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Regression models
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Introduction to regression models

One of the main problems discussed in Part I was how to compare two
rate parameters, Ag and A1, using their ratio A;/Ag. To do this the log
likelihood for the parameters Ao and A; was re-expressed in terms of Ag
and 0, where 0 = X\;/)\g. This technique was then extended to deal with
comparisons stratified by a confounding variable by making the assumption
that the parameter # was constant over strata. In this second part of the
book, the technique will be further extended to deal with the joint effects
of several exposures and to take account of several confounding variables.

A common theme in all these situations is a change from the original
parameters to new parameters which are more relevant to the comparisons
of interest. This change can be described by the equations which express
the old parameters in terms of the new parameters. These equations are
referred to as regression equations, and the statistical model is called a
regression model. 'To introduce regression models we shall first express
some of the comparisons discussed in Part I in these terms. We use models
for the rate parameter for illustration, but everything applies equally to
models for the odds parameter.

22.1 The comparison of two or more exposure groups

When comparing two rate parameters, Ag and A;, the regression equations
which relate the original parameters to the new ones are

Ao = Ao, A1 = Aob,

where the first of these simply states that the parameter )¢ is unchanged.

When there are three groups defined by an exposure variable with three
levels, corresponding (for example) to no exposure, moderate exposure, and
heavy exposure, the original parameters are Ag, A1, and A2, and there are
now more ways of choosing new parameters. The most common choice is
to change to

Ao, 61 = X1/Xo, B2 = A2/ Ao.

With this choice of parameters the moderate and heavy exposure groups
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Table 22.1. A regression model to compare rates by exposure levels

Exposure
Age 0 1
0 PYIPNT
1 PYIRDYY
2 PR

are compared to the unexposed group. The regression equations are now

Ao = Ag, AL = Xoby, Ao = Agba.

22.2  Stratified comparisons

When the comparison between exposure groups is stratified by a confound-
ing variable such as age the change to new parameters is first made sepa-
rately for each age band; for two exposure groups the regression equations
for age band ¢ are
A5 =X§ EPYS

The parameter 8¢ is age-specific and to impose the constraint that it is
constant over age bands it is set equal to the constant value 8, in each age
band. The regression equations are now

M=2p  X=A

This choice of parameters is the same as for the proportional hazards model,
introduced in Chapter 15. The model is written out in full in Table 22.1
for the case of three age bands.

Although our main interest is whether the rate parameter varies with
exposure, within age bands, we might also be interested in investigating
whether it varies with age, within exposure groups. The parameter 8 does
not help with this second comparison because it has been chosen to compare
the exposure groups. When making the comparison the other way round
the age bands are the groups to be compared and the exposure groups
are the strata. To combine the comparison across these strata requires
the assumption that the rate ratios which compare levels 1 and 2 of age
with level 0 are the same in both exposure groups. This way of choosing
parameters is shown in Table 22.2, where the parameters ¢! and ¢? are the
rate ratios for age, assumed constant within each exposure group. Note
that there are two parameters for age because there are three age bands
being compared.

Putting these two ways of choosing parameters together gives the regres-
sion model shown in Table 22.3. The parameter A has now been written
as Ac, for simplicity and to emphasize that it refers to the (top left-hand)

L
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Table 22.2. A regression model to compare rates by age bands

Exposure
Age 0 1
N A

Mot Ag!
N Ng?

N = O

Table 22.3. A regression model for exposure>and age

Exposure
Age O 1
0 Ac Ach
1 Acdt  Acho!
2 Acd?  Achd?

corner of the table. Both sorts of comparison can now be made in the same

Enalysis. It is no longer necessary to regard one variable as the exposure,
and the other as a confounder used to define strata; the model treats both
types of variable symmetrically. To emphasize this symmetry the term ez-
planatory variable is often used to describe both exposures and confounders
in regression models. Although this is useful in complex situations where
there are many variables, there are also dangers. Although it makes no
difference to a computer program whether an explanatory variable is an
exposure or confounder it makes a great deal of difference to the person
trying to interpret the results. Perhaps the single most important rea-
son for misinterpreting the results of regression analyses is that regression
models can be used without the user thinking carefully about the status of
different explanatory variables. This will be discussed at greater length in
Chapter 27. "

N

Exercise 22.1. Table 22.4 shows a set.of values for the rate parameters (per
1000 person-years) which satisfy exactly the model shown in Table 22.3. What
are the corresponding values of Ac, 8, ¢*,¢* ?

Exercise 22.2. When the model in Table 22.3 is fitted to data it imposes the

“constraint that the rate ratio for exposure is the same in all age bands, and

equally, that each of the two rate ratios for age is constant over both levels of -
exposure. Is the constraint on the rate ratios for age a new constraint, iye{ it
automatically follow whenever the rate ratio for exposure is the same jmall age
bands?
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Table 22.4. Parameter values (per 1000) which obey the consttaints

Exposure
Age 0 1
0 50 15.0
1 12,0 36.0
2 30.0 90.0

Table 22.5. A regression model using names for parameters

Exposure
Age 0 1
0 Corner Corner x Exposure(1)
1 Corner x Age(l) Corner x Age(1) x Exposure(1)
2 Corner x Age(2) Corner x Age(2) x Exposure(1)

22.3 Naming conventions

Using Greek letters for parameters is convenient when developing the the-
ory but less so when applying the methods in practice. With many ex-
planatory variables there will be many parameters and it is easy to forget
which letter refers to which parameter. For this reason we shall now move
to using names for parameters instead of Greek letters.

The first of the parameters in Table 22.3, ¢, is called the Corner. The
0 parameter, which is the effect of exposure controlled for age, is referred
to as Exposure(1); when the exposure variable has three levels there are
two effects and these are referred to as Exposure(1) and Exposure(2), and
so on. When the exposure variable is given a more specific name such
as Alcohol then the effects are referred to as Alcohol(1) and Alcohol(2).
The ¢ parameters, which are the effects of age controlled for exposure, are
referred to as Age(1) and Age(2). The model in Table 22.3 is written using
names in Table 22.5.

Because writing out models in full is rather cumbersome, particularly
when using names for parameters, we shall use a simple abbreviated form
instead. The entries in Tables 22.3 and 22.5 refer to the right-hand sides of
the regression equations; the left-hand sides are the original rate parameters
which are omitted. Such a set of regression equations is abbreviated to

Rate = Corner x Exposure x Age.
It is important to remember that this abbreviation is not itself an equation

(even though it looks like onel); it represents a set of equations and is
shorthand for tables like Table 22.5. The regression model is sometimes
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* Table 22.6. Energy intake and IHD incidence rates per 1000 person-

years
Unexposed Exposed
(= 2750 keals) (< 2750 keals) Rate
Age Cases P-yrs Rate Cases P-yrs Rate ratio-
40-49 4 607.9  6.58 2 311.9 6.41 097
50-59 5 1272.1  3.93 12 878.1 13.67 3.48
60-69 8 888.9 9.00 14 667.5 20.97 2.33

Table 22.7. , Estimated values of the parameters for the IHD data

Parameter Estimate
-Corner 0.00444
Exposure(1) x2.39
Age(1) . x1.14
Age(2) %x2.00

abbreviated even further and referred to simply as a multiplicative model
for exposure and age.

22.4 Estimating the parameters in a regression model

Table 22.6 shows the data from the study of ischaemic heart disease and
energy intake. There are two explanatory variables, age with three levels
and exposure with two. The two levels of exposure refer to energy intakes
above and below 2750 kcals per day.

Although the rate ratio for exposure is rather lower in the first age band

| than in the other two age bands, it is based on only 6 cases, and a summary

based on the assumption of a common rate ratio seems reasonable. In the
new terminology this means fitting the regression model

Rate = Corner x Exposure x Age.
The most likely values of the parameters in this model, obtained from a

computer program, are shown in Table 22.7. Note that the most likely value
of the Exposure(1) parameter is the same, to two decimal places, as the

Mantel-Haenszel estimate of the common rate ratio, given in Chapter 15.

Exercise 22.3. Use the most likely values of the parameters in the regression

model, shown in Table 22.7, to predict the rates for the six cells in Table 22.6.

Computer programs differ in the precise details of how the output is
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Table 22.8. Estimated parameters and SDs on a log scale
Parameter  Estimate (M) SD (S)

Corner —5.4180 0.4420
Exposure(1) 0.8697 0.3080
Age(1) 0.1290 0.4753
Age(2) 0.6920 0.4614

labelled. In particular you may see the word wvariable where we have used
. parameter, and the word coefficient where we have used estimate. We have
used the term corner for the parameter which measures the level of response
in the first age band of the unexposed group but several other terms are
in widespread use, for example constant, intercept, grand mean, and (most
cryptically of all) the number 1. We have numbered strata and exposure
categories starting from zero, but some programs start numbering from
one.

22.5 Gaussian approximations on the log scale

Gaussian approximations to the likelihood are used to obtain approximate
confidence intervals for the parameter values. For the simple multiplicative
models discussed so far the approximation is always made on the log scale,
and in many programs the output is also in terms of logarithms. Table 22.8
shows the output on a log scale for the ischaemic heart data; the second
column shows the most likely values (M) of the logarithms of the param-
eters and exponentials of these give the values on the original scale. For
example,

exp(0.8697) = 2.39,

which is the rate ratio for exposure. The third column shows the standard
deviations (S) of the estimates, obtained from Gaussian approximations to
the profile log likelihoods for each parameter. The standard deviation of
the effect of exposure, on the log scale, is 0.3080, so the error factor for a
90% confidence interval for this parameter is exp(1.645 x 0.3080) = 1.66,
and the limits are from 2.39/1.66 = 1.44 to 2.39 x 1.66 = 3.96.

Exercise 22.4. Use Table 22.8 to calculate the 90% confidence limits for the
first effect of age.

When the regression model is fitted on a log scale it is written in the
form

log(Rate) = Corner + Exposure + Age.
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Table 22.9. A more complete description of the age effects

Parameter Estimate SD
Age(1) 0.1290 0.4753
Age(2) 0.6920  0.4614

Age(2) — Age(1) 0.5630  0.3229

Table 22.10. An abbreviated table for the age effects

Parameter Estimate SD
- Age(1) 0.1290 0.4753
Age(2) 0.6920 0.4614 0.3229

Strictly speaking, the parameters on the right-hand side of this expression
should be written as log(Corner) etc., but in practice the log on the left-
hand side is enough to signal the fact that the parameter estimates will be
on a log scale.

For variables with more than two categories, comparisons other than
those with the first category are sometimes of interest. Taking the variable
age in the ischaemic heart disease data as an example, the effect of changing
from level 1 to level 2 of age is the difference between the two age effects,
namely 0.6920 — 0.1290 = 0.5630. Because the two age effects are based
on some common data the standard deviation of their difference cannot be
obtained from the simple formula

1/0.47532 4 0.46142 = 0.6624,

which was used in Chapter 13. To obtain the correct standard deviation
we usually need to resort to a trick, such as recoding age so that the corner
parameter refers to the second age band rather than the first. Table 22.9
shows how a fuller analysis of age effects could be reported; an option to
obtain output in this form would be a useful feature not currently available
in most computer programs.

An abbreviated way of conveying the same information is shown in Ta-
ble 22.10. This provides the standard deviations for all three comparisons
but leaves the user to do the subtraction to find the effect of changing from
level 1 to level 2. The method extends naturally for factors with more than
three levels; for example, a four-level factor would need a triangular array
of 6 standard deviations for the six possible pairwise comparisons.
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22.6 Additive models

When comparing two groups, in the first section of this chapter, the two
parameters Ap and A; were replaced by Ag and § = \;/)g. This change
of parameters made it possible to estimate the rate ratio 8 along with its
standard deviation. The parameters could equally well have been changed
to Mg and § = A;— g, thus making it possible to estimate the rate difference
instead of the rate ratio.

The choice between the rate ratio and the rate difference is usually an
empirical one, depending on which of the two is more closely constant over
strata. In the early years of epidemiology, when age was often the only
;. explanatory variable apart from exposure, methods of analysis were all
based (implicitly) on multiplicative models. This is because most rates vary
so much with age that the rate ratio is almost always more closely constant
over age bands than the rate difference. More recently, particularly when
investigating the joint effects of several exposures, epidemiologists have
shown a greater interest in rate differences.

To impose the constraint that the rate difference is constant over age
strata, the regression model

Rate = Corner + Exposure + Age

is fitted. This is called an additive model for exposure and age. Note that
it is the rate and not the log rate which now appears on the left-hand
side. The same likelihood techniques are used as with the additive model
as with the multiplicative model, but because the estimated values of the
parameters in the additive model must be restricted so that they predict
positive rates, it is much harder to write foolproof programs to fit these
models. We shall return to additive models in Chapter 28.

22.7 Using computer programs

There is a certain amount of specialized terminology connected with com-
puter programs which we shall introduce briefly in this section.

VARIABLES AND RECORDS

The information collected in a study is best viewed as a rectangular table
in which the columns refer to the different kinds of information collected for
each subject, and the rows to the different subjects. In computer language
the columns are called variables and the rows are called records. Variables
such as age and observation time are called quantitative because they mea-
sure some quantity. Variables such as exposure group are called categorical
because they record the category into which a subject falls. The different
categories are called the levels of the variable. Another name for a categor-
ical variable is factor. Categorical variables with only two categories (or
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levels) are also known as binary variables.

DERIVED VARIABLES

The raw data which is collected in a study may not be in exactly the right
form for analysis. For example, in a follow-up study the observation time
will usually be recorded as date of entry to the study and date of exit. The
computer can be instructed to derive the observation time from these two
dates by subtraction. Another example is where the grouped values of a
quantitative variable are required in an analysis; it is then convenient to
derive a new categorical variable which records the group into which each
subject falls.

VARIABLE NAMES

In order to give instructions to a computer program each of the variables
needs a name. These can usually be at least eight characters long and it is
a good idea to make full use of this and to choose names which will mean
something to you (and someone else) in a year’s time.

