
17 
Likelihoods for the odds ratio 

The data from a simple case-control study (exposed and unexposed) can 
be arranged as a 2 x 2 table such as that set out in Table 17.1. We saw 
in Chapter 16 that there are two ways in which the probability model for 
a case-control study can be set up but that, for both models, the ratio of 
odds parameters are equal to the ratio of odds of failure in the study base. 

17.1 The retrospective log likelihood 

As in Chapter 16, we write Do for the odds of exposure among controls, 
and D1 for the odds of exposure among cases. Our interest is in the odds 
ratio parameter 8 = DI/Do, so we change from the parameters Do and D1 
to the parameters Do and 8, and regard Do as a nuisance parameter. The 
total log likelihood is the sum of the log likelihood for Do based on the split 
of the H controls between exposed and unexposed, and the log likelihood 
for D1 (= BD0 ) based on the split of D cases, 

H1log(Do)- Hlog(1 +Do) + D 1log(BDo) D log(1 + BDo)-

To use this log likelihood for estimating of the odds ratio 8, we form a 
profile log likelihood by replacing D0 by its most likely value for each value 
of 8. Unlike the profile log likelihood for the rate ratio in cohort studies, 
this curve cannot be expressed as a simple algebraic but the 
results of section 13.4 and Appendix C can be used to derive a Gaussian 
approximation. 

This derivation follows from the fact that the log odds ratio is the dif-
ference between two log odds parameters, 

log(B) log(D1 ) log(Do). 

Table 17.1. Notation for the 2 x 2 table 

Total D 
l 

I 

l 
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These are estimated from two independent bodies of data and have most 
likely values 

M1 Mo 

and standard deviations 

S1 = V + So 

It follows from general results given in section 13.4 and Appendix C that 
the most likely value of the log odds ratio is 

M M1 Mo 

( DJ/Do) 
log HJ/Ho 

and the standard deviation of the Gaussian approximation to the log like-
lihood is 

This can be used to calculate an error factor for the odds ratio and hence 
an approximate 90% confidence interval. . . 

The expression for S only differs from that for the rate m a cohort 
study by the addition of the two last terms. These are rec1procals of 
counts of controls and represent the loss of precision incurred by carry1ng 
out a case-control study rather than a cohort study. Once the number 
of controls is substantially larger than the number of cases, this loss of 
precision becomes negligible. Hence the common assertion that there i8 
little to be gained by drawing more than four or five times as many control8 
as cases. 
Exercise 17.1. For the study of BOG vaccination and leprosy discussed in 
Chapter 16, calculate the expected result of the study using 
(a) the same number of controls. as cases; 
(b) twice as many controls as cases; and 
(c) five times as many control as cases. 
Compare the corresponding values of S with that achieved by the entire 
population as controls. 

Carried out algebraically, these calculations lead to the result that 
the ratio of the standard deviation of an estimate from a case-control study 
to the standard deviation from a cohort study yielding the same number 
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17 Likelihoods for the Odds Ratio Rate Ra-
tio, i.e., Incidence Density Ratio, estimated
with estimated denominators

PREAMBLE [JH]

The parameters being compared

How often is the odds ratio a parameter of direct scientific interest?

An odds ratio implies a comparison of two odds, i.e., of a mathematical trans-
form of two proportions or probabilities.

Why and when to use, and to compare odds, probabilities, and prob-

abilities per unit time

1?

***

There are two situations in epidemiology where proportions arise naturally.

One is in the context of prevalence, where the target or estimand is say the
per-cent or per-mille or per-million (prevalence) rate of being in a given life
/ health / illness / defect state at some specified time point. Examples are
birth defects that are evident at birth, HPV seropositivity in male students
beginning university, Facebook relationship status (JH isn’t on Facebook, so
he doesn’t know if the there are more than two possibilities!) at the end of the
first year in grad school, (un)employment, marital, children- and PhD status
at age 30, professorial level (full vs associate/assistant) at age 45, undetected
high blood pressure at age 50, retirement status, or still have all one’s own
teeth or hips or knees, at age 70, etc. In addition to these states, there are
also traits, such having a certain blood group or being a carrier of a good or
bad gene.

Another, more biostatistical or technological, prevalences might be the pro-
portion of R users who are using the various R versions (as of 2014-10-31, the
latest is the Pumpkin Helmet version, R-3.1.2), or using the various Windows
or MacOS or IOS or Ubuntu versions.

One reason not to focus on the prevalence itself, but on the prevalence odds,
is that the log-odds is the natural (canonical) parameter in Bernoulli and
Binomial regression, and that the parameters in an ‘log-odds regression’ (i.e.,
in a logistic regression) are – apart from their sign – the same whether we
focus on ! = E[Y = 1]/E[Y = 0], or on ! = E[Y = 0]/E[Y = 1].

1C&H’s term for a rate, what Rothman calls incidence, and what Miettinen calls inci-
dence density

***

In the other situation, the target or estimand is the cumulative incidence, i.e.
the prevalence rate, at the end of a given fixed period of time [0, T ], of having
made the transition from an initial state (Y = 0) at time t = 0 to the state
of interest (Y = 1) by (i.e. at some time during the interval from t = 0 to
t =] T . Note that this is also a proportion, and as such it does not address
how early or late within the fixed time interval the proportion was achieved,
i.e. it is not concerned with the speed at which transitions occurred. As an
example, if all we know is that at the end of January 2015, some 68% of iOS
users are using iOS 8, we cannot infer how quickly or slowly the cumulative
incidence has built to this level, since it was released at t0 = September 17,
2014.

Examples of transitions within such a fixed time interval include deaths2

within 30 days after birth, or after admission to a hospital, or an operation,
or recurrence within 5 years after diagnosis of cancer, or CHD developing over
the next 10 years in persons who are on say 50 years of age when they visit a
doctor for their annual checkup.

