘condition-out’
all of the other parameters in the unconditional model you fitted in part 7,
so the focus is just on the rate ratio for the index vs. reference categories
of the determinant of prime interest. Hint: this problem has the same
structuer as the one in supplementary ezxercise 15.7.

The original report continues to be cited... just Google ‘Oscars longevity’

http://www.health.harvard.edu/press_releases/oscar_winners

15.4 P-values from Score Test

Supplementary Exercise 15.7

Using the computations for C&H’s exercise 15.2, based on their 3-strata ex-
ample, as a template, carry out the corresponding calculations for the Autism
data — using the broader (1-year wide) age-strata. Repeat with the narrower
age-strata.

15.5 The log-rank test

The introduction of this test at this place in this chapter is a bit unusual,
as none of other examples in this chapter as arises from a trial, and there is
no natural ‘time-zero.” His main point, and Mantel’s point when he saw the
log-rank test introduced, was that it is a test that was already in use in a
‘stratified data‘ context in the comparison of rates in epidemiology. Thus, if
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one thinks of each ‘risk set’ as a narrow time-slice or time-stratum, then one
can see how indeed the M-H approach applies.

The M-H test is of course much broader, and (as is obvious in the example
from Breslow and Day, and in M-H’s original 1958 illustration) the strata do
not have to be time-based.

See elsewhere for JH’s illustration of the log-rank test (and explanation of how
the ranks come into the name of the test) in his comparison of the longevity
of the Titanic survivors with that of the general population.

Supplementary Exercise 15.8

Consult some textbooks or Internet web pages to see how the log-rank test is
usually presented (JH’s own course webpages have some examples).

You will notice that some of them focus only on the observed and expected-
under-the-null numbers of events in the index category (effectively the ‘a’
cell in each 2 x 2 table, and on the sum (over strata or risk sets) of their
differences, squaring this sum at the end, and comparing it with the sum of
the null-variances of the individual ‘a-E[a|Null]’ statistics. This approach is
very much in the same spirit as the test statistics introduced by M&H, and
the test derived by summing the Scores.

The other approach is a bit more like the traditional chi-square test for a single
2 x 2 table, but where the summation is over the two contrasted categories,
rather than using just the ‘a’ cell.

i. List one source for each of these two approaches. Do you think they
would lead to very different P-values in any practical situations? Include
one example, worked both ways.

ii. Consider a single 2 x 2 table, with ‘a’ representing the frequency in (say)
the upper left cell. Show that the arithmetic in the ‘usual’ (O — E)?/E
form, with the " taken over all 4 (a, b, c,d) cells, leads to the same null
chi-square statistic as the form

(a — E[a[Ho)?
Varla — Ela|Ho]
List any assumptions you had to make to get the algebra to work out.
You may want to consult JH’s sections 2 and 3.3 on chi-square tests in
his notes on ‘Analysis of Proportions via Chi-Squared tests’ in the 2007

version of bios601. You can also look at the portion on 2 x 1 tables in
section 4.

iii. Before doing this next sub-question, ask three people who have taken
a survival analysis course [or consult three textbooks or online course

iv.

notes or blogs or websites] why is log-rank-test called the log-rank-test?
and report their responses.

Read the presentation ‘A finely stratified log-rank test with effectively-
infinite-size comparison groups’ which you can find by searching within
JH’s course webpages [his home page has a search box].

Having done so, how you would now respond if that same question were
directed at you?
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