SUMMARY TABLES

It is always important when using computer programs to keep in close touch
with the data you are analyzing. The simplest way of doing this is to start
by looking at tables which show the estimated rate or odds parameters for
different combinations of the values of the explanatory variables. When
there are two explanatory variables the table is called two-way, and so on.
Three-way tables are presented as a series of two-way tables. When an
explanatory variable is quantitative it will usually be necessary to group
the values of the variable before using it to define a table. Only after
inspecting various summary tables to get some feel for the main results
should you use regression models to explore the data more fully.

FREQUENCY OR INDIVIDUAL RECORDS

Computer programs are generally able to accept either individual records
or frequency records based on groups of subjects. For example, in the is-
chaemic heart disease.study, we could use the data records for each subject,
or frequency records showing the number of subjects in each combination of
age band and exposure group. Entering a frequency record for 25 subjects .
has exactly the same effect as entering 25 identical individual records.
When an explanatory variable is quantitative its values must be grouped
before frequency records can be formed, while the actual values can be used
with individual records. Frequency records can be stored more compactly
than individual records, and log likelihood calculations are correspondingly
faster, but using frequency records requires two computer programs — one
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to compute the frequency records and one to carry out the regression anal-
ysis — and communication between these programs may be inconvenient.
For case-control studies the number of subjects is usually relatively small
and the data are usually entered as individual records. For cohort studies
there may be tens of thousands of individual records, possibly further sub-
divided between time-bands, so the data are usually entered as frequency
records.

MISSING VALUES

Most studies contain records which have some missing values, and it is
. essential to have some way of indicating this to the computer program.
~ The most convenient code for a missing value is the character *, but when
a prograni insists on a numeric code it is best to choose some large number
like 9999. When there are many variables in a study the analyses are usually
on some subset of the variables, and the program will automatically include
those records with complete data on the subset being used.

Solutions to the exercises

22.1 Ao = 5.0 per 1000, § = 3.0, ¢! = 2.4, ¢? = 6.0.

22.2 Tt is not a new constraint. Table 22.1 shows that when the rate
ratio for exposure is constant over age bands then the rate ratios for age
will automatically be constant over exposure groups.

22.3 The predicted rates for the six combinations of age and exposure
are

Age Unexposed Exposed
40 — 49 4.44 10.61
50 — 59 5.06 12.10
60 — 69 8.88 21.22

22.4 The effect of age level 1 is exp(0.1290) = 1.14. The 90% confidence
interval for this effect is

X
1.14 + exp(1.645 x 0.4753)

which is from 0.52 to 2.49.
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Poisson and logistic regression

In principle the way a computer program goes about fitting a regression
model is simple. First the likelihood is specified in terms of the original
set of parameters. Then it is expressed in terms of the new parameters
using the regression equations, and finally most likely values of these new
parameters are found. In studies of event data the two most important
likelihoods are Poisson and Bernouilli, and the combinations of these with
regression models are called Poisson and logistic regression respectively.
Gaussian regression is the combination of the Gaussian likelihood with
regression models and will be discussed in Chapter 34.

23.1 Poisson regression

When a time scale, such as age, is divided into bands and included in
a regression model, the observation time for each subject must be split
between the bands as described in Chapter 6. This is illustrated in Fig. 23.1,
where a single observation time ending in failure (the top line) has been
split into three parts, the last of which ends in failure. These parts can then
be used to make up frequency records containing the number of failures and
the observation time, as was done for the ischaemic heart disease data in
Table 23.1, or they can be analysed as though they were individual records.

If they are to be analysed as though they were individual records then
each of these new records must contain variables which describe which time
band is being referred to, how much observation time is spent in the time
band, and whether or not a failure occurs in the time band. Values of

Table 23.1. The IHD data as frequency records

Cases Person-years Age Exposure

4 607.9 0 0
2 311.9 0 1
5 1272.1 1 0
12 878.1 1 1
8 888.9 2 0
14 667.5 2 1
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Fig. 23.1. Splitting the follow-up record.

other explanatory variables, such as exposure, must also be included. The
idea extends to more than one time scale — each record then refers to an
observation of a subject through one cell of a Lexis diagram — but the
number of new records can then be many times the number of subjects
and analysis becomes cumbersome.

To instruct a computer program to fit a Poisson regression model to the
frequency records in Table 23.1 it is first necessary to enter the names of the
variables which contain the observation time for the record, the number of
failures, the exposure level and the age band. When the Poisson regression
option is selected the program automatically assumes that the regression
model is of the form

log(Rate) = Corner + A + B + . . . |

where A, B, etc., are explanatory variables. It is therefore only necessary
to instruct the program that the rate for each record is to be calculated
from the person-years variable and the number of failures variable, and that
exposure and age are to be included in the model as explanatory variables.

The log likelihood for each combination of age band and exposure takes
the standard Poisson form. For example when age is at level 2 and exposure
is at level 1 the rate parameter is )\%. There are 14 failures and 667.5 person-
years so the log likelihood for A? is

141og(A2) — 667.5)3.
The total log likelihood (in terms of the original parameters) is equal to

the sum of the separate log likelihoods for the six cells of the table. This
total is expressed (by the.computer program) in terms of the four new pa-
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rameters Corner, Age(1), Age(2), and Exposure(1), using the information
provided by the regression model. As usual the most likely values of the
log parameters are found on the log scale and some programs leave the user
to convert these back to the original scale.

The same log likelihood is obtained from individual records as from fre-
quency records, provided the explanatory variables in the individual records
take discrete values in the same way as for the frequency records. For ex-
ample, the contribution to the log likelihood from a subject with exposure
at level 1, age band at level 2, and observation time ¥, is

where d takes the value 1 if the subject fails in this age band and 0 oth-
erwise. Adding this log likelihood over all subjects contributing to the
frequency record with exposure at level 1 and age at level 1 gives

14log(A2) — 667.5)2,

which is the same as the log likelihood for this frequency record.

A computer program for Poisson regression can also be used after the
confounding effect of age has been allowed for by indirect standardization,
that is by calculating the expected number of failures using standard refer-
ence rates. This is because the log likelihood for the parameter representing
the (common) ratio of age-specific rates in a study group to the age-specific
reference rates has the same algebraic form as the log likelihood for a rate
parameter; one is obtained from the other by exchanging the person-years
and the expected number of failures. With this exchange, the original
parameters are now rate ratios expressing age-controlled comparisons of
different sections of the study group to the reference rates. The regression
model relates these to a smaller number of parameters in the same way
as with rates. Note that the parameter estimates in such models are, in
effect, ratios of SMRs. For the reasons discussed in Chapter 15, they can
be misleading if an inappropriate set of reference rates is used.

23.2 Logistic regression

In logistic regression the original parameters are odds parameters and these
are expressed in terms of new parameters in the same way as for the rate
parameter. The most important application of logistic regression is to
case-control studies and we shall use the study of BCG and leprosy as an

.-.illustration.

For convenience the data from this study are repeated in Table 23.2,
which shows the numbers of cases and controls by age and BCG vaccination.
Taking a prospective view the response parameter is the odds of being a
case rather than a control, so a useful way of summarizing these data is to
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Table 23.2. Cases of leprosy and controls by age and BCG écar

Age Leprosy cases Healthy controls

Scar — Scar +  Scar - - Scar +
04 1 1 7593 11719
5-9 11 14 7143 10184
10-14 28 22 5611 7561
15-19 16 28 2208 8117
20-24 20 19 2438 5588
25-29 36 11 4356 1625
30-34 47 6 5245 1234

Table 23.3. Case/control ratio (x103) by age and BCG scar

BCG scar
Age Absent Present
0-4 0.13 0.08
5-9 1.54 1.37
10-14  4.99 2.91
15-19  7.25 3.45
20-24  8.20 3.40
25-29  8.26 6.77
30-34 896 4.86

show the estimated value of this parameter, which is the case/control ratio,
for different levels of age and BCG vaccination. This summary is given in
Table 23.3 and shows a consistently lower case/control ratio for those with
a BCG scar than for those without. It also shows that the case/control
ratio increases sharply with age in both groups.

Because there are many subjects in this study the data are entered to
the computer program as frequency records. Table 23.4 shows the data as
an array of frequency records ready for computer input. Programs often
require the data to be entered as the number of cases and the total number
of subjects for each record, rather than as the number of cases and the
number of controls. The change is easily made by deriving a new variable
equal to the variable for the number of cases plus the variable for the
number of controls.

The log likelihood contribution for a frequency record in which N sub-
jects split as D cases and H controls takes the Bernoulli form

Dlog(w) — Nlog(1 + w),

where w is the odds, given by the model, that a subject in that frequency
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Table 23.4. The BCG data as frequency records
- Cases Total Scar Age

1 7594 0 0
1. 11720 1 0
11 7154 0 1
14 10198 1 1
28 5639 0 2
22 7583 1 2
16 2224 0 3
28 8145 1 3
20 2458 0 4
19 5607 1 4
36 4392 0 5
11 1636 1 5
47 5292 0 6
6 1240 1 6

record is a case rather than a control. When fitting a regression model the
total log likelihood is expressed in terms of new parameters using the re-
gression equations and most likely values of the new parameters are found.
For individual records the log likelihood is

dlog(w) — log(1l + w),

where d = 1 for a case and d = 0 for a control. The sum of the log
likelihoods for all subjects contributing to a frequency record is equal to

Dlog(w) — Nlog(1 + w),

which is the same as the log likelihood for the frequency record.
The regression model

log (Odds) = dorner + Age + BCG,

expresses the constraint that the odds ratio for BCG vaccination is constant
over age groups. Apart from the corner, all the parameters in this model
are odds ratios. The BCG parameter compares the odds of being a case
for subjects who are BCG positive to the odds of being a case for subjects
who are BCG negative. The six age parameters compare the odds of being

“a case for subjects in the age groups 1-6 to the odds of being a case in age

group 0. The most likely values of these parameters (on a log scale) are
shown in Table 23.5. :

Exercise 23.1. What is the most likely value of the odds ratio for BCG vac-
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Table 23.5. Output from a logistic regression program

Parameter Estimate SD

Corner —8.880 0.7093
Age(1) 2.624  0.7340
Age(2) 3.583 0.7203
Age(3) 3.824 0.7228
Age(4) 3.900 0.7244
Age(5) 4.156 0.7224
Age(6) 4.158 0.7213
BCG(1) —0.547  0.1409

cination? Does this seem about right, from Table 23.3? Compare this estimate
with the Mantel-Haenszel estimate given in Chapter 18.

The parameters in the model
log (Odds) = Corner + Age + BCG,

apart from the corner, refer to changes in the log odds of being a case.
From Chapter 16 we know that the odds of being a case is proportional to
the odds of being a failure in the study base, provided the selection of cases
and controls is independent of both age and BCG status. More precisely,

™

Odds of being a case = K
1—-7

where

__ Probability that a failure is sampled as a case
" Probability that a survivor is sampled as a control’

On a log scale

log(Odds) = log(K) + log (%) ,

so a change in the log odds of being a case is equal to the corresponding
change in the log odds of failure in the study base. It follows that estimates
of the effects of age and BCG on the log odds of being a case also estimate
the effects of age and BCG on the log odds of failure in the study base.
This argument does not apply to the corner (which is not a change in log
odds) so unless K is known the corner parameter in the study base cannot
be estimated.
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Table 23.6. A simulated group-matched study

BCG scar
Cases Controls
Age ~Absent Present Absent Present
04 1 1 3 5
5-9 11 14 48 52
10-14 28 22 67 133
15-19 16 28 , 46 130
20-24 20 19 50 106
25—-29 36 11 126 62
30-34 47 6 174 38

When the disease is rare the probability of failure in the study base is
small and the odds of failure are related to the rate A by

where T is the duration of the study. Thus

log(Odds) = log(K) + log (1—:;)
~ log(K) + log(T) + log(A),

and the same argument shows that effects estimated from a logistic re-
gression model are also estimates of effects on the log rate in the study
base.

23.3 Matched case-control studies

In Chapter 18 we presented a simulated group-matched case-control study,
based on the BCG study, in which the age distribution of controls is made
equal to that of the cases by taking four times as many controls as cases
in each age stratum. The results from this study are shown again in Ta-
ble 23.6. : .

When estimating the effect of BCG the matching variable, age, cannot
be ignored, so the appropriate model to fit -is

log(Odds) = Corner + Age + BCG,

even though the effects of age in this model may be close to zero. The results

of fitting this model are shown in Table 23.7. As expected the estimate of
the BCG effect is virtually unchanged, although it has a slightly larger
standard deviation because it is based on a smaller number of controls.



234 POISSON AND LOGISTIC REGRESSION

Table 23.7. Regression output for the group-matched study

Parameter Estimate SD

Corner —1.0670 0.800
Age(1) —0.0421 0.827
Age(2) 0.0119 0.812
Age(3) 0.0713 0.814
Age(4) 0.0244 0.816
Age(5) —0.1628 0.814
Age(6) —0.2380 0.813
BCG(1) —0.5721 0.155

However, the age effects are very different from the previous output for
the whole data set in Table 23.5. They are now all close to zero but this
does not mean that age can be omitted from the model. To do so would
produce a biased estimate of the BCG effect. Variables which have been
used in the matching must be included in the model used to estimate the
effects of interest. The same point was made in Chapter 18 where matched
case-control studies were analysed by stratifying on the matching variable
and using the Mantel-Haenszel method to combine the separate estimates
of the effect of interest over strata.

Exercise 23.2. Explain the large differences in the age effects between the two
outputs. You may find it helps to make a summary table of case/control ratios
based on the data in Table 23.6.

Using a computer program for logistic regression is a convenient way of
analyzing group-matched case-control studies and gives correct estimates of
odds ratios, at least for variables not used in the matching, provided there
are not too many matching strata. However, in individually matched case-
control studies each new case introduces its own stratum and, therefore,
a new nuisance parameter. This turns out to be one of the situations in
which replacing the nuisance parameters by their most likely values and
using profile likelihood to estimate the parameters of interest gives the
wrong answer. For individually matched studies the likelihood argument of
Chapter 19 can be extended to cover regression models. This new method
is called conditional logistic regression analysis, and will be discussed in
Chapter 29.