In epidemiology, which seems to focus on transitions from good to bad states,
the probability is usually called the risk over the time-span in question.

Note that a risk should always have a time-span attached to it.
Otherwise, it has little meaning. In addition, the specification should include
what, if they are substantial, is assumed about competing risks.

The absence of a specified time-span becomes even more problematic if we
compare risks. In such comparisons, a risk ratio (also called a relative

risk) or a risk di↵erence has even less meaning. For example, even though
the mortality rates (rate of transitions from ‘status: alive’ to ‘status: dead’,
i.e., incidence densities, or hazard rates, or forces of mortality, with time�1 as
their units), for men and women are approximately 1.4:1 across most of their
lives, the ratio of their lifetime risks [age 0 to age 110, say] is 1.3 Sadly, the
term relative risk, with no time-span qualifier, is still widely used.

Non-epidemiological examples include the probability of (proportion) gradu-
ating within 5 years of entering a PhD program, or a first marriage by age 30,
or becoming a grandparent, or retired, by age 65.

2death is an event, a transition from the ‘alive’ to the ‘dead’ state, i.e., a change of state;
alive and dead are states, just as ‘pre-op’ and ‘post-op’ and ‘post-MI’ are.

3Economist John Maynard Keynes: ‘But this long run is a misleading guide to current
a↵airs. In the long run we are all dead. Economists set themselves too easy, too useless
a task, if in tempestuous seasons they can only tell us, that when the storm is long past,
the ocean is flat again.

1
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In these transition contexts, the concept of sweeping across time is central.
Without the passage of time, there can be no transitions.

***

There is a link between the prevalence proportion and the speed
at which the transitions occur. It involves the hazard function or the
incidence density function, but the simplest version involves some steady state
assumptions. Think of how the number of current students (prevalence) is
related to (a) intake rates [incidence of new students] and (b) exit rates [or
their reciprocals, the duration in the program].

The link between the cumulative incidence proportion and the speed
at which the transitions occur [see equation below] involves, naturally
enough, the hazard function or the incidence density function, a fundamental
relationship we have already met.

***

Tighter definitions of these concepts are presented in the next 3 pages ap-
pended to these Notes. They are taken from an author who has thought more
about these concepts than anyone else JH knows.

***

JH thinks that the incidence density or hazard as a more fundamental
parameter (or function, if it is indexed by time or age) than the risk param-
eter is. For, the risk needs a time-referent, and there also needs to be clarity
as to how competing risks are considered.

Moreover, there is a direct mathematical relation between the incidence den-
sity function, or hazard function h(·), over the time t0 to t00 and the risk over
this same period. This holds even in the absence of actual data where in-
dividuals have been followed up from time t0 to t00. In other words, it is a
parametric relation involving the incidence density function as a parametric
function, of unknown form.

Riskt0!t00 = 1� exp

"
�
Z t00

t0
h(u)du

#
(1)

COMPARISONS of Prevalences, Risks, and Incidence Densities or
Hazards

First, we need to start with the abstract, i.e. in terms of parameters, i.e, the-
oretically, before moving to data, and to the estimators of these comparative
parameters.

Prevalences

In data-analyses that address comparisons of prevalences, or a prevalence
function, it might be easier to use a ratio of odds rather than a ratio or
di↵erence of proportions to compare prevalences or fixed-horizon-risks in the
index and reference categories of the contrast of interest. But even then,
other comparative parameter such as or di↵erence of proportions might be
more meaningful.

Short-term Risks

A single incidence density or hazard can refer to a very short period of time
(�t), and if it does, the ratio of two such densities or hazards will be very close
to the the ratio of their two associated risks over this short period. This is
because, over a short period, so that the integral is small, and with u denoting
the midpoint between 0 and �t,

Risk1,0!�t = 1� exp

"
�
Z �t

0
h1(u)du

#
⇡ 1� {1�h1(u)⇥�t} = h1(u)⇥�t

for the (0 to �t) risk for the index category of exposure, with a corresponding
one Risk0,0!�t ⇡ h0(u)⇥�t for the risk in the reference category of exposure.

In this short-term, the risk ratio is just about equal to the ratio of the
hazards,

h1(u)/h0(u).

Longer-term Risks

In the longer-term, suppose the index-category hazard function h1(t) is a
constant (✓) times the h0(t) in the reference category, i.e. suppose we have
‘proportional hazards’, i.e.,

h1(t) = ✓ ⇥ h0(t) 8 t in the time-span of interest.

Over most of adulthood, the age-specific mortality rates in males (1=M) vs.
females (0=F), are more or less proportional, with a hazard ratio of approx-
imately ✓ = 1.4. If they are, what then is the ratio of the 10 year risks for
males vs. females (a) aged 50 at the start? (b) aged 85 ? Letting G denote
Gender,

RiskG,50!60 = 1� exp

"
�

Z 60

50
hG(u)du

#

2
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Based on the force of mortality in the latest Canadian life tables, the 10-
year integrals of the female hazard function from ages 50 to 60, and from 85
to 95, are approximately 0.03 and 1.18, respectively, so the 10-year risks are
1�exp[�0.03] = 0.03 and 1�exp[�1.18] = 0.69. For males, the corresponding
integrals are 0.042 and 1.652, so that the 10-years risks are 1� exp[�0.042] =
0.041 and 1� exp[�1.652] = 0.808. Thus we have:

10 year age span Risk: Male Risk: Female Relative Risk (M:F)
From 50 to 60 0.042 0.030 1.40
From 85 to 95 0.808 0.690 1.17

Again, in the short-term, with proportional hazards, the risk ratio is
close to the ratio of the hazards.

But in the longer-term, it is not.

If indeed we have proportional hazards (i.e., the same ✓ = h1(·)/h0(·))
across the full age or time range, the only easy-to-describe relationship
that works well across that full range is the one involving the surviving
fractions, i.e. the complements of the risks. In such situations, we have
the simple relationship between the survival fraction in the index (1)
and reference (0) categories

S1,t0!t00 = [S0,t0!t00 ]
✓.