23.4 Modelling risk and prevalence

The prospective approach to the regression analysis of case-control studies
regards the case/control status as the outcome variable. In Chapter 1 we
discussed other epidemiological studies in which the outcome of interest

———
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is binary. Most important are studies of risk(sometimes called cumulative
incidence studies) in which each subject is studied for a fixed period, the
outcome being failure or survival, and cross sectional prevalence studies in
which each subject’s present state is recorded as diseased or healthy.

In both these types of study the original parameters are probabilities.
For case-control studies, we choose to model odds rather than probabilities
because odds ratios are independent of the sampling fractions used and
have a ready interpretation as risk or rate ratios in the study base. For
risk and prevalence studies there is no such compelling reason to use the
odds, although it often proves useful to do so because the log odds is
unconstrained and models for the log odds are likely to describe the data
better than models for 7 or log(r).

An alternative to the log odds may be derived from the relationship
between 7, the probability of failure in a time interval of length T, and A,
the failure rate for this interval. This relationship is given by

Cumulative survival probability = exp(— Cumulative failure rate)

that is,

1 — 7 = exp(—AT),
50

log(l —m) = —AT
and

log(—log(l — 7)) = log(T) + log(A).

Thus models for log(— log(1 — 7)) may be interpreted as models for log()),
apart from the corner parameter, and parameters which are estimated from
such models may be interpreted as the logarithms of rate ratios. The func-
tion log(—log(1 — 7)) is called the complementary log-log transformation
of m and some programs allow regression models to be fitted on this scale.
Provided ~ is less than about 0.2 the complementary log-log function does
not differ appreciably from the log odds, so in this case regression models
for the log odds can also be interpreted as regression models for log(}).
For diseases in which mortality (and migration) of subjects is unaffected
by their contracting the disease, there is a similar relationship between
age-specific prevalence and the age-specific incidence rate. In this case,
parameters of complementary log-log models for prevalence are identical
to parameters of an underlying model for log incidence rates. However in
general such an assumption cannot be made and the relationship between

" effects on prevalence and effects on incidence is complicated.
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Solutions to the exercises

23.1 The most likely value of the log of the BCG parameter is —0.547.
This corresponds to an odds ratio of exp(—0.547) = 0.579. We therefore
. estimate that vaccination with BCG reduces the incidence rate of leprosy
in the base study to about 58% of what it would be without vaccination.
From Chapter 18 the Mantel-Haenszel estimate of the BCG parameter is
0.587. : :

23.2 The discrepancies between the two outputs is due to the age match-
ing of controls to cases in the second analysis. In the first analysis there is no
- such matching, and the age parameters refer to the underlying relationship
between age and leprosy incidence (incidence increases with age). Match-
ing controls to cases with respect to age has the effect that the sampling
probabilities for controls differ between age strata so that K, the constant
of proportionality between the odds of being a case and the odds of failure
in the study base, now varies between age bands. It follows that the age
parameters of the model now include the effect of variation in sampling
probabilities, and are not interpretable.

i

e
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Testing hypotheses

The scientific imagination knows no bounds in the creation of theories and
interesting models, but when should such elaboration end? The principle
which is invoked to deal with this problem is Occam’s razor. This principle
holds that we should always adopt the simplest explanation consistent with
the known facts. Only when the explanation becomes inconsistent are we
justified in greater elaboration. Occam’s razor has much in common with
statistical tests of null hypotheses. Statisticians erect null hypotheses and
seek positive evidence against them before accepting alternative explana-
tions. This philosophical position should not be taken to imply that the
absence of evidence against a null hypothesis establishes the null hypothesis
as being true.

24.1 Tests involving a single parameter

An explanatory variable with two levels requires only one parameter to
make a comparison between them. When the comparison is made using a
rate ratio (or an odds ratio) the null value is 1.0, or zero on the log scale.
The simplest way of testing for a zero null value is to use the Wald test,
based on the profile log likelihood for the parameter being tested. This

involves referring
M —0\?
5

to tables of the chi-squared distribution on one degree of freedom, where
M is the most likely value of the log of the parameter and S is its standard
deviation. These quantities are the ones listed in the computer output
under estimate and standard deviation.

Exercise 24.1. Table 24.1 repeats the results of the regression analysis of the
ischaemic heart disease data. Carry out the Wald test of the hypothesis of no
effect of exposure on IHD incidence.

- A log likelihood ratio test based on the profile likelihood for the exposur"é"

parameter can also be used to test the hypothesis in Exercise 24.1. The pro-
file log likelihood ratio for a zero exposure effect is the difference between
two log likelihoods: (a) the log likelihood when the exposure parameter is
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Table 24.1. Program output for the ischaemic heart disease dat.a

Parameter Estimate SD

Corner —5.4180 0.4420
Exposure(1) 0.8697 0.3080
Age(1) 0.1290 0.4753
Age(2) 0.6920 0.4614

zero and the age parameters take their most likely values given that there
is no exposure effect, and (b) the log likelihood evaluated when all parame-
ters take their most likely values. The former is obtained by fitting a model
which includes age but not exposure, and the latter is obtained by fitting
a model which includes both age and exposure. The difference between
these two log likelihoods gives the profile log likelihood ratio, and the test
is carried out by referring minus twice this value to the chi-squared distri-
bution with one degree of freedom. Some programs report the deviance,
a quantity closely related to the log likelihood which we shall discuss in a
later section of this chapter.

Exercise 24.2. The log likelihoods for the models

log(Rate) = Corner + Age + Exposure
log(Rate) = Corner+ Age

for the ischaemic heart disease data, are —247.027 and ~251.176. How can you
tell which likelihood was obtained for which model? Carry out the likelihood

ratio test for a zero exposure effect and compare it with the Wald test calculated
in the previous exercise.

The score test for a zero exposure effect is found from a quadratic
approximation which has the same gradient and curvature as the profile
log likelihood at the null value. Since the log likelihood ratio test is easy
to obtain using a computer program the score test is rarely carried out,
although some programs do offer this option.

24.2 Tests involving several parameters

When a variable has three levels two parameters are required to make
comparisons between the levels. A test that just one of these parameters
takes its null value is rarely of interest. The hypothesis that both take their
null values is usually more relevant, because this corresponds to the variable
having no effect on the response. We shall now consider the extension of
the likelihood ratio test to cover this situation. A convenient example is
provided by the problem of testing the effect of age in the analysis shown
in Table 24.1, although this is a hypothesis of no scientific interest!
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The same general principle as for one parameter is used: the log likeli-
hood for the model
Corner + Age + Exposure

which includes the two age parameters, is subtracted from the log likelihood
for the model .
Corner + Exposure,

in which the two age parameters are zero. This gives the log likelihood
ratio for testing the hypothesis that both age parameters take their null
values. Minus twice the log likelihood ratio is referred to the chi-squared
distribution with two degrees of freedom, because two parameters have
been set to their null values. In this case minus twice the log likelihood
ratio is equal to 4.016, and the p-value is 0.134, showing that there is no
significant effect of age on ischaemic heart disease in this study.

Exercise 24.3. Does the fact that there is no significant effect of age on incidence
in this study mean that there is no need to control for age when comparing
exposure groups? ’

There is some temptation to scan the output for the model which in-
cludes both age and exposure and to try to interpret the separate tests of
the two parameters for age, rather than making a joint test. Using the
Wald test with the results in Table 24.1 shows that the data support both
null values for age when tested separately, but it would be unwise to deduce
from this that there is no effect of age. This is because both age effects are
rather imprecisely estimated, due to the fact that only 6 heart attacks were
observed in the first age band. When the corner is located where there is
very little data it is common to see effects for both levels 1 and 2 which are
small compared to their standard deviations, yet a highly significant effect
from level 1 to level 2. The only safe way of testing the effect of age is
to make a test of the joint hypothesis that both age effects take their null
value. The Wald test can be generalized to do this (as can the score test),
but the easiest test to use is the log likelihood ratio test.

24.3 Testing for interaction

~ The regression model used in the test for an exposure effect imposes the

constraint that the effect of exposure is constant over age bands. Similarly
for the test for age effects. An important question to ask is whether it is
reasonable to impose these constraints, or whether the data better support

-.different exposure effects in each age band, and different age effects in each

exposure group. When the effects of exposure vary with age there is said
to be interaction between exposure and age. Interaction between exposure
and age automatically implies interaction between age and exposure and
vice versa.
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Table 24.2. Definition of interactions in terms of exposure

Exposure
0 1
0 5.0 15.0
Age 1 120 42.0
2 300 135.0
0 5.0 5.0 x 3.0
Age 1 120 12.0 x 3.5
2 300 30.0 x 4.5
0 5.0 5.0x 3.0
Age 1 120 12.0x3.0x1.167
2 300 30.0x3.0x1.5

To test for interaction it is necessary to choose new parameters in a
way that allows for separate effects of exposure in the different age bands.
This is done by choosing one parameter to measure the effect of exposure
in the first age band and two to measure the extent to which the effects of
exposure in the other two age bands differ from the effect in the first age
band. The way this is done is best illustrated using numerical values for
the parameters.

A set of illustrative values for the 6 rate parameters are shown at the
top of Table 24.2. The rate ratios for exposure by levels of age are 3.0, 3.5,
and 4.5, shown in the middle part of the table, so these rate parameters
do not obey a multiplicative model. The extent of the departure from the
multiplicative model can be measured by expressing 3.5 and 4.5 as ratios
relative to 3.0, as shown in the third part of the table. These ratios, which
take the values 1.167 and 1.5 in this case, are called interaction parameters.

Table 24.3 shows the same thing in terms of the rate ratios for age by
levels of exposure. These rate ratios are 2.4 and 6.0 when exposure is at
level 0 but 2.8 and 9.0 when exposure is at level 1. The extent to which these
differ, measured as ratios relative to the rate ratios at level 0 of exposure,
are again equal to 1.167 and 1.5. Thus the interaction parameters are
symmetric in exposure and age.

Tables 24.2 and 24.3 are combined in Table 24.4. Using the terminology
of regression models, the 6 original rate parameters are re-expressed in
terms of the corner, the rate ratio for exposure when age is at level 0,
the rate ratio for age when exposure is at level 0, and the two interaction
parameters. This way of re- expressing the original rate parameters has
not resulted in any reduction in the number of parameters; its sole purpose
is to assess the extent of the departures from the multiplicative model. We

-
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Table 24.3. Definition of interactions in terms of age

Exposure
0 1
_ 0 5.0 15.0
Age 1 12.0 42.0
2 30.0 135.0
0 5.0 15.0
Age 1 50x24 15.0 x 2.8
2 5.0x6.0 15.0 x 9.0
0 5.0 15.0
Age 1 50x24 150x24x1.167
2 5.0x6.0 15.0 x 6.0 x 1.5

Table 24.4. 'Deﬁnition of interactions in terms of exposure and age

Exposure
Age 0 1
0 5.0 5.0 x 3.0
1 50%x 24 5.0x3.0x24x1.167
2 50x60 50x30x6.0x1.5

shall write the model with interaction in one or other of the forms

Rate = Corner x Exposure x Age x Exposure-Age
log(Rate) = Corner + Exposure + Age + Exposure-Age.

To test for interaction it is necessary to fit the model with and without
interaction parameters and to measure the log likelihood ratio for these
two models. Minus twice this log likelihood ratio is then referred to ta-
bles of chi-squared on two degrees of freedom. The chi-squared has two
degrees of freedom because the hypothesis being tested is that two interac-
tion parameters take their null values. The instruction to include interac-
tion parameters is done by including the term Age-Exposure in the model
description. When this is done the output will include estimated values
for the interaction parameters, but these are rarely of much use because
they are chosen specifically to make the test for no interaction. If there

... is interaction then it will usually be best to report the effects of exposure

separately for each age band. If there is no interaction then the effects
of exposure and age should be obtained from the model without interac-
tion parameters. Further details on how to report interactions are given in
Chapter 26.
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Table 24.5. Estimates of parameters in the model with interaction

Parameter Estimate  SD

Corner —5.0237 0.500
Exposure(1) —0.0258 0.866
Age(1) —0.5153  0.671
Age(2) 0.3132 0.612

Age(1)-Exposure(1)  1.2720 1.020
Age(2)-Exposure(1) 0.8719 0.973

Table 24.5 shows the output for the ischaemic heart disease data when
fitting the model which includes the interaction between exposure and age.
The interaction parameters are given names like Age(1)-Exposure(1) and
Age(2)-Exposure(1). In general the number of interaction parameters be-
tween a variable on o levels and one on b levels is (a — 1)(b — 1).

Exercise 24.4. Verify from Table 24.5 that the estimated corner parameter in
the model with interaction is now the log of the observed rate for unexposed
subjects in age band 0, and the estimated Exposure(1) parameter is now the
observed rate ratio (exposed/unexposed) in age band 0. (The observed rates are
in Table 22.6.)

24.4 Deviance

The log likelihood for a regression model, evaluated at the most likely
values of the parameters, is a measure of goodness-of-fit of the model —
the greater the log likelihood, the better the fit. Since the absolute value
of the log likelihood is not itself of interest there is some advantage in
always reporting a log likelihood ratio, compared to some other model. A
convenient choice is the saturated which includes the maximum possible
number of parameters. The output would then include the log likelihood
ratio between the model being fitted and the saturated model. For use
with tables of chi-squared it is slightly more convenient to report minus
twice the log likelihood ratio, a quantity which is called the deviance for
the model being fitted. Each deviance has degrees of freedom equal to the
difference between the number of parameters in the model and the number
in the saturated model.