In the examples above,

SM,50!60 = [SF,50!60]
1.4 = 0.971.4 = 0.958,

and
SM,85!95 = [SF,85!95]

1.4 = 0.3101.4 = 0.192.

***

Comments on the various sections of Chapter 17 ...

The data from a simple case-control study (exposed and unexposed)
can be arranged as a 2⇥ 2 table such as that set out in Table 17.1.
We saw in Chapter 16 that there are two ways (‘retrospective’ and
‘prospective’) in which the probability model for a case-control study
can be set up but that, for both models, the ratio of odds parameters
are equal to the ratio of odds of failure in the study base.

Even though Figures 16.1 and 16.2 did involve some passage of time for the
events to happen, both sections 1 (retrospective view, starting with cases,
and ‘comparing cases with controls’ w.r.t. exposure) and 2 (prospective view,
starting with exposure, and comparing exposed with unexposed’ w.r.t. pro-
portions of cases occurring in them) appear to ignore time . It is as though
there is a single ‘instant’ 2⇥ 2 table, with say exposure in the rows, and out-
comes in the columns, that cross classifies people into the 4 cells by exposure
and outcome, but without any time frame.

This would be fine if we were using a 2 ⇥ 2table to display the association
between hair colour (natural, before aging, or use of hair dye) and eye colour,
or outcomes where the passage of time is not central – e.g., acceptance of males
versus females to medical school – or time is obscured, or – e.g., in sports –
the lag between the shot and the goal is very short, or the states (normal,
defect) occur at conception, and are determined by genetics or environmental
factors, and there is no possibility of transition from the initial state.

In C&H’s approach, as in Cornfield’s in 1951, the prospective approach com-
pares rows, the other one columns. Moreover, if one samples from row 1 with
a sampling fraction fr1, and from row 2 with sampling fraction fr2, the log of
the crossproduct ratio remains invariant to this. The same invariance holds
if one one samples from column 1 with a sampling fraction fc1, and from
column 2 with sampling fraction fc2, and indeed this sampling (usually with
fcase.column � fnon.case.column) is what appears to be the defining feature of
case control studies.

Just as Cornfield (1951)did, C&H show that, whichever way ones looks at
it, whether one samples by row or by column, one obtains the same “odds

ratio”. They then proceed to use a ‘2-binomials model’ to work out the
sampling variability of the “odds ratio” estimator.

You will recognize the binomials by the variances of the logs of the two (iden-
tical) odds ratio estimators: In section 17.1 (retrospective, compare the ex-
posure split of the cases (D1 : D0, one binomial) with exposure split of the

3
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controls (H1 : H0, other binomial), it is

1

D1
+

1

D0| {z }
+

1

H1
+

1

H0| {z }
,

while in section 17.2 (prospective, compare the outcome split of the exposed
(D1 : H1, one binomial) with the outcome split of the unexposed (D) : H0,
other binomial), it is

1

D1
+

1

H1| {z }
+

1

D0
+

1

H0| {z }
.

The ‘rare disease assumption’

The loose justification for using the empirical ‘odds ratio’, as an estimator of
a theoretical rate (incidence density) ratio (�1/�0) is given at the top of page
161 of C&H, but it is accompanied by two important assumptions that they
freely admit are more likely to be violated than the ‘rare disease assumption’
that the derivation is based on.

This ‘rare disease assumption’ goes back at least as far as the classic 1951
Cornfield paper.4 Unfortunately it still is the one given in many ‘modern’
texts, despite the much more general ‘no need for rarity’ derivation by Miet-
tinen in 1976 (see Notes on Chapter 16).

Derivations that rely on the ‘rare disease assumption’ rest on algebraic argu-
ments using persons, not population time. In C&H’s derivation, the outcome
proportions involved refer to cumulative incidence in some presumably fixed
but unspecified span of time (they speak of ‘failing over the period of the
study’ (p154, line 4). Throughout his 1951 paper, Cornfield did not even
mention the passage of time: he speaks of prevalent cases, as though the
occur instantly, from nowhere, and stay around (and thus can be studied)
forever.

In section 16.5, C&H also start with proportions (risks), and show that the
case-control design, carried out at the end of the study period, can estimate
a ratio, not of the risks per se, but of their associated odds.

4A copy of the 1951 paper, accompanied by a commentary by Mitchell Gail, both taken
from the 1997 book Breakthroughs in Statistics, can be found on the website.

THE MODERN OUTLOOK on so-called case-control studies

Later in section 16.5, C&H tell us that if we slice time very finely , we do
not need the rare disease assumption, or to have all persons followed for the
same length of time, or to have no censoring. They provide us with a very
simple way to do so.

All of these assumptions can be guaranteed by the simple de-
vice of selecting a short enough study period. If insu�cient
cases would be obtained from such a study then the remedy
is simple - carry out several consecutive short studies. The
subjects remaining in the base at the end of one study im-
mediately enter the next study. Each study then provides a
separate estimate of the rate ratio, and provided this ratio re-
mains constant over the whole study period, the information
can be aggregated methods very similar to those discussed in
Chapter 15.

Taken to the limit, the total time available for the study may
be divided into clicks which contain at most one case. Those
clicks in which no case occurs are not informative so there is
no purpose in drawing controls, but controls are drawn for
all clicks in which a case occurs. Thus one or more controls
are drawn from the study base immediately after the occur-
rence of each case. This design is termed incidence density
sampling.

A study carried out in this way involves matching of controls
to cases with respect to time. Methods for stratified case-
control studies will be discussed in Chapter 18, but in the
special case where the ratio of exposed to unexposed persons
in the study base does not vary appreciably over the study
period, it is legitimate to ignore the matching by time during
the analysis.

4
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And so, we will from now on focus on this modern way of viewing

case-control studies.