The deviance is a measure of badness of fit; the larger the deviance the
worse the fit. Two models are compared by comparing their deviances.
The change in deviance is minus twice the log likelihood ratio for the two
models because the log likelihood for the saturated model occurs in both
deviances and cancels (see Fig. 24.1.) The degrees of freedom for this test
are found by subtracting the degrees of freedom for the two deviances. For
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Log likelihood (x2)

Saturated model |

Deviance | Deviance
for A for B
Model A |_

Model B |-

Fig. 24.1. Relationship between deviance and log likelihood

example, when fitting the models

log(Rate) = Corner + Age + Exposure
log(Rate) = Corner + Exposure,

to the ischaemic heart disease data the corresponding values for the two
deviances were 1.673 and 5.689. The difference between these is 4.016 which
is the same as the result obtained earlier in the chapter for minus twice the
log likelihood ratio.

Exercise 24.5. How do you know which deviance was obtained for which model?
How many degrees of freedom do the two deviances have?

When the data are entered as frequency records the saturated model
has the same number of parameters as there are frequency records. In
the case of the ischaemic heart disease data there are six records so the
saturated model has 6 parameters. All models with six parameters are
saturated and have the same log likelihood. The model which includes the
interaction parameters between age and exposure has six parameters, and
is saturated, so it follows that the deviance for the model

log(Rate) = Corner + Age + Exposure

provides a test of no interaction between age and exposure. It may be
referred directly to a chi-squared distribution with two degrees of freedom.
When the data are entered as individual records the saturated model has

..the same number of parameters as the number of individual records and the

deviance measures minus twice the difference between the log likelihood for
the fitted model and this saturated model. This is not a test of anything
useful. There is no short cut for making a test of no interaction using -
individual records: it is necessary to obtain the deviances for the models
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Table 24.6. Cases (controls) for oral cancer study

Alcohol
Tobacco 0 1 2 3
0 10 (38) 7 (27) 4 (12) 5 (8)
1 11 (26) 16 (35) 18 (16) 21 (20)
2 13 (36) 50 (60) 60 (49) 125 (52)
3 9 (8) 16 (19) 27 -(14) 91 (27)

Table 24.7. Case/control ratios for the oral cancer data

Alcohol
Tobacco 0 1 2 3
0 0.26 0.26 0.33 0.63
1 0.42 046 1.13 1.05
2 0.36 0.83 1.22 2.40
3 1.12 0.84 1.93 3.37

with and without the interaction parameters.

24.5 Models with two exposures

Because regression models treat all explanatory variables in the same way,
models for studies with two exposures look very similar to models for stud-
ies with one exposure and one confounder. However, there are some differ-
ences in the way different hypotheses are interpreted.

Table 24.6 repeats the study of oral cancer introduced in Chapter 16,
in which the numbers of cases and controls are tabulated by two exposures,
alcohol consumption {on four levels) and tobacco consumption (also on four
levels). For alcohol the levels are 0, 0.1-0.3, 0.4-1.5, and 1.6+ ounces per
day (coded as 0, 1, 2, and 3). For tobacco the levels are 0, 1-19, 20-39, and
40+ cigarettes per day (also coded as 0, 1, 2, and 3). A summary table of
case/control ratios by alcohol and tobacco is shown in Table 24.7. Because
the frequencies in the table are small, there is a lot of random variation,
but there is an overall tendency for the ratios to increase both from left to
right along rows, and from top to bottom down columns. This indicates
that both variables have an effect on cancer incidence; there is an effect of
tobacco when alcohol intake is held constant, and vice versa.

An important question is whether the two exposures act independently
of one another. In other words, are the effects of tobacco the same at all
levels of alcohol, and are the effects of alcohol the same at all levels of
tobacco? This question is answered by testing for no interaction between
alcohol and tobacco, but it must be emphasized that the test depends on
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how the effect parameters are defined. When they are defined as ratios
the interaction parameters are also ratios and measure departures from a
model in which the two exposures combine multiplicatively. By choosing to
measure effects as ratios we have therefore chosen to interpret independent
action as meaning that the two exposures act multiplicatively. In Chap-
ter 28 we show how the effects can be defined as differences, in which case
the interaction parameters are also differences and measure departures from
a model in which the two exposures combine additively. In this case we
have chosen to interpret independent action as meaning the two exposures
act additively. .

If there is a significant interaction then it will be necessary to report
the effects of alcohol separately as odds ratios for each level of tobacco
consumption, and the effects of tobacco separately as odds ratios for each
level of alecohol. On the other hand, if there is no significant interaction
then the two exposures may be assumed to act independently and we can
estimate the effects of alcohol controlled for tobacco and the effects of
tobacco controlled for alcohol. Note that even when the two exposures
act independently it is still necessary to control each for the other. This
is because people’s drinking and smoking habits are not independent so
ignoring one when studying the other could lead to biased estimates.

The test for no interaction is carried out by comparing the fit of the
multiplicative model

log(Odds) = Corner + Alcohol + Tobacco,
with that of the model which includes the interaction parameters,
log(Odds) = Corner + Alcohol + Tobacco + Alcohol - Tobacco.

Since the second of these models is saturated the test can be based directly
on the-deviance for the multiplicative model. Provided the data support
the hypothesis of no interaction it is then possible to test for an effect of
alcohol, controlled for tobacco, by comparing the models

log(Odds) = Corner + Alcohol 4+ Tobacco
log(Odds) = Corner + Tobacco.

Similarly the test for an effect of tobacco is made by comparing the models

log(Odds) Corner + Alcohol + Tobacco
log(Odds) = Corner + Alcohol.

In each of these tests the smaller of the two models being compared is
obtained from the larger by setting some parameters to zero. The smaller
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1. Corner

2. Corner + Alcohol 3. Corner + Tobacco

4. Corner + Alcohol + Tobacco

5. Corner + Alcohol + Tobacco + Alcohol - Tobacco

Fig. 24.2. Nesting of models.

model is then said to be nested in the larger model. Comparisons between
models where neither is nested in the other are not allowed since they do not
correspond to a hypothesis in which some parameter values are set equal to
zero. Fig. 24.2 shows the five possible models which could be fitted to the
alcohol and tobacco data. The arrows indicate nesting so any two models
joined by an arrow correspond to a hypothesis which can be tested. For
example, a comparison of models 4 and 5 is a test of no interaction, and a
comparison of models 4 and 2 is a test of no effect of tobacco (controlling
for alcohol). In model 1 both alcohol and tobacco parameters are set to
zero so it is nested in all of the other models.

Exercise 24.6. For the models set out in Fig. 24.2, the deviances are (1) 132.561,
(2) 37.951, (3) 61.880, and (4) 6.689. What are the degrees of freedom associated
with each of these deviances? Carry out the four tests corresponding to the
arrows in the figure. What is the interpretation of these tests?

24.6 Goodness-of-fit tests

A que!stion which is often asked is whether a model provides an adequate
fit to the data. Because the absolute value of the log likelihood has no
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meaning this question can only be answered by comparing the model with
other more complicated models and asking whether the extra complication
is justified. The saturated model represents the most complicated model
which could be used and the deviance automatically provides a comparison
of the model currently being fitted with the saturated model. For this
reason the deviance for a model is often put forward as a test of goodness
of fit (really badness-of-fit) of the model. There are several cautions which
need to be borne in mind when interpreting the deviance in this way.

1. Comparisons with the saturated model are meaningless when the data
are entered as individual records.

2. Comparisons with the saturated model which are on many degrees of
freedom will lack power to discriminate; in this case it will be better
to make comparisons with models which are less complicated than
the saturated model.

3. The deviance is only approximately distributed as chi-squared and
this approximation gets worse as the degrees of freedom increase.

24.7 Collinearity

In a study in which tobacco and alcohol consumption were very highly
associated it would be very difficult to make an estimate of the effects
of alcohol controlled for tobacco (or of the effects of tobacco controlled
for alcohol). This is because controlling for tobacco involves fixing the
level of tobacco consumption and then estimating the effects of alcohol
from subjects whose tobacco consumption is at this level. If alcohol and
tobacco are highly associated then nearly all subjects at a fixed tobacco
level will have the same level of alcohol consumption and it will therefore
be difficult to estimate the effects of alcohol. In extreme cases fixing the
level of tobacco might fix the level of alcohol completely, in which case it
would be impossible to estimate the effects of alcohol. In such a case the
two variables are said to be collinear. This situation is not uncommon,
particularly when working with derived variables.

Solutions to the exercises

24.1 In the Wald test (0.8697/0.3080)2 = 7.97 is referred to the chi-
squared distribution with one degree of freedom, giving a p-value of 0.005.

24.2 The larger likelihood, —247.027, corresponds to the first model be-
cause this has more parameters than the second. The log likelihood ratio
for the two models is —251.176 — (—247.027) = —4.149. Minus twice this
is 8.298 which is quite close to the Wald chi-squared value obtained in the
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previous exercise. Referring 8.30 to the chi-squared distribution with one
degree of freedom gives p = 0.004.

24.3 No. When taking account of confounding variables it is best to
play safe and to control for them regardless of whether their effects are
significant or not. Very little is lost by doing this.

24.4 The Corner, Exposure(l), Age(1) and Age(2) parameters are

log(6.580/1000) = —5.0237
log(6.412/6.580) = —0.0258
log(3.931/6.580) = —0.5153
log(9.00/6.58) =  0.3132.

24.5 The smaller deviance corresponds to the larger model since this will
be a better fit. The degrees of freedom are 2 and 4 respectively.

24.6 The number of parameters in models 1 to 5 are 1, 4, 4, 7, and
16, respectively. The number of parameters in the saturated model is 16,
so the degrees of freedom for the deviances are 16 — 1 = 15, 16 — 4 = 12,
16—4 = 12,16—7 =9, and 16 —16 = 0 respectively. Note that model 5 has
16 parameters so it is saturated. The table below shows the comparisons
of models in terms of the change in deviance.

Comparison Change in deviance Change in df
(1) vs (2) 132.56 — 37.95 = 94.61 15-12=3
(1) vs (3) 132.56 — 61.88 =70.68 15—-12=3

(2) vs (4) 3795 -6.69=131.26 12-9=3
(3) vs (4) 61.88—6.69=5519 12—-9=3
(4) vs (5) 6.69 —0= 6.69 9-0=09

The last, of these comparisons shows that there is no significant interaction.
This means that the next two comparisons (working up from the bottom)
make sense. The change in deviance from model 3 to model 4 shows that
there is a significant effect of alcohol after controlling for tobacco; similarly
the change in deviance from model 2 to model 4 shows that there is a
significant effect of tobacco after controlling for alcohol. All of the models
can be compared with model 1, but these comparisons have little interest.
For example, a comparison of model 1 with model 2 is a test of the alcohol
effects (ignoring tobacco) while a comparison of model 1 with model 4 is
a joint test of the alcohol effects (controlling for tobacco) and the tobacco
effects (controlling for alcohol).
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Models for dose-response

When the subjects in a study receive different levels of exposure, measured
on a quantitative or ordered scale, it is likely that any effect of exposure
will increase (or decrease) systematically with the level of exposure. This
is known as a dose-response relationship, or trend. The existence of such a
relationship provides more convincing evidence of a causal effect of exposure
than a simple comparison of exposed with unexposed subjects. Some simple
procedures for testing for trend were introduced in Chapter 20. These
tests are based on a log-linear dose-response relationship, that is, a linear
relationship between the log rate parameter (or log odds parameter) and
the level of exposure. We now return to this topic and show how such
dose-response relationships are easily described as regression models.

25.1 Estimating the dose-response relationship

To illustrate the use of regression models when exposure is measured on a
quantitative scale we shall use the case-control study of alcohol and tobacco
in oral cancer in which there are two exposure variables, both with four
levels. The model

log(Odds) = Corner + Alcohol 4+ Tobacco,

in which alcohol and tobacco are categorical variables each with four levels,
makes no assumption about dose-response; there are three alcohol parame-
ters and three tobacco parameters. The estimated values of these parame-
ters are shown in Table 25.1. If we were able to assume simple dose-response
relationships for these two exposures, we could concentrate the available
information into fewer parameters and, as a result, gain power.

To study the dose-response for tobacco consumption it helps to change
from the parameters Tobacco(1l), Tobacco(2), and Tobacco(3), which are
chosen to compare each level of exposure with level 0, to

Tobacco(1) , Tobacco(2)—Tobacco(l) , Tobacco(3)—Tobacco(2) ,
which are chosen to compare each level with the one before.

Exercise 25.1. Use the results of Table 25.1 to write down the estimated values
of these new parameters. Repeat the exercise for alcohol.
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Table 25.1. Alcohol and tobacco treated as categorical variables

Parameter Estimate SD
Corner —1.6090 0.2654

Alcohol(1) 0.2897 0.2327
Alcohol(2) 0.8437 0.2383
Alcohol(3) 1.3780 0.2256

Tobacco(1) 0.5887 0.2844
Tobacco(2) 1.0260 0.2544
Tobacco(3) 1.4090 0.2823

Table 25.2. The linear effect of tobacco consumption
Alcohol Tobacco log(Odds) = Corner + - - -

1x[Tobacco]

2x[Tobacco]

3x[Tobacco]

Alcohol(1)

Alcohol(1) + 1x[Tobacco]
Alcohol(1) + 2x[Tobacco]
Alcohol(1) + 3x[Tobacco]
Alcohol(2)

Alcohol(2) + 1x[Tobacco]
Alcohol(2) + 2x[Tobacco]
Alcohol(2) + 3x[Tobacco]
Alcohol(3)

Alcohol(3) + 1x[Tobacco]
Alcohol(3) + 2x[Tobacco)
Alcohol(3) + 3x[Tobacco]
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. The simplest possible dose-response model would assume that each step
in toba_.cco consumption, from one level to the next, produces the same
change in the log odds. This model requires only one parameter for tobacco
p.amely the common change in log odds per change in level. This p:«.tr:«.mme’cexi
is called the linear effect of tobacco and we shall write it as{Tobacco], where
the brackets are used to distinguish the linear effect parameter fr(7)m the
separate effect parameters for each level. The model is written in full in
Table 25.2.

. The data from this study are in the form of frequency records contain-
ing the number of cases, the total number of cases and controls, alcohol
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Table 25.3. Linear effect of tobacco per level

Parameter Estimate SD
Corner —1.5250 0.219

Alcohol(1) = 0.3020 0.232
Alcohol(2)  0.8579 0.237
Alcohol(3)  1.3880 0.225

[Tobacco] = 0.4541 0.083

consumption coded as 0, 1, 2, 3, and tobacco consumption coded as 0, 1,
2, 3. We shall write the model of Table 25.2 in the abbreviated form:

log(Odds) = Corner + Alcohol + [Tobaccol.

The regression prograin output for this model is illustrated in Table 25.3.

Exercise 25.2. How would you report the meaning of the number 0.4541 in
Table 25.3?

A more accurate scale for tobacco consumption would be to use the mid-
points of the ranges of tobacco use at each level, namely 0, 10, 30, and (say)
50 cigarettes per day. If the tobacco variable were coded in this way then
the parameter [Tobacco] would refer to the linear effect per extra cigarette
rather than per change of level. If the data were entered as individual
records then the individual values for consumption could be used. In view
of the uncertainties in measuring tobacco use there is something to be said
for sticking to the scale 0, 1, 2, 3.

The reparametrization of the alcohol effects carried out in Exercise 25.1
also suggests a constant effect with increasing level of alcohol consumption.
This allows the model to be further simplified to

log(Odds) = Corner + [Alcohol] + [Tobacco],

where the parameter [Alcohol] is the common effect of an increase of one
level in alcohol consumption. The regression output for this model is shown
in Table 25.4.

Exercise 25.3. Use the output in Table 25.4 to work out what the model predicts
for the combined effect of level 3 for tobacco and level 3 for alcohol compared to
level 0 for both. Use the output in Table 25.1 to work out the same prediction
when tobacco and alcohol are both treated as categorical.

For comparison we also show, in Table 25.5, the regression output for
the model where alcohol consumption is measured in approximate mean
ounces of alcohol per day for each category (0.0, 0.2, 1.0 and 2.0), and
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Table 25.4. Linear effects of alcohol and tobacco per level

Parameter Estimate SD
Corner —1.6290 0.1860

[Alcohol] 0.4901 0.0676
[Tobacco] 0.4517 0.0833

Table 25.5. Alcohol in ounces/day and tobacco in cigarettes/day

Parameter Estimate SD

Corner —1.2657 0.1539
[Aleohol) 0.6484  0.0881
[Tobacco] 0.0253  0.0046

tobacco consumption is measured in approximate cigarettes per day for
each category (0, 10, 30, or 50). The [Alcohol] and [Tobacco] parameters
now look quite different from those in Table 25.4, but this is because they
are measured per ounce of alcohol and per cigarette respectively.

TESTING FOR TREND
Comparison of log likelihoods for the models

log(Odds) = Corner + Alcohol + [Tobacco]
and
log(Odds) = Corner + Alcohol

yields a one degree of freedom test for the effect of tobacco controlled for
the effect of alcohol. The Mantel extension test described in Chapter 20 is
the corresponding score test, which tests the hypothesis that the [Tobacco]
parameter takes the value zero.

TESTING FOR DEPARTURE FROM LINEARITY
To test for departures from linearity in the dose-response for tobacco, the
models

log(Odds) = Corner + Alcohol + Tobacco
log(Odds) = Corner + Alcohol + [Tobaccol,

can be compared. In the first model Tobacco refers to the three effects
of a categorical variable with 4 levels, while in the second [Tobacco] refers
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Table 25.6. A quadratic dose-response relationship for tobacco

z (2)? log(Odds) = Corner + ---
0 0o -

1 1  1x|Tobacco] + 1x[Tobsq]
2 4  2x[Tobacco] + 4x[Tobsq]
3 9  3x[Tobacco] + 9x[Tobsq]

Table 25.7. Predictions from a quadratic relationship

Effect Predicted from model
Tobacco(1) [Tobacco] + 1x[Tobsq]
Tobacco(2) — Tobacco(1) [Tobacco] + 3x[Tobsq]
Tobacco(3) — Tobacco(2) [Tobacco] + 5x[Tobsq]

to the effect of a change of one level in tobacco consumption. The second
model is a special case of the first, so they can be compared using a log
likelihood ratio test.

Exercise 25.4. (a) How many parameters are there in the two models? (b)
Reparametrize the models so that the second model is a special case of the first,
with two parameters set to zero. (c) How would you interpret a significant dif-
ference between the fit of these two models?

n

25.2 Quadratic dose-response relationships

The simplest departure from a log-linear dose relationship is a log-quadratic
relationship. To fit this model it is necessary to create a new dose variable
which takes the values 0, 1, 4, 9, that is the squares of the values used to
code tobacco consumption. We shall call this new variable ‘tobsq’. The
model is then fitted by including both tobacco and tobsq and declaring
them as quantitative variables. The regression equations for this model
are given in Table 25.6 and these show that when [Tobsq] is zero the dose-
response is log-linear. Table 25.7 shows the tobacco effects for each level
relative to the previous one, predicted from the quadratic model, and these
show that the parameter [Tobsg] measures the degree to which the dose-
response relationship departs from linearity.

The log-quadratic model also provides another way of testing for de-
partures from a log-linear dose-response relationship, by comparing the
models

log(Odds) - = Corner + Alcohol + [Tobacco]
log(Odds) = Corner + Alcohol + [Tobacco| + [Tobsq].
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The comparison of these two models provides a test (on one degree of
freedom) which will be sensitive to a departure from linearity in which the
effect of tobacco increases with level ([Tobsq]> 0), or decreases with level
([Tobsq]< 0).

25.3 How many categories?

When collecting data, exposure is often measured as accurately as possible
for individuals and only later are the observed values grouped into a rel-
atively small number of categories. For example, the number of previous
births would be recorded exactly, but might then be grouped as
0, 1-3, 4-6, 7-9, 10+ .

When the variable is to be treated as categorical it is best to keep the
number of categories small; three may be enough, and five is usually a
maximum number. For exploratory analyses the use of just two categories
has the advantage that there is only one effect to interpret, and it can often
be easier to see what is going on.

The number of subjects in each category should be roughly the same,
and to achieve this tertiles, quartiles or quintiles of the distribution of
exposure are often used. Tertiles define three equal-sized groups, quartiles
define four equal-sized groups, and quintiles define five such groups. This
is quite a sensible way of choosing the grouping intervals provided the
actual intervals are reported. A serious disadvantage is that such grouping
intervals will vary from study to study, thus making it harder to compare
findings.

When the variable is to be treated as quantitative there is no penalty
in taking a larger number of categories. In the extreme case the original
values are used. However, it is best to avoid the situation where one or two
of the subjects have much higher values than all the rest. This can occur
with an exposure like the number of previous sexual partners, which might
lie between 0 and 10 for most subjects but reach numbers in excess of 100
for a few. In such a case the few subjects with high values can dominate
the fit of a model, and it will be best to group the values so that all the
high ones fall into a group such as 15 or more.

25.4 Indicator variables

In order to fit a model to data the computer program must use the abbre-
viated description of the model to form the regression equations. These
express the log rate (or log odds) parameter for each record as a linear
combination of new parameters. For example, when the variable alcohol
is entered in a model as categorical with levels coded 0, 1, 2, and 3, the
regression equations include the parameter Alcohol(1) for records in which
alcohol is at level 1, the parameter Alcohol(2) for records in which alcohol
is at level 2, and the parameter Alcohol(3) for records in which alcohol is
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Table 25.8. Indicator variables for the three alcohol parameters

A; Ay Az "Level log(Odds) = Corner + ---
0 0 0 0 -
1
0
0

0 o0 1 Alcohol(1)
1 0 2 Alcohol(2)
0 .1 3 Alcohol(3)

~

at level 3. The way the program does this is to create an indicator variable
for each parameter. These variables are coded 1 for records which include
the parameter and 0 otherwise. The indicator variables A;, Az, Az for the
three alcohol parameters are shown in Table 25.8 alongside the levels of al-
cohol. Note that A;j, which indicates when Alcohol(1) should be included,
takes the value 1 when alcohol is at level 1, and so on.

Exercise 25.5. Repeat Table 25.8 to show indicator variables for the case where
both alcohol and tobacco have four levels.

A variable which is treated as quantitative acts as its own indicator
since the way the variable is coded indicates what multiple of the linear
effect parameter is to be included in the regression equations. For example,
when tobacco is included as a quantitative variable, coded 0, 1, 2, and 3,
the equations include the parameter [Tobacco] when tobacco is at level 1,
twice the parameter [Tobacco] when tobacco is at level 2, and three times
the parameter [Tobacco] when tobacco is at level 3. The coding of the
tobacco variable thus indicates which multiple of the parameter is to be
included in the model.

INTERACTION PARAMETERS

‘When interaction terms are included in the model, indicator variables are
again used to form the regression equations. For simplicity we shall consider
the situation where tobacco has only two levels, 0 for non-smokers and 1 for
smokers. The model in which both alcohol and tobacco are categorical, and
which contains interaction terms, is shown in full in Table 25.9. Indicator
variables A;, A2, As have been used for alcohol, and the indicator variable
T has been used for tobacco. Note that when tobacco has only two levels,
coded 0 and 1, it serves as its own indicator variable.

The indicator variable for Alcohol(1)-Tobacco(1) takes the value 1 when
both alcohol and tobacco are at level 1, and 0 otherwise. The indicator vari-
able for Alcohol(2)-Tobacco(1) takes the value 1 when alcohol is at level 2
and exposure is at level 1, and 0 otherwise, and so on. The most convenient
way of generating these interaction indicator variables is by multiplying to-
gether pairs of the original indicator variables for alcohol and tobacco. This
is shown in Table 25.10: the indicator for Alcohol(1)-Tobacco(1) is found
from the product of Ay and T'; the indicator for Alcohol(2)-Tobacco(l) is
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Table 25.9. The model with interaction between alcohol and tobacco
Alc.  Tob. log(Odds) = Corner + - -

0 0

0 1 Tobacco(l)

1 0  Alcohol(1)

1 1 Alcohol(1) + Tobacco(1) + Alcohol(1)-Tobacco(1)
2 0  Alcohol(2) :

2 1 Alcohol(2) + Tobacco(1) + Alcohol(2)-Tobacco(1)
3 0 Alcohol(3)

3 1 Aleohol(3) + Tobacco(1) + Alcohol(3)-Tobacco(1)

Table 25.10. Indicator variables for interaction parameters

Al Ay A3 T A -T A, T A;-T
0 0 0 o 0 0 0
0 0 0 1 0 0 0
1 0 0 o 0 0 0
1 0 0 1 1 0 0
0 1 0 o 0 0 0
0 1 -0 1 0 1 0
0 0 1 0 0 0 0
0 0 1 1 0 0 1

made up from product of A; and T, and so on. When the categorical
variables are on a and b levels respectively there are (a — 1)(b — 1) new
indicators for the interaction parameters. )

In the first regression programs it was left to the user to create indicator
variables for all parameters other than those referring to quantitative vari-
ables. Although it is rarely necessary to do this today, indicator variables
are still important when we wish to use a non-standard parametrization of
a regression model.

25.5 The zero level of exposure

The level of exposure which is coded zero is often qualitatively different
from the other levels. For example, zero previous births represents a very
different biological experience from any other point on this scale. In such
cases it may be better to omit the zero level when estimating the dose-
response relationship, by allowing the response of at zero dose to differ
from the general relationship (see Fig. 25.1). A parameter for each of these
comparisons can be included in a model by using the indicator variable for
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log(Rate)

T T

0 1 2 3

Dose, =

Fig. 25.1. Separating zero exposure from the dose-response.

Table 25.11. Separating zero exposure from the dose-response

Tobacco Non-smoker log(Odds) = Corner + - - -

0 1 [Non-smoker]|
1 0 1x[Tobacco]
2 0 2x[Tobacco]
3 0 3x{Tobacco]

non-smokers to fit the model
log(Odds) = Corner + [Non-smoker| + [Tobacco.

The regression equations for all four dose levels are shown in Table 25.11.
The parameter [Non-smoker| measures the discrepancy between the log
odds for non-smokers and that predicted by extrapolation of the dose-
response line to zero dose.

25.6 Using indicators to reparametrize the model

Indicator variables provide a convenient way of changing from one set of
parameters to another. We shall give one example, namely changing from
parameters which compare each level with level 0, to parameters which
compare each level with the one before. Using tobacco as an example, the
first set of parameters are Tobacco(1), Tobacco(2), and Tobacco(3). We
shall call the new parameters Tobdiff(1), Tobdiff(2), and Tobdiff(3). The
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Table 25.12. Indicators to compare each level with the one before

Tobacco D; D; D,
0 0 0 0

1 1 0 0
2 1 1 0
3 1 1 1

relationship between the new parameters and the old is

Tobdiff(1) = Tobacco(1)
Tobdiff(2) = Tobacco(2) — Tobacco(l)
Tobdiff(3) = Tobacco(3) — Tobacco(2).

This relationship may be inverted to give the old in terms of the new as

Tobacco(l) = Tobdiff(1)
Tobacco(2) = Tobdiff(1) + Tobdiff(2)
Tobacco(3) = Tobdiff(1) + Tobdiff(2) + Tobdiff(3)

Let the indicator variables for Tobdiff(1), Tobdiff(2), Tobdiff(3), be denoted
by D1, Dy, Ds. The first of these should indicate Tobdiff(1) when tobacco
is at level 1, 2, or 3; the second should indicate Tobdiff(2) when tobacco is
at level 2 or 3; and the third should indicate Tobdiff(3) when tobacco is at
level 3. Their values are shown in Table 25.12.