In this modern outlook, we think of the cases as arising in population-time,
and we think of the population time involved as an infinite number of person-
moments - think of a person-moment as a person at a particular moment. One
way to represent population-time is to use the x-axis as time T and the y-axis
as numbers of persons P, with P as a curve over T. Then population-time is
the area of the surface under the P-T curve. If you shade this area using a
very fine shading using a Laser printer, and zoom in on it, it might look like
very fine dots (person moments) very close to together.

Obviously, in what follows, the time or age scale should not be so wide that
the rates would vary too much from one end of it to the other. We typically
work, as Miettinen did in the Table in the Notes for Ch 16, with age bands
of at most 5 years of age, and calendar bands no more than a decade wide.

Say that , within a fairly narrow age and calendar band, a proportion ⇡1 of the
population-time is “exposed” person moments, and the remaining proportion
⇡0 is “non-exposed” person-moments. Suppose further that the (theoretical)
event rates in the exposed and unexposed amounts of population-time are

�1 =
E[no.events]

PT1
; �0 =

E[no.events]

PT0
.

Estimands: ✓ = �1/�0, and �� = �1 � �0

Estimation: It will always involve a numerator (case) series; As for de-
nominators ...

i. If the absolute sizes of PTE and PT0 are known, we can estimate both
✓ = �1/�0, and �� = �1 � �0 directly, as in chapters 14 and 15.

ii. If the absolute sizes of PT1 and PT0 are not known, but their relative
sizes are, we can estimate ✓ directly, but not ��. Again, the methods of
Chapter 14 and 15 apply, since only the o↵set, log(PT1/PT0), is needed.

iii. If PT = PT1 + PT0 is known, but its split is not, and if we obtain an
unbiased estimate of this split, we can estimate both ✓ and ��.

iv. If nothing is known about the total PT or the exposure-specific PT ’s,
but we are able to obtain an unbiased estimate of the PT1 : PT0 split,
we can estimate just the ratio (✓) of the two �’s, but not their di↵erence.

Data, and estimators

Numerator (Case) Series [overall size c; c0, c1 in ‘exposure’ categories 0, 1]

Denote by c the observed number of events; we classify them into c1 events in
“exposed” population-time and c0 = c� c1 in the “non-exposed” population-
time. We will refer to this sample of c as the case series.5

If the absolute sizes of PT1 and PT0 are known, we can estimate both
✓ = �1/�0, and �� = �1 � �0 directly, as in chapters 14 and 15.

b�i =
ci
PTi

; c�� = c�1 �c�0; ✓̂ =
c1
PT1

÷ c0
PT0

.

If the absolute sizes of PT1 and PT0 are not known, but their relative
sizes are, we can estimate ✓ directly, but not ��. Again, the methods
of Chapter 14 and 15 apply, since only the o↵set, log(PT1/PT0), is
needed.

✓̂ =
c1
PT1

÷ c0
PT0

=
c1
c0

÷ PT1

PT0
.

If PT = PT1 + PT0 is known, but its split is not, and if we obtain an
unbiased estimate of this split, we can estimate both ✓ and ��. To
estimate the split, we rely on a

Denominator Series [random sample of the base from which the cases
emerged, overall size d;with d0, d1 classified into ‘exposure’ cate-
gories 0, 1]. We will refer to this sample of d as the denominator series.

Then

✓̂ =
c1
dPT1

÷ c0
dPT0

=
c1
c0

÷
dPT1

dPT0

=
c1
c0

÷ d1
d0

.

One can also use dPTi =
di
d ⇥ PT to obtain b�i and c��.

5In this section, JH has borrowed from Miettinen the notation of ‘c1’ and ‘c0’ for the
numbers of exposed and unexposed cases, and ‘d1’ and ‘d0’ for the numbers of exposed and
unexposed denominators, instead of C&H’s D1 and D0, and Y1 and Y0. Both of these sets
of notations are more memorable and instructive than the A, B, C, and D in Mantel and
Haenszel’s 1959 paper, and the a, b, c, d also widely used elsewhere is statistics.

5



BIOS602: Notes, C&H. Ch 17(Likelihoods for the Odds Ratio Rate Ratio estimated with estimated denominators). 2015.02.15

If nothing is known about the total PT or the exposure-specific PT ’s,
but we are able to obtain – from a suitable denominator series – an
unbiased estimate of the PT1 : PT0 split, we can estimate just the
ratio (✓) of the two �’s, but not their di↵erence.

✓̂ =
c1
dPT1

÷ c0
dPT0

=
c1
c0

÷
dPT1

dPT0

=
c1
c0

÷ d1
d0

.

Statistical models for the estimators

• What is the statistical model for the c1 : c0 split?

We can think of c1 as the realization of a Poisson r.v. with mean (expectation)
µ1 = (PT ⇥ ⇡1)⇥�1. Likewise, think of c0 as the realization of a Poisson r.v.
with mean (expectation) µ0 = (PT ⇥ ⇡0)⇥ �0.

Now, it is a statistical theorem (Casella and Berger, p194, exercise 4.15) that

c1 | c ⇠ Binomial

✓
c, ⇡ =

µ1

µ1 + µ0

◆
;

⇡

1� ⇡
=

PT ⇥ ⇡1 ⇥ �1

PT ⇥ ⇡0 ⇥ �0
=

⇡1

⇡0
✓.

• What is the statistical model for the d1 : d0 split? Clearly, it is

d1 | d ⇠ Binomial(d,⇡1).

Coupling both series so as to estimate log ✓

The c1 : c0 split is governed by one binomial, involving ✓ and ⇡1/⇡0, while
the d1 : d0 split is governed by a separate binomial, involving the same
other parameter ⇡1/⇡0, but not involving ✓.