Solutions to the exercises

25.1 The estimates of the new parameters will be

Tobacco(1) 0.5887
Tobacco(2)—Tobacco(1)  0.4373
Tobacco(3)—Tobacco(2) 0.3830

and

Alcohol(1) 0.2897
Alcohol(2)—Alcohol(1)  0.5540
Alcohol(3)—Alcohol(2) 0.5343

25.2 The parameter represents the change in log odds for each increase
in level of tobacco consumption.
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25.3 The combined effect on the log odds is
+(3 x 0.4901) + (3 x 0.4517) = 2.8254.

This corresponds to a multiplicative effect of x16.87 on the odds. When
alcohol and tobacco are both treated as categorical the combined effect on
the log odds is ’

+1.3780 + 1.4090 = 2.7870

which corresponds to a multiplicative effect of x16.23 on the odds.
25.4 (a) The first model has 7 parameters, the second has 5. (b) Starting

with Tobacco(1), Tobacco(2), and Tobacco(3), change to the parameters
New(1), New(2), and New(3), where

New(l) = Tobacco(1)
New(2) = {Tobacco(2) — Tobacco(1)} — Tobacco(1)
New(3) = {Tobacco(3) — Tobacco(2)} — Tobacco(l).

Then New(1) measures the effect of changing level from 0 to 1; New(2)
measures the difference between this and the effect of changing level from
1 to 2; New(3) measures the difference between this and changing level
from 2 to 3. The model with all three parameters allows separate effects
of changing level while the model with New(2) and New(3) equal to zero
imposes the constraint that there is a common effect of changing level.

{c) When the first model is a significantly better fit than the second model
it means that there is a significant departure from linearity in the dose-
response.
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25.5 Let Aj, Az, As, T1,T%2,T5 be the indicator variables for alcohol and
tobacco. The table below shows how these variables are coded and the
regression model which is fitted when all the indicators are included.

Ay Ay A3 T log(Odds) = Corner + - --

Tobacco(1)
Tobacco(2)
Tobacco(3)
Alcohol(1)
Alcohol(1) + Tobacco(1)
Alcohol(1) + Tobacco(2)
Alcohol(1) + Tobacco(3)
Alcohol(2)
Alcohol(2) + Tobacco(1)
Alcohol(2) + Tobacco(2)
Alcohol(2) + Tobacco(3)
(
(
(
(

Alcohol(3)

Alcohol(3) + Tobacco(1)
Alcohol(3) + Tobacco(2)
Alcohol(3) + Tobacco(3)
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26
More about interaction

In this chapter we draw together some of the ideas of the previous chapters,
particularly those relating to interdction, and consider studies with several
explanatory variables. The first stage in the analysis of such studies is to
classify the explanatory variables into those whose effects are of interest
(the exposures), and those whose effects are of no interest, but which must
be included in the model (the confounders). In order to illustrate the prob-
lems which arise with several confounders we introduce a new example in
Table 26.1* This shows the proportion of subjects with monoclonal gamma-
pathy by age, sex, and work. Work can be agricultural or non-agricultural
and is the exposure of interest. Age and sex are confounders.

26.1 Interaction between confounders

To control for the confounding effect of both age and sex using stratification
it would be necessary to form 5 x 2 = 10 age— sex strata. The separate
estimates of the effect of work for each stratum would then be pooled over
strata using the Mantel-Haenszel method. The same thing can be done by
fitting the model

log(Odds) = Corner + Age + Sex + Age - Sex + Work,

which includes age—sex interaction parameters. The total number of param-
eters for the corner, age, sex, and the age—sex interaction is 1+4+1+4 = 10,
which is the same as the number of the age—sex strata. Fitting the model
with interaction does the same job as age—sex stratification, which has one
parameter for each of the 10 strata.t

It is also possible to control for age and sex by omitting the interaction
term and fitting the model

log(Odds) = Corner + Age + Sex + Work.

*From Healy, M. (1988) GLIM. An Introduction, Oxford Science Publications.
TThe abbreviation AgexSex is sometimes used for the group of terms

Age + Sex + Age - Sex
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Table 26.1. Prevalence of monoclonal gammapathy

Agricultural (0) Non-agricultural (1)
Age Male (0) Female (1) Male (0) Female (1)

<40 (0) 1/1590 1/1926  2/1527  0/712
40-49 (1) 12/2345  7/2677  3/854  0/401
50-59 (2) 24/2787 15/2902  5/675  4/312
60-69 (3) 53/2489 38/3145  3/184  1/80
70+ (4) 95/2381 63/2918  2/75 0/20

¢ The estirnated effect of work is —0.134 with standard deviation 0.244 in
the model with interaction and —0.136 with standard deviation 0.243 in
the model without. In this case, therefore, omitting the interaction term
makes almost no difference.

Exercise 26.1. How should the effect of work be interpreted in terms of disease
prevalence?

When using stratification or logistic regression to control for confounders.

it is best to keep the number of parameters in the model as low as possible.
This is because both techniques are based on profile likelihood which can
be unreliable when there are too many parameters to eliminate. Including
interactions can require a lot of extra parameters, possibly too many to
deal with by using profile likelihood. For example, if one confounder has
45 levels and another has 6 levels, then the model with interaction requires
5 X 44 = 220 extra parameters. Even when none of the confounders has a
large number of levels it will still take many extra parameters to include in-
teractions when there are a lot of them. For example, 10 confounders each
with 3 levels require 180 extra parameters to include interactions between
all possible pairs. In the monoclonal gammapathy example the model with
interaction has 11 parameters while the model without interaction has only
7. By fitting a model without interaction we have reduced the number of
parameters from 11 to 7. This is not a great saving and little is lost in this
case by playing safe and fitting a model with the interaction.

It is possible, of course, to test for interaction between any pair of
confounders. For the monoclonal example the deviance for the model with
age-sex imteraction is 6.771 on 9 degrees of freedom, and the deviance
for the model without interaction is 7.649 on 13 degrees of freedom. The
difference between these two deviances is only 7.649 — 6.771 = 0.878, on
4 degrees of freedom, so the interaction is not significant. Unfortunately
such a test has only sufficient power to be useful when based on a few
degrees of freedom, and these are just the situations where nothing much
is gained by omitting interactions. Thus the decision about whether or
not to include interactions must usually be taken on other grounds. As
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a general rule, interactions between a confounder with many levels, and
any other confounder, are omitted. For confounders with fewer levels it is
only necessary to consider interaction between those pairs in which both
are known to be very strongly related to the outcome. It is then probably
best to include the interaction term for such pairs as a matter of course.
Age and sex often form such a pair, and are usually controlled for by using
a model which includes the age—sex interaction.

It can happen that a confounding variable has too many levels to be
included into a logistic regression model, even before considering interac-
tions. This occurs with matched case-control studies in which controls are
individually matched to each case. Each case-control set then corresponds
to a level of the categorical variable which defines the sets. The effects
of this variable are of no interest but they must be included in the model
when estimating the effects of other more interesting variables. The way
out of this dilemma is to use conditional logistic regression (see Chapter 29)
which uses a conditional likelihood in place of the profile likelihood.

26.2 Interaction between exposure and confounders

When controlling the effect of an exposure for the confounding effects of
other variables there is a basic assumption that there is no interaction
between exposure and the confounding variables. This assumption can be
tested by comparing the model without interaction with a model containing
the appropriate interaction term. :

For example, when using the model

log(Odds) = Corner + Age + Sex 4+ Work

to control the effect of work for age and sex, there is an assumption of no
interaction between work and age and no interaction between work and
sex. To test the work and age interaction we compare the model without
interactions with the model

log(Odds) = Corner + Age + Sex + Work + Work - Age.

To test the work and sex interaction we compare the model without inter-
actions with

log(Odds) = Corner + Age + Sex + Work + Work - Sex.

Exercise 26.2. Use the deviances in Table 26.2 to test for interaction between
work and the other two variables.
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Table 26.2. Testing for interaction

Model Deviance
Corner + Age + Sex + Work 7.65
Corner + Age + Sex + Work + Work-Age 5.81
Corner + Age + Sex + Work + Work-Sex 7.24
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Fig. 26.1. Log prevalence odds by age

26.3 Confounders measured on a quantitative scale

The variable age in Table 26.1 is measured on a quantitative scale (years)
which has been divided into five groups. When controlling for age we have
the choice between treating it as categorical with five levels, treating it as
quantitative with values equal to the mid- points of the five age groups,
or treating it as quantitative with values on the original scale. The last
of these alternatives is only possible when the data are in the form of
individual records.

Fig. 26.1 shows a plot of the log of the prevalence odds against the mid-
points of the age bands (35, 45, 55, 65, and 75 years) for male agricultural
workers. The plot shows that the log odds increases approximately linearly
with age. Plots for the other three groups in the study also show a roughly
log-linear relationship with age.

Exercise 26.3. From Fig. 26.1 make a rough estimate by eye of the gfa.dient of
the line relating log odds to age. Express your answer per 10 years of age.

The model which assumes a log-linear relationship between odds and
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Table 26.3. A quadratic relationship with age

Parameter Estimate SD

Corner —6.682 0.344
Work(1) —0.148 0.243
[Age] 1.204 0.264
[Agesq] —0.084 0.049
Sex(1) -0.583 0.115

age for each work-sex combination has fewer parameters than the model
which ignores the quantitative nature of the age scale, and this suggests
that there may be some advantage in treating age as quantitative with
values equal to mid-points of the five age groups. Making this modification
to the model with age, sex, and work, we obtain

log(Odds) = Corner + [Age] + Sex + Work,

where [Age] refers to the effect for a change in age of one year. There are
now only 4 parameters in this model and the work effect is —0.186 com-
pared to —0.134 using the model in which age was treated as a categorical
variable. This difference is large in comparison with the size of the effect,
even though in neither analysis does the effect achieve statistical signifi-
cance. The reason for the difference is that the relationship with age is not
entirely linear.

We can test for linearity using a log-quadratic model for the relationship
between log odds and age. The parameters in this model are estimated by
fitting the model

log(Odds) = Corner + [Age] + [Agesq] + Sex + Work,

where the variable agesq takes as values the squares of the values of age.
The results are shown in Table 26.3. When both [Age] and [Agesq] are
included the deviance is 8.93 on 15 degrees of freedom — 3.13 less than
when only [Age] is included. Referring this difference to the chi-squared
distribution on 1 degree of freedom shows it to be significant at the 0.10
level. This would not normally be considered very convincing evidence of
departure from linearity, but note that the estimate of the work effect is
now in rather better agreement with earlier values.

The important lesson to be learned from this example is that the effect
of a strong confounder such as age must be properly modelled, and that
the yardstick of statistical significance may not be adequate for deciding
upon the appropriate level of complexity. When the data are grouped in
frequency records it is best to treat the variable as categorical; when using
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Table 26.4. Interaction between age (quantitative) and work

Parameter Estimate - SD

Corner —6.211 0.201
Work(1) —0.299 0.471
[Age] 0.763 0.058
Sex(1) —0.584 0.115
[Age]- Work(1) 0.053 0.188

L individual records it is best to err on the side of over-detailed modelling
and to fit quadratic or even cubic dose-response relationships.

26.4 Interaction between categorical and quantitative variables

One situation where it can be valuable to treat a variable as quantitative
is when testing for interaction; the resulting reduction in the number of
parameters needed to measure interaction means that the test will be more
powerful.

We have seen how to test for interaction between age and work when
both are categorical variables, but what if age is a quantitative variable?
The model without interaction, in which age is quantitative, is

log(Odds) = Corner + [Age] + Sex + Work.

To test for interaction between work and quantitative age this is compared
with

log(Odds) = Corner + [Age| + Sex + Work + [Age] - Work.

The model without interaction assumes that the gradient of the log-linear
relationship of log odds with age is the same in both work groups, while the
model which contains the interaction term allows for different gradients in
the two work groups. The [Age].Work parameter measures the extent to
which the gradient in the second work group differs from the gradient in the
first, and its null value, corresponding to no interaction, is zero. Output
for the model which includes the interaction between the linear effect of
age and work is shown in Table 26.4.

Exercise 26.4. Use the output in Table 26.4 to test for interaction between age
as a quantitative variable and work.

Exercise 26.5. How many parameters would there be for the interaction term
[Age]-Work if there were three categories of work?

For a variable which is very strongly related to the response, such as
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Table 26.5. Interaction between [Age] and Work

Parameter Estimate  SD

Corner —7.064 0.553
Age(1) 1.666 0.567
Age(2) 2.394 0.562
Age(3) 3.239 0.562
Age(4) 3.860 0.559
Sex(1) —0.585 0.115
Work(1) 0.046 0.544
[Age]-Work(1) —0.083 0.220

age in this example, it may be necessary to model the relationship with age
more closely than by using a linear relationship. Even so, the linear part of
any new relationship will be the main part and it is worth testing for inter-
action just with this linear part. For example, if a quadratic relationship
with age is used, as in the model

log(Odds) = Corner + [Age] + [Agesq] + Sex + Work,

then the interaction of work with the linear effect of age is tested by in-
cluding the term [Age]-Work in the model. It is also possible to test for
the interaction of work with the linear effect of age when the effect of age
is modelled by a categorical variable. This is done by comparing

“log(Odds) = Corner + Age + Sex + Work.
with
log(Odds) = Corner + Age + Sex + Work + [Age] - Work.

This is a more powerful way of testing for interaction than including the
term Age-Work (which has four parameters), provided the relationship with
age is predominantly linear. Table 26.5 shows the results of this analysis,
with quantitative age coded 0 to 4. The deviance for this model is 7.51,
which is only a little smaller than the deviance for the model without
interaction. Thus there is no evidence that the work effect varies with
age. The same conclusion is reached by comparing the estimate of the
interaction parameter with its standard deviation. Since the estimate of
the work effect in the model without interaction is also not significant, it
seems clear that these data provide no evidence for a relationship between
agricultural work and the prevalence of monoclonal gammapathy.
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Table 26.6. Model in terms of separate work parameters

Age Work log(Odds) = Corner + - --

(
Whyage(2) + Age(1)
Whyage(3) + Age(2)
Whyage(4) + Age(3)
Whyage(5) + Age(4)

0 0 -

1 0 Age(1)

2 0 Age(2)

3 0 Age(3)

4 0 Age(4)

0 1 Whyage(1)
1 1

2 1

3 1

4 1

26.5 What to do when there is interaction

Interaction parameters are chosen specifically to test for interaction; their
estimated values are of no use in themselves. When there is interaction
it is necessary to reparametrize so that the new parameters provide a sat-
isfactory summary of the data in this situation. Indicator variables are a
useful way of doing this.

Suppose, for example, that in a study of work and age there was an
interaction between them. The most sensible way of reporting the results
would be to estimate the effect of work separately for each level of age,
but few packages allow this as a standard option. One way of doing it
is by separating the data into age groups and analyzing these separately.
Another is to reparametrize so that instead of one work parameter and four
work-age parameters, we use five work parameters, one for each age group.
Writing these separate work parameters as Wbyage, short for work by age,
the model is shown in Table 26.6.

The values taken by the indicator variables for the age parameters are
the same as before. The indicator variable for Whyage(1) takes the value 1
when work is at level 1 and age is at level 0, and 0 otherwise; the indicator
for Whyage(2) takes the value 1 when work is at level 1 and age is at level
1, and 0 otherwise; and so on. One advantage of using indicator variables
is that it is then possible to include another variable in the model with the
indicators. This model imposes the constraint that the indicator effects
are the same within the levels of this extra variable and provides estimates
of their common values. It would not be possible to do this if the data
were subdivided on age because subdividing on age is equivalent to fitting
interaction terms of all variables with age.

When there is interaction between two exposures it is commonly re-
ported by creating a new categorical variable with a level for each combi-
nation of the levels of the two exposures. For two exposures, each on four
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Table 26.7. Rate parameters per 100000 person-years

A
B 0 1
0 50 150
1 200 A

levels, the new variable would have 16 levels, with level 0 corresponding to
level zero on both exposures and level 16 corresponding to level 3 on both
exposures. There are 15 parameters for this new variable, measuring the
ratio of the rate (or odds) for each one of the levels relative to the zero
level. These are entered in the model in place of the 6 parameters for the
two exposures and the 9 parameters for their interaction. The estimated
parameters would be displayed in a four by four table, with the levels of
one exposure determining the rows and the levels of the other determining
the columns.

26.6 Interaction is scale-dependent

Interaction parameters are chosen to measure departures from a model.
When the effects of variables are measured as ratios interaction parame-
ters are ratios, chosen to measure departures from a multiplicative model.
When the effects of variables are measured as differences (see Chapter 28)
interaction parameters are differences chosen to measure departures from
an additive model. Thus interaction depends on how the effects are mea-
sured. For example, consider two explanatory variables, A and B, each
with two levels. Values for three of the parameters involved are shown in
Table 26.7. For the moment the fourth parameter, ), is left unspecified.
When effects are measured as ratios the effect of A when B is at level 0 is
15/5 = 3, and the effect of A when B is at level 1 is A/20. The interaction
parameter is the ratio of these two effects which is A/60. When effects are
measured as differences the effect of A when B is at level 0 is 15 — 5 = 10,
and the effect of A when B is at level 1 is A — 20. The interaction param-
eter is now the difference between these two effects, which is A — 30. It
follows that if A = 60 there is no departure from the multiplicative model
but there is a departure from the additive model. Similarly if A = 30 there
is no departure from the additive model but there is a departure from the

. multiplicative model.

The choice between measuring effects as ratios or differences is usually
an empirical one, with the investigator preferring to measure effects in such
a way as to minimize the interaction, but there are sometimes biological
grounds for preferring one method to the other.
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Solutions to the exercises

26.1 The multiplicative effect of work is the ratio of the prevalence odds
for non-agricultural workers to the prevalence odds for agricultural workers.

26.2 The degrees of freedom for the deviances are

20— (1+4+1+1) = 13
20— (1+4+1+1+4) = 9
20— (1+4+1+14+1) = 12

The change of deviance with inclusion of the Work.Age interaction is 1.84
with 4 degrees of freedom, and for the Work.Sex interaction it is 0.41 with
1 degree of freedom. Neither is significant.

26.3 The change in log odds over the age range of 35 to 75 is approxi-
mately +4. The gradient is therefore approximately +1 per 10 year age
band.

26.4 The Wald test for interaction between the linear effect of age and

work is )
0.053
<_0.188) = 0.079,

which is not significant.

26.5 There would be two parameters for this interaction term.




27
Choice and interpretation of models

Previous chapters have illustrated the use of regression models using simple
bodies of data containing relatively few variables. More commonly, we are
faced with large data files containing many variables. Sometimes derived
variables such as Quetelet’s weight-for-height index are included in the
model in addition to or in place of the original variables. In such situations
it can be difficult to know where to begin, and all too easy to lose one’s way.
This chapter offers some guidance towards the sensible use of regression
methods.

27.1 Variable selection strategies

A lot has been written about the process of finding the ‘best’ regression
model in problems involving many variables. Much of this activity has
been concerned with the search for an optimal strategy, and the relative
merits of different approaches have been hotly debated. Many computer
programs implement one or more of these strategies in an automatic model
selection option called stepwise regression. These programs usually work
by a combination of the step-up strategy (examining the effect of inclusion
of variables not yet in the model) and the siep-down strategy (examining
the effect of of removing variables currently in the model). With the recent
increased speed and reduced cost of computers, some programs now offer an
exhaustive search of all subsets from a list of possible explanatory variables.

In assessing the value of such procedures it is important to note that
regression models have two very different uses in epidemiology. Historically
they were first used to derive risk scores designed to classify subjects into
graded categories with respect to risk of developing disease. Later, when
attention turned to interpretation of the parameter estimates and the close
relationship between regression and stratification methods became appar-
ent, regression models became important tools for analyses whose aim was
the advancement of scientific knowledge. For convenience we refer to these
two uses as prediction and explanation, respectively.

When the aim is prediction, the best model is the one which best pre-
dicts the fate of a future subject. This is a well defined task and automatic
strategies to find the model which is best in this sense are potentially use-
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ful. However, when used for explanation the best model will depend on the
scientific questions being asked, and automatic selection strategies have no
place.

An important tool for assessing how well a model predicts the fate of a
future subject is cross-validation — a technique in which each subject in
turn is removed from the dataset and the actual outcome for that subject
is compared with the predicted outcome using the model based on the re-
maining observations. The deviance for a model will always decrease with
the introduction of more parameters, but prediction of future observations
is not always improved. There comes a point at which increasing the com-
plexity of the model to gain a slightly better fit to the observed data will
reduce the accuracy of its predictions. Cross-validation measures the pre-
dictive properties of the model directly and therefore reflects the adverse
consequences of fitting too many parameters.

Cross-validation is potentially expensive in computer time, but simple
approxirmate criteria have been developed which allow the assessment of
whether any step up or down in an automatic model selection procedure
would be expected to improve prediction. The best known is Akaike’s
information criterion, namely

(Reduction in deviance) — 2 x (Increase in number of parameters).

If this is positive the increased complexity would be expected to improve
prediction and if negative, to degrade prediction.

27.2 Explanatory variables and natural experiments

This book has been entirely concerned with the use of models whose aim
is explanation. In such analyses there is a clear distinction between the
roles of exposures and confounders but this distinction is lost when us-
ing regression models — both become explanatory variables. Ignoring the
distinctions between different types of explanatory variable is appropriate
when using regression models for prediction, since all variables have the
same role, but in a scientific analysis of data different explanatory vari-
ables may play quite different roles. .

The distinction between exposure and confounder, as described in this
book, relies heavily on the idea of experiments of nature. An exposure is
something which we can intervene to change while a confounder is a variable
which we would have held constant had we designed the experiment rather
than leaving it to nature. It is helpful to think of regression analysis as
simulating an experiment, in the same way. For example, the effects of A
in the model

log(Rate) = Corner+ A+B +C

are the effects of changing the level of A in a simulated experiment in

S
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which B and C are held constant. Similarly, the effects of B are the effects
of changing the level of B.in a simulated experiment in which the levels
of A and C are held constant. Thus regression analysis does not simulate
a single experiment but many. This flexibility of the regression approach
is undoubtedly useful, but in practice it can also become its most serious
weakness. To extend our analogy, the data analyst is in a position like
that of an experimental scientist who has-the capability to plan and carry
out many experiments within a single day. Not surprisingly a cool head is
required! Before embarking on a regression analysis it is essential to spend
an hour or so, preferably away from the computer, to list the main scientific
questions and to think how these can be answered by fitting a series of .
models.” Analyses which follow such thought are always simpler and more
incisive than those which are born of uncritical use of the computer or
worse, of a stepwise regression program.

It will rarely be necessary to include a large number of variables in the
analysis, because only a few exposures are of genuine scientific interest in
any one study, and there are usually very few variables of sufficient a pri-
ort importance for their potential confounding effect to be controlled for.
Most scientists are aware of the dangers of analyses which search a long
list of potentially relevant exposures. These are known as data dredging
or blind fishing and carry a considerable danger of false positive findings.
Such analyses are as likely to impede scientific progress as to advance it.
There are similar dangers if a long list of potential confounders is searched,
either with a view to explaining the observed relationship between dis-
ease and exposure or to enhancing it-— findings will inevitably be biased.
Confounders should be chosen a priori and not on the basis of statistical
significance. 'In particular, variables which have been used in the design,
such as matching variables, must be included in the analysis.’

Recently there has been some dispute between ‘modellers’, who support
the use of regression models, and ‘stratifiers’ who argue for a return to the
methods described in Part I of this book. Logically this dispute is based
on a false distinction — there is no real difference between the methods.
In practice the difference lies in the inflexibility of the older methods which
thereby imposes a certain discipline on the analyst. Firstly, since stratifi-
cation methods treat exposures and confounders differently, any change in
the role of a variable requires a new set of computations. This forces us
to keep in touch with the underlying scientific questions. Secondly, since
strata must be defined by cross classification, relatively few confounders
can be dealt with and we are forced to control only for confounders of a
priori importance. These restraints can be helpful in keeping a data anal-
ysis on the right tracks but once the need for such discipline is recognized,
there are significant advantages to the regression modelling approach.
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EXAMPLE: DIETARY FAT AND TOTAL ENERGY INTAKE

The analogy between regression models and imaginary experiments is very
useful in making decisions about whether to include a variable in a re-
gression model or not. An interesting illustration arises in nutritional epi-
demiology when considering the relationship between total energy intake
and the incidence of coronary heart disease. This relationship was first
detected because relationships were observed between intake and disease
risk for a large number of nutrients — the more that was eaten, the lower
the risk. A relationship with total energy intake, possibly reflecting energy
expenditure, was considered the most likely explanation.

However, once this relationship is recognized, how should the relation- .

ship between risk and other aspects of the diet, notably fat intake, be
analysed? One way is to measure nutrient density, which is the ratio of
daily intake of fat to the total energy intake. This approach is open to the
criticism that such nutrient densities are not usually independent of total
energy intake — subjects with high energy intakes typically have a different
pattern of nutrient densities from subjects with low energy intakes.

If energy intake is to be regarded as a confounder, then it should be
controlled for, either by stratification or with a regression model. In the
latter case we fit a model such as

log(Rate) = Corner + Fat + Energy

and interpret the parameters representing the effect of fat in terms of an
experiment in which fat intake is varied but the total energy content of the
diet is held constant. Of course, such an experiment would require other
constituents of the diet such as carbohydrate to vary in order to maintain
the total energy intake and this must be born in mind when interpreting
parameters.

Exercise 27.1. How would you interpret the effect of fat in the model

log(Rate) = Corner + Fat + Carbohydrate + Energy?

Other authors have approached the problem of allowing for total energy
expenditure by dividing total calories between calories from fat and calories
from other sources, and fitting the model

log(Rate) = Corner + Fat-calories + Other-calories.

The parameters representing the effect of fat intake must now be interpreted
in terms of an experiment in which fat intake is varied while intake of other
calories is held constant. In this experiment a reduction of fat intake would
result in a reduction of total energy intake. Such an experiment would be
difficult to interpret, even if it could be carried out.
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Finally we should point out that a real public health intervention to
reduce dietary fat intakes would be unlikely to mimic either of the above
imaginary experiments. When dietary fat intake is reduced in free-living
subjects, some of the energy intake is made up from other sources, but typ-
ically there is a net reduction in energy intake. This demonstrates that the
use of models to predict the effect of intervention usually requires consider-
able extra knowledge. In particular, we need to have some understanding
of the mechanism by which change will be effected.

27.3 Endogenous and exogenous explanatory variables

The ‘effects’ of an explanatory variable are defined in terms of differences
in log rate (or log odds) between groups of subjects with different levels of
the variable. Thus the effect of cigarette smoking is defined by contrasting
rates in smokers and non-smokers, and the effect of serum cholesterol con-
centration (classified as high or low) is defined as the difference in log rate
bétween subjects with high cholestrol concentration and subjects with low
cholesterol concentration. This language encourages people to interpret
‘effects’ as the change in rates to be expected as a result of intervention to
change the level, but this is a big step. How are the subjects to alter their
level? For a variable like serum cholesterol there is no direct way to alter
its level and any intervention would have to be indirect, for example by
change of diet or by cholesterol lowering drugs. However, there is no guar-
antee that such mechanisms will bear any relationship to the mechanism
which led the the study subjects to have different levels in the first place.
The effect of indirectly changing the levels of serum cholesterol in a group
of subjects may be completely different from that estimated by comparing
groups of subjects who just happen to have different levels of cholesterol.
The same problem arises in an even more acute form when studying
the effects of two or more interrelated variables, such as blood pressure
and obesity in relation to the incidence of coronary disease. The effect
of blood pressure controlled for obesity might now be interpreted as the
expected effect of changing blood pressure while keeping obesity constant.
However, is it be possible to intervene to change blood pressure while keep-
ing obesity constant? While this could be achieved, for example by using
drug treatment, this method of intervention would bear little relation to the
mechanism that led subjects to their current levels in the first place, and
it might have different effects. Intervention aimed at life style changes are
more likely to duplicate these conditions, but might be expected to change

.. both blood pressure and obesity simultaneously. In this case the estimated

effects of blood pressure controlled for obesity, or obesity controlled for

blood pressure could be poor predictors of the effect of the intervention.
The position is much clearer when considering environmental exposures,

such as radiation dose, occupational exposure to toxic chemicals, and even



276 CHOICE AND INTERPRETATION OF MODELS

cigarette smoking. In such cases, it is.entirely reasonable to imagine an
experiment in which exposure of groups is directly varied without any con-
sequent change in other variables, and the parameters of regression models
are easier to interpret.