Now, consider the dataset of c + d observations, with each of the c
observations in the case series coded as Y = 1, and each of the d observations
in the denominator series coded as Y = 0, and with each of the c1 + d1
observations in the combined series coded as E = 1, and each of the remaining
c0 + d0 observations in the combined series coded as E = 0. The dataset,and
how it came to be (i.e. starting at the top left with the case series, then
adding a denominator series) is shown in the diagram.

To be parsimonious, and allow for a GLM approach, we can combine the two
models into one ’master’ regression equation.

In the diagram, to the right of the E = 1 portion of the dataset, the expression
for the expected Y = 1 : Y = 0 split (i.e. the odds) is given. Taking the log
of the odds, we get

Y
No. of
Instances

1 c

Case
Series

c1

c0

0 d

Base⇤

Series

d1

d0

E
Expected No.
of Instances

1 c ⇡⇤⇤

0 c (1� ⇡)

1 d ⇡1

0 d ⇡0

Dataset, sorted by E

E Y
1 1
1 1
1 0
1 0
0 1
0 1
0 1
0 0
0 0
0 0
0 0
0 0
0 0

Pr[Y=1|E]
Pr[Y=0|E]

c
d ⇥⇢⇢⇡1✓/[⇡1✓+⇡0]

⇢⇢⇡1

c
d ⇥⇢⇢⇡0/[⇡1✓+⇡0]

⇢⇢⇡0

c ⇡

d ⇡1

c (1� ⇡)

d ⇡0

⇤⇤⇡ = ⇡1✓
⇡1✓+⇡0

, so that 1� ⇡ = ⇡0
⇡1✓+⇡0

.⇤Base ⌘ Denominator

logit = log

⇢
Pr[Y = 1|E = 1]

Pr[Y = 0|E = 1]

�
= log

⇢
c

d

�
+ 1⇥ log[✓] � log[⇡1✓ + ⇡0]

Similarly, taking the log of the odds in the E = 0 portion of the dataset,

logit = log

⇢
Pr[Y = 1|E = 0]

Pr[Y = 0|E = 0]

�
= log

⇢
c

d

�
+⇠⇠⇠⇠⇠0⇥ log[✓] � log[⇡1✓ + ⇡0]

The di↵erence in logits is log(✓). So, if we have a regressor variate that turns
o↵ log(✓)) when the variate is set to 0, and that turns it on when it is set to

1, we should be able to extract a \log(✓) from a logistic regression model fitted
to the dataset.

So, one can estimate log ✓ by an unconditional logistic regression of
the Y ’s (c + d observations in all, with Y = 1 if in case series; =
0 if in denominator series) on the corresponding set of c+ d indicators of ex-
posure (E = 1 if exposed, 0 if not).

Even though it was assembled by starting with the case series, this dataset
looks like it was assembled in the usual prospective manner, and it is very
much in the modern spirit of comparing event rates in the exposed and unex-
posed population time.

We now proceed to the parameter fitting....

6
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Fitting log ✓ by GLM

# data entered in order of arrival, case series first

y = c( rep(1,5) , rep(0,8))

E = c( rep(1,2),rep(0,3) , rep(1,2), rep(0,6))

ds = data.frame(y,E) ;retrospective = ds;

names(retrospective)=c("I.case.r","I.exposed.r")

prospective = ds[order(-E,-y),2:1]

names( prospective)=c("I.exposed.p", "I.case.p")

cbind(ds,retrospective,prospective ) ;

y E I.case.r I.exposed.r I.exposed.p I.case.p

1 1 1 1 1 1 1

2 1 1 1 1 1 1

6 1 0 1 0 1 0

7 1 0 1 0 1 0

3 1 0 1 0 0 1

4 0 1 0 1 0 1

5 0 1 0 1 0 1

8 0 0 0 0 0 0

9 0 0 0 0 0 0

10 0 0 0 0 0 0

11 0 0 0 0 0 0

12 0 0 0 0 0 0

13 0 0 0 0 0 0

### fitting via ’prospective’ model

fit.pro = glm(I.case.p⇠I.exposed.p,family=binomial,data=prospective)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.6931 0.7071 -0.980 0.327

I.exposed.p 0.6931 1.2247 0.566 0.571

exp(fit.pro$coefficients) : (Intercept) I.exposed.p

0.5 2.0

round(summary(fit.pro)$cov.unscaled,2); # Var[par. estimates]

(Intercept) I.exposed.p

(Intercept) 0.5 -0.5

I.exposed.p -0.5 1.5

> round(fit.pro$fitted.values,2)

1 2 6 7 3 4 5 8 9 10 11 12 13

0.50 0.50 0.50 0.50 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

>

> aggregate(fit.pro$fitted.values,

+ by=list(E=prospective$I.exposed),sum)

E x

1 0 3

2 1 2

> aggregate(1-fit.pro$fitted.values,

+ by=list(E=prospective$I.exposed),sum)

E x

1 0 6

2 1 2

# If use log(b/d) = log(size of case series/ size of base series)

# = log(5/8) as a (common) offset, what does intercept denote?

OFFSET = rep( log(5/8), 13)

fit.pro.with.offset = glm(I.case.p ~ offset(OFFSET) + I.exposed.p,

family=binomial,data=prospective)

summary(fit.pro.with.offset)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.2231 0.7071 -0.316 0.752

I.exposed.p 0.6931 1.2247 0.566 0.571

Supplementary Exercise 17.1p

Using the diagram and logit equations (p.6) as a guide, interpret the two fitted
coe�cients from the GLM fit of the prospective model. Do not take interpret
to mean stating whether they are ‘statistically significant’; instead, tell us
what epidemiologic parameters these coe�cients are estimating (are estimates
of), (a) ‘as is’, (b) when exponentiated and (c) further back transformed.

Display the sums of the fitted frequencies as a 2 ⇥ 2 table (E ⇥ y) of fitted

frequencies. Insert these into Woolf’s formula and calculate VarWoolf [ dlog ✓].
Compare your result with the GLM output. Comment.