Variables such as cholesterol concentration, blood pressure, and obesity
are called endogenous. The word endogenous means ‘growing from within’.
Variables such as smoking, diet and occupation are called exogenous. The
distinction between endogenous and exogenous variables is borrowed from
the behavioural sciences and, although the distinction is not hard and fast,
is useful in drawing attention to the different assumptions which it is neces-
sary to make for the two kinds of variable when interpreting the parameters
of regression models as expected effects following intervention.

27.4 Interpretation of interaction

An underlying theme of this chapter is that while distinctions between
different types of explanatory variable are not relevant to the mechanical
process of estimating the parameters of a regression model, they are es-
sential to the strategy adopted in the analysis and to the interpretation
of results. This is particularly true when dealing with interaction. The
word describes a purely mathematical concept in regression models. Its
relatjionship to the scientific language of epidemiology requires further con-
sideration of the nature of the variables involved.

We shall first consider interaction between two confounders. There
seems to be no word to describe this in epidemiology, almost certainly
because the phenomenon is of no scientific interest. Whether we include
such terms in a model or not is a purely technical matter of trading the
number of parameters against freedom from assumptions. Usually if there
are two strong confounders such as age and sex, the gain in efficiency from
assuming no interaction between them is extremely modest and it will
usually be safer to include an interaction term regardless of its significance.
However, if we are worried about the aggregate effect of five or six weak
confounders, then omission of interaction terms is unlikely to have a major
effect on estimates of parameters of interest.

Interaction between a confounder and an exposure of interest is known
in epidemiology as effect modification and is clearly of considerable scientific
importance, since the consistency of an effect in diverse study groups would
usually be considered relevant to labelling a relationship as ‘causal’, in the
sense of predicting the effect of future interventions. The ease with which
we can test for such interaction in the framework of regression models
represents a clear advance over earlier stratification methods in which the
absence of such interaction is a hidden assumption.

Finally, the question of interaction between two expesures of interest is
usually of considerable importance, both for the scientific interpretation of
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Fig. 27.1. Misclassification of exposure.

an analysis and for its implications for preventive intervention. We shall
deal with this in more detail in Chapter 28.

27.5 Errors of measurement of explanatory variables

In the models discussed in this book it is assumed that explanatory vari-
ables are correctly measured. This assumption is often unjustified in prac-
tice, but epidemiologists have generally been prepared to ignore measure-
ment errors. Some have believed that to do so is justifiable providing there
is no relationship between errors of measurement of exposure and disease
outcome, that is if there is no differential misclassification. This is now
known to be false.

To illustrate the effect of ignoring measurement error we consider the
hypothetical situation illustrated in Fig. 27.1, in which exposure E is mea-
sured imperfectly by measurement M. As a result of this misclassification
there is a probability of 0.2 that an exposed subject is misclassified as un-
exposed, and a probability of 0.2 that an unexposed subject is misclassified
as exposed. The probability of failure depends only on true exposure, tak-
ing the value 0.1 for exposed subjects and 0.05 for unexposed subjects.
An epidemiological study observes only the marginal relationship between

_measured exposure and failure.

"Exercise 27.2. Calculate probabilities for each of the eight tips of the tree in

Fig. 27.1. By collapsing over exposure categories, calculate the probabilities for
each of the four possible combination of measured exposure and disease (failure)
status. Hence derive the probability tree expressing the probability of failure
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Table 27.1. Diastolic blood pressure (DBP) and rate ratios for stroke

Baseline Rate Mean DBP

DBP ratio at baseline after 2 years
<69 0.276 63.6 72.7
70-79 0.395 73.8 77.0
80-89 0.595 83.6 83.0
90-99 1.000 93.5 91.2
100-109  1.904 103.4 99.2

> 110 3.875 116.4 107.3

conditional upon measured exposure.

It is clear from this exercise that the effect of exposure is decreased by
the measurement error: whereas the risk ratio for true exposure is 2, the
risk ratio for measured exposure is only 1.42. It is worth noting that
20% miselassification would be regarded as acceptable in many branches of
epidemiology.

Similar considerations apply when exposure takes on more than two
levels. The observed dose-response relationship between measured expo-
sure and disease outcome is less steep than the underlying relationship with
true exposure, under any realistic assumptions about the dose-response re-
lationship. This is illustrated by the data of Table 27.1 which concern the
relationship between diastolic blood pressure and subsequent incidence of
stroke.* These data are taken from a re-analysis of seven cohort studies,
and the first two columns of the table summarize the relationship between
diastolic blood pressure at a single initial visit (the ‘baseline’ measurement)
and subsequent incidence. Note that in the rate ratios the fourth category
is taken as reference. These were obtained by fitting the model

log(Rate) = Corner + Study + DBP

where study is a categorical variable with one level for each study, so that
confounding of the relationship due to differences between the study co-
horts is eliminated. The third column shows the mean of the baseline
diastolic pressures for each of the five categories. The log rate ratios are
plotted against the mean baseline values in Fig. 27.2 (solid line). This
line represents the apparent dose-response relationship between a single
measurement of diastolic blood pressure and the incidence of stroke. It is
approximately log-linear, so that essentially the same relationship would
have been obtained by fitting the model

log(Rate) = Corner + Study + [DBP],

*From Macmahon, S. et al. (1990), The Lancet, 335, 765-774.
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where [DBP] is measured per mm Hg. However, this line is a poor repre-
sentation of the true relationship between blood pressure and the incidence
of stroke. Blood pressure is subject to both short-term fluctuations and to
measurement errors, neither of which will be reflected in the risk of stroke
which is determined by the longer-term average level of blood pressure. The
final column of Table 27.1 shows the mean blood pressure taken two years
later in representative samples taken from each of the five groups. These
figures provide a better estimate of long-term average blood pressure in
the six groups as the short-term fluctuations and measurement errors are
washed out. Plotting the rate ratios for stroke against these new values for
mean diastolic blood pressure provides a truer estimate of the relationship
between stroke incidence and the long- term average level of diastolic pres-
sure. This plot is shown in Fig. 27.2 as a broken line and clearly represents
a stronger relationship than the apparent relationship based on a single
baseline measurement. This finding is true in general. When an explana-
tory variable suffers from measurement error or within subject variability
the linear effects of this variable will be closer to zero than when there is
no error or variability. This is known as regression dilution

This second example demonstrates both the attenuation of relationships

~owing to exposure measurement error and one of the methods which has

been suggested for correcting for it. An alternative approach is to formally
adopt probability models such as that illustrated in Fig. 27.1 and to esti-
mate the conditional probabilities for every branch of the tree. Validation
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substudies are required in order to estimate the misclassification probabili-
ties. A difficulty with this approach is that when there are several levels of
exposure, the number of parameters in the model can become very large.

In summary, when exposures are subject to measurement error, the ap-
parent exposure effects will be less pronounced than the true underlying
relationships. When confounders are measured inaccurately, the conse-
quences are even more serious. Since the relationship between disease and
confounder is not correctly estimated in these circumstances, it follows that
the analysis will not properly control for confounding. If both exposure and
confounder are measured inaccurately, there exists the possibility that the
two sets of errors may be interrelated, so that the apparent relationship be-
tween exposure and confounder may be quite different from that between
the underlying variables. In these circumstances models for relationships
between measured exposure, measured confounder, and response have no
interpretation in terms of an imaginary experimental intervention and may
be scientifically meaningless. Such might well be the position in our ex-
ample involving dietary fat and total energy intake. Measured intakes of
total energy and of each specific nutrient are usually derived from the same
dietary records, taken over a period of several days. Not only are such mea-
surements very imperfect measures of long-term intake, but it is reasonable
to believe that errors in the measured fat intake will be closely related to
errors in measured energy intake, since the former is an important contrib-
utor to the latter. Regression models which include total energy as well
specific nutrients may, therefore, not be interpretable in practice.

Solutions to the exercises

27.1 The parameter(s) measure the effect of changes in fat intake while
holding both total energy intake and carbohydrate intake constant. To
reduce fat intake while holding both total energy and carbohydrate intake
constant would be very difficult for an individual to do and would require
large changes in other components of the total energy intake, such as pro-
tein.

27.2 From top to bottom the probabilities are 0.016, 0.144, 0.004, 0.036,
0.008, 0.152, 0.032, and 0.608. The remaining calculations are shown in
Fig. 27.3. The probability of failure conditional upon having been measured
as exposed is 0.075, while the failure probability conditional upon having
been measured as unexposed is 0.053.

SOLUTIONS

0.024/0.32 = 0.075

M+
0.024 + 0.296 = 0.32

0.206/0.32 = 0.925

0.036/0.68 = 0.053

0.036 + 0.644 = 0.68

0.644/0.68 = 0.947™~ g
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0.016 + 0.008 = 0.024

0.144 + 0.152 = 0.296

0.004 + 0.032 = 0.036

0.036 + 0.608 =.0.644

Fig. 27.3. Failure probabilities conditional upon measured exposure.
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28
Additivity and synergism

When discussing the way two exposures combine to influence the risk of
disease the word interaction is used to refer to departures from either mul-
tiplicative or additive models. In general these models have no biological
basis and interaction is therefore a purely statistical concept. The interac-
tion parameters are chosen solely to test hypotheses and are not useful for
describing the data when there is interaction. The word synergism is often
used, in a similar sense, to refer to departures from a biological model for
the independent action of two exposures. When the joint effect of two expo-
sures is greater than would be expected from the separate effects, according
to such a model, the exposures are said to display positive synergism. Syn-
ergism is therefore a particular kind of interaction but precisely what kind
depends on the biological model for independent action.

Epidemiologists often use the word synergism without specifying pre-
cisely what they mean by independent action. In other words they use it in
a statistical sense. When used in this way synergism is generally measured
as a departure from an additive model. This suggests an ill-defined biolog-
ical model which predicts that the rate for the joint effect of two exposures
is the sumn of the rates for the separate effects. An example of such a model
is shown in Fig. 28.1 which refers to a situation where disease is caused by
one or other of two precipitating events. Exposure A influences the chance
of the first event occurring, while exposure B influences the chance of the
second event occurring. When A and B act independently their effects on
the rate will be additive because

Rate(Event 1 or 2) = Rate(Event 1) + Rate(Event 2).

In cases like this it makes sense to fit an additive model so that departures
from this model can be measured and used to test whether the two expo-
sures act independently. In this chapter we consider some of the special
problems which arise when using additive regression models.

. A ——| Event 1 Event 2 |«—— B

Disease

Fig. 28.1. Two precipitating events for disease.

28.1 Fitting additive models

With additive models effects are measured as differences between rates
{or odds) pafameters rather than as ratios. The use of stratification to
control the additive effects of an exposure for confounding would be based
on the assumption that the difference between the rate parameters .for
the different levels of exposure is constant over the strata. Formulating
the same problem in terms of regression models the effects of an exposure
controlled for a confounder are found by fitting the additive model for the
rate,

Rate = Corner + Exposure + Confounder.

The assumption that the additive effect of the exposure is the same for ajll
strata formed by the confounder is expressed by the fact that the model is
additive, with no interaction terms. o
Additive models are fitted to data by choosing parameters to maximize
the log likelihood in the same way as for multiplicative models, but'th.e
calculations are different and require different computer programs. Simi-
larly log likelihood ratios are used to test hypotheses in the same way as
for multiplicative models. In practice additive models can be more trouble-
some to fit than multiplicative models because the most likely parametgr
values do not' necessarily predict rates which are greater than zero. It is
then rather difficult to know what to do. Should one treat this as evidence
that the additive model is a poor fit, or should one find most likely values

..subject to the constraint that they predict positive rates? Generally the

latter policy is followed, but it can be difficult to implement.*

*This problem does not arise with multiplicative models be_ca.use these are .ﬁtted as
additive models for the log rate and the log rate is not constrained to be positive.
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28.2 Discriminating between additive and multiplicative models

When there are rival biological grounds for choosing an additive model and
a multiplicative model the investigator will wish to discriminate between
the two models by seeing which fits the data best. The deviances for the
two models provide an informal way of looking at this but they cannot be
compared in a formal test because the additive and multiplicative models
are not nested. The solution to this technical problem is to find an eztended
model which contajns both additive and multiplicative models as special
cases. One such model is

(Rate)? — 1

P = Corner + A+ B,

where p is a parameter yet to be determined. In this model A and B refer
to parameters which measure differences in the value of

(Rate)? — 1
p .
As p approaches 1 the model reduces to

Rate — 1.0 = Corner + A +B

in which the A and B parameters measure differences in the rate. As p
approaches zero, the left-hand side of the model approaches the log of the
rate T, so the model reduces to

log (Rate) = Corner + A + B,

in which the A and B parameters measure differences in the log rate. The
two extremes of the extended model therefore correspond to an additive
model (p = 0) and a multiplicative model (p = 1). When this extended
model is fitted for a range of values for p, including p = 1 and p = 0, a
comparison of the log likelihoods for the different values of p will indicate
which is the most likely value for p and whether the additive or multi-
plicative model is preferred. It may turn out, of course, that both models
provide an adequate fit, or that neither model is acceptable. We do not
advocate the