In the model that includes the log 5/8 as a common o↵set, what parameter
(amalgam) is the -0.2231 an estimate of? Hint: Cf the logit equations. Is the
intercept with the o↵set removed any more interpretable than the one that
ignores the relative sizes of c and d?

7
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Supplementary Exercise 17.1r

## retro

> fit.retro = glm(I.exposed.r~I.case.r,family=binomial,

data=retrospective)

> summary(fit.retro)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.0986 0.8165 -1.346 0.178

I.case.r 0.6931 1.2247 0.566 0.571

Null deviance: 16.048 on 12 degrees of freedom

Residual deviance: 15.727 on 11 degrees of freedom

> exp(fit.retro$coefficients)

(Intercept) I.case.r

0.33 2.0

>

> round(summary(fit.retro)$cov.unscaled,2)

(Intercept) I.case.r

(Intercept) 0.67 -0.67

I.case.r -0.67 1.50

>

> round(fit.retro$fitted.values,2) # fitted E[y]’s

1 2 3 4 5 6 7 8 9 10 11 12 13

0.40 0.40 0.40 0.40 0.40 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

>

> aggregate(fit.retro$fitted.values,

+ by=list(y=retrospective$I.case.r),sum)

y x

1 0 2

2 1 2

> aggregate(1-fit.retro$fitted.values,

+ by=list(y=retrospective$I.case.r),sum)

y x

1 0 6

2 1 3

Focus on the left hand side (the retro version) of the diagram on page 6.

• Derive the log odds equation, involving Pr[E=1|y=1]
Pr[E=0|y=1] , for the c split;

do the same for the corresponding one, involving Pr[E=1|y=0]
Pr[E=0|y=0] , for the d split.

BTW: You should find the algebra needed to derive the logit equation for the
d split involves just one parameter, and that it does not involve the parameter
of interest, ✓ = �E=1/�E=0.

• Using these 2 retrospective logit equations as a guide, interpret the two
fitted coe�cients from the GLM fit of the retrospective model. Again, do
not take interpret to mean stating whether they are ‘statistically significant’;
instead, tell us what epidemiologic parameters these coe�cients are estimating
(are estimates of), (a) ‘as is’, (b) when exponentiated and (c) further back-
transformed.

• Display the sums of the fitted frequencies as a 2⇥ 2 table (y ⇥ E) of fitted

frequencies. Insert these into Woolf’s formula and calculate VarWoolf [ dlog ✓].
Compare your result with the GLM output. Comment. Which variance ver-
sion in C&H (page 167 or page 170) does this version correspond to?

• In which of the two approaches, retrospective, or prospective, is the inter-
cept a more interpretable parameter estimate, and why ? In which of the
two approaches, retrospective, or prospective, is the other coe�cient a more
interpretable parameter estimate, and why ?

• Which of the two approaches, retrospective, and prospective, do you prefer,
and why ?

Supplementary Exercise 17.2

Refer again to the Danish study on the possible role of MMR vaccination
on the aetiology of autism, and in particular, for this exercise, focus on just
1 square, the 1993 birth cohort, in the children time between their 3rd and
4th birthdays. This child time consisted of some Y1=60,143 vaccinated child-
years, and Y0=6,857 unvaccinated child-years.

Using your counts of the numbers (c1 & c1) of cases in these vaccinated (·1) and
unvaccinated (·0) child-years, and the frequencies (d1 & d1) in your simulated
denominator series of size d = 100, set up an ‘individual-record’ datafile (of
length c+ d ). You can use the toy example, in particular the right hand side
of the in the diagram on page 6 and the R code on page 7, as a template.
Then use logistic regression to obtain a point and interval estimate of log ✓
and of ✓ itself.

Do you trust the Gaussian-based interval estimate? Why/why not?

8
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Supplementary Exercise 17.3

Refer again to the article by Woolf (1955), and restrict your attention to the
London portion of the contrast in his Table 1, ie. to the data in the first row
of the Table.. Both directly, and by using logistic regression6 calculate a point
and an interval estimate for what Woolf calls x and what we call ✓.

Verify that the logistic regression produces the ‘Woolf’ variance.

Supplementary Exercise 17.47

Woolf’s estimator of ✓ is, in his notation,

✓̂ =
h

H
/
k

K
=

hK

kH


or

ad

bc
in epidemiologists’ notation

�
,

where h & k are from the case series, and H & K are from the denominator
(base) series.

TreatH : K as a binomial sample of sizeH+K from a base where the fractions
of the overall population time that are the index and reference categories of
the contrast are ⇡1 and ⇡0 = 1�⇡1 respectively. In other words, assume that
the base is e↵ectively infinite in size, relative to H+K, so that even if, as one
would, one samples without replacement, we can treat H ⇠ Binomial(H +
K,⇡1).

• Use the delta method8 to obtain the (approx., large sample) variance for
log[H/K]. Use the observed values of H of K as plug-in estimates for the
E[H] and E[K] in this theoretical variance.

Now, treat h and k as two independent Poisson random variables, representing
the numbers of cases arising from these same index and reference categories
of the base. Take advantage of the fact that we can treat h ⇠ Binomial(h+
k,⇡),9 and of the variance form you just obtained for the log of a ratio in the
denominator series.

• By doing so, obtain the (approx., large sample) variance for log[h/k] Again,
as above, use the observed values of h and k as plug-in estimates for the E[h]
and E[k] in this theoretical variance.

• Now, use these 2 variances to obtain an expression for log[✓̂] = log[hKkH ]. You
should get the same variance formula that Woolf used.

6Cf. the template from the toy example of logistic regression on pages 6 and 7.
7a favourite in the comprehensive exam
8or the Fisher Information from a binomial likelihood for the parameter log ⇡

1�⇡1
,

9⇡ is now an amalgam, whose form need not concern you for now, of the parameters ⇡1

and ✓.

Remarks re Supplementary Exercise 16.4

In our simplified and fictional example, there had been 7 airline crashes in-
volving planes from 2 of the leading manufacturers A and B. Using the de-
nominator totals ?? :??, we tallied in class, you could calculate a (crude) Rate

Ratio estimate 5B/2A
33B/45A for the B:A contrast, along with an interval estimate.

Setting aside all the other shortcomings of our fictional study, you must won-
der if the small numerators make the use of a Gaussian-based interval inap-
propriate. If all you wanted was a p-value to judge the evidence against the
null, you could always use Fisher’s exact test, which is based on the central
(null) hypergeometric distribution, which conditions on all four table margins.
But what if you wanted a point estimate and interval estimate for the Rate
Ratio (of course it would be wide) that made use of an exact distribution,
rather than a Gaussian approximation. You could look up the use of the non-
central hypergeometric distribution in Chapter 4 of Breslow and Day Volume
I, along with their nice small worked example on page xx. You are not asked
to repeat the calculations with our A:B crash data, but please be aware of
the conditional approach to point and interval estimation. It is not as big a
computational deal as it was when B&D was written. And this conditional
likelihood also comes into the fitting of the parameters of the Cox model.

Supplementary Exercise 17.5

This exercise is designed to reinforce the ideas in the following quote from
Mantel’s 1973 paper on synthetic’ studies. He had too many instances of
Y = 0 in relation to the numbers of instances of Y = 1, and not enough
computing resources, and so he sampled from the Y = 0 instances.

Focus on the portion in italics (added by JH) in the following excerpt.

If we chose ⇡1 as 1 and ⇡2 as 0.15, we would have all the cases and 3.5 neg-
atives per case. By the reasoning that n1n2/(n1 + n2) measures the relative
information10 in a comparison of two averages based on sample sizes of n1 and
n2 respectively, we might expect by analogy, which would of course not be exact
in the present case, that this approach would result in only a moderate loss of
information. (The practicing statistician is generally aware of this kind of thing.

There is little to be gained by letting the size of the control group, n2, become

arbitrarily large if the size of the experimental group, n1, must remain fixed.)

But the reduction in computer time would permit much more e↵ective analyses.
Ostensibly we would be meeting the additional conditions assumed for validity
of the retrospective study approach; that is the retained individuals would be a
random sample of the cases and disease-free individuals arising in the prospective
study.... p.481.

10Note that n1n2/(n1 + n2) is algebraicly equivalent to the reciprocal of 1/n1 + 1/n2.
The product of (1/n1 + 1/n2) and the square of the within-group SD is the square of the
SE of the di↵erence of two averages.
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i. Use the data from the London portion of the data in Woolf’s Table 1, and
the R code provided on the Website, to numerically illustrate how “little
(is) to be gained” by having the denominator series become arbitrarily
large: Calculate what the variance (and its reciprocal, the amount of
‘information’) would have been if the denominator series were (i) the
same (ii) twice (iv) four times (x) 10 times (c) 100 times and (m) 1000
times the size (as)of the numerator series. 11

Using the amount of information in the‘1000 times as large’ scenario as
the maximum information Imax, calculate and plot the ratio of each of
the other amounts of information, Ilesser/Imax as a function of the ratio
of the size of the denominator series to the size of the numerator series.
The computations can be carried out using the R code provided.

ii. Can you see from your plot why a ‘control:case’ ratio of 4 has come to
be regarded as a compromise? Can you think of situations where this
magic number doesn’t always work? As one possible situation, simulate
various size denominator series sampled from the 40,046 homes known to
have been supplied by the Southwalk and Vauxhall Water Company and
the 26,107 known to have been supplied by the Lambeth Company (in
the 300 homes in the numerator (‘case’) series, the split was 286:14). In
this example, why is there so little extra gained even in going from 1:1 to
2:1? Hint: find the ‘weakest link’ in the Woolf variance for the log(idr)
estimate.

iii. Suppose the denominators of 40,046 and 26,107 homes (and thus known
person-time denominators) are known and without error. Calculate the
variance of the log(idr) and use it to superimpose a 95% CI for the IDR
on the graph produced in Question 6.

What would the Woolf variance have been if Snow were forced to estimate
the ratio of the number of homes supplied by the Southwalk and Vauxhall
Water Company to the number supplied by the Lambeth Company, using
a ‘denominator-series’ of a total of just 100 homes, and an observed split
of 65:35?

Treat the ratio of the denominators (O and A, called H and K by Woolf)
in Woolf’s example as random-error-containing estimates of the true ratio
of the two person-time denominators that gave rise to the numerators o
and a (called h and k by Woolf).

What is the formula for the variance of the log(idr)? What is the role of
the (1/O+1/A) term in this variance formula? the role of the (1/o+1/a)
term?

11Scale the observed frequencies in the denominator series accordingly – in practice,
because of sampling variation, they would not scale exactly.

iv. Use the comparison of the variance formula in which the denominator
ratio has to be estimated with the variance formula in which the denom-
inator ratio is treated as known, as a motivation for how to explain the
main data-analysis di↵erence between so called ‘case-control’ and ’cohort’
studies:

”When estimating an incidence density ratio, the main data-
analysis di↵erence between doing so in a so-called ‘case-
“control” ’ and in a‘cohort’ study is that in the

study the person-time denominators are

whereas in the

study the person-time denominators are
.

Supplementary Exercise 17.6

Refer to table I of, Miettinen’s 1976 paper, where he computes age-specific
Incidence Density Ratios, and 30 year risks of bladder cancer for smokers and
non-smokers.

This paper showed that the rare disease assumption is not needed in ‘case-
control’ studies, i.e., studies that sample the base (the PT experience in which
the cases arose) to estimate the denominator ratios, and obtain rate ratio
estimates. If, as in Table 1, the overall PT in each stratum is known, the
absolute rates (and their di↵erences) can also be estimated.

Note also the calculation of 30-year risks, and the ratio of these 30-year risks.

Using the R code provided, or otherwise, and without mentioning the ‘OR’
phrase, ...

i. Calculate a summary Rate Ratio (point and interval) estimate, using
Woolf’s method

ii. Calculate a summary Rate Ratio point estimate, using the Mantel-
Haenszel method. Find a formula for the variance of this (calculations
themselves not needed)

iii. How many strata were there in the 1959 Mantel-Haenszel worked exam-
ple (Cf. link: table is on p738/9)? Were the M-H data sparser/more
abundant than the Miettinen data?

iv. Obtain a Rate Ratio interval estimate via logistic regression.

v. Calculate 30 year risks (in the absence of competing causes) of bladder
cancer for smokers and non smokers.
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Supplementary Exercise 17.7

Refer to the numerator series JH has compiled from the data you extracted
for subsets of the Canadian-born NHL players.

The parameter of interest is the ‘Rate of reaching the NHL’ as a smooth
function of birth month (01-12).

Using the R code provided, or otherwise, and without mentioning the ‘OR’
phrase, ...

i. Fit a suitable rate function, using the population-based denominators12.
Compare the fitted rates for January- and December-born Canadians,
and obtain a CI for the ratio.

[Note: the R code reads in denominators from a .csv file that is also on
the website.]

ii. Fit a suitable rate function, using the sample of current-day Senators and
MPs (Cf. Website) as a ‘denominator series.’ Compare the SE’s of the
parameters fitted to these data with those obtained from the population-
based ones, and if they are very di↵erent, explain why they di↵er.

Sample Size/Power considerations for (unstratified) ‘case-

control’ studies

In what follows, the parameter of interest is the Rate Ratio (✓ =
�1/�0) estimated by a cross-product ratio involving numerators and
estimated denominators. These numerators and denominators can be
thought of as arising from 2 binomial models. The binomial for the
denominator series is governed by just the proportions ⇡1 and ⇡0 =
1�⇡1 of exposed and unexposed and unexposed population time. The
one for the numerator series is governed by a more complex parameter
⇡ that is a function of that same parameter ⇡ but also the Rate Ratio
parameter ✓.

⇡ =
✓⇡1

✓⇡1 + (1� ⇡1)

Testing H0 : ✓ = 1 vs. Halt : ✓ 6= 1 is equivalent to testing that

H0 : ⇡ =
1⇥ ⇡1

1⇥ ⇡1 + (1� ⇡1)
= ⇡1 vs. Halt : ⇡ 6= ⇡1.

12admittedly, they are too recent, but patterns have not changed dramatically over the
decades, and it would take too long to get better ones, closer to the players’ years of births.

c & d for power 1� � if ✓ = ✓alt; Prob[Type I error] = ↵.

Work in log ✓ scale, so that

SE[ dlog ✓] = (1/c1 + 1/c0 + 1/d1 + 1/d0)
1/2.

Need
Z↵/2 SE0[ dlog ✓] + Z�SEalt[ dlog ✓] < �.

where
� = log[✓alt]

Substitute expected c1, c0, d1, d0 values under null and alt. into SE’s
and solve for c and d.
References: Schlesselman, Breslow and Day, Volume II, ...

Key Points: dlog ✓ most precise when c1, c0, d1, d0 of equal size; so,

i. increasing the case series:base series ratio (ie., control:case ratio)
leads to diminishing marginal gains in precision.

To see this... examine the function

1

# of cases
+

1

multiple of this

for various values of “multiple”

ii. The more unequal the distribution of the etiologic / preventive
factor, i.e., the more extreme the ⇡1 : (1 � ⇡1) split, the less
precise the estimate

Examine the functions

1/d1 + 1/d0 & 1/c1 + 1/c0.

See, e.g., middle panel of graph overleaf, with log scale for ✓̂: c = 200 cases, and

exposure prevalence ⇡1 = 8%. Say the Type I error rate set at ↵ = 0.05 (2-sided)

so that upper critical value (that cuts o↵ top 2.5% of null distribution) is close to

✓̂ = 2. Draw vertical line at this critical value, and examine how much of each

non-null distribution falls to the right of it. This area to the right of the critical

value is the power of the study, i.e., the probability of obtaining a significant ✓̂,

when in fact the indicated non-null value of ✓ is correct. The two curves at each ✓

value are for studies with d : c = 4:1 and 1:1.
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c(-2, 3)

0.25 0.5 1 2 4 8

c (size of case series): 100

π1 = 0.02

c(-2, 3)

c(
-0

.2
, 3

.5
)

0.25 0.5 1 2 4 8

200

c(-2, 3)

c(
-0

.2
, 3

.5
)

0.25 0.5 1 2 4 8

400 Rate Ratio
(θ)

3.375

2.25

1.5

1

c(-2, 3)

0.25 0.5 1 2 4 8

Proportion
of Base
Exposed

π1 = 0.08

c(-2, 3)

c(
-0

.2
, 3

.5
)

0.25 0.5 1 2 4 8

1:1
4:1

d:cSizes of 2 series: base:case

c(-2, 3)

c(
-0

.2
, 3

.5
)

0.25 0.5 1 2 4 8

3.375

2.25

1.5

1

0.25 0.5 1 2 4 8

π1 = 0.32

Factors affecting variability of Rate Ratio estimates
from, and statistical power of,
`case-control' studies

c(
-0

.2
, 3

.5
)

0.25 0.5 1 2 4 8 θ̂
c(

-0
.2

, 3
.5

)
0.25 0.5 1 2 4 8

3.375

2.25

1.5

1

Power is larger if ...
(a) non-null ✓ � 1 (Cf. 1.5 vs. 2.25 vs 3.375);
(b) exposure common (cf. 2% vs. 8% vs. 32%) but not ‘too’ common;
(c) larger c (Cf. 100 vs. 200 vs. 400), and d : c ratio (1 vs. 4).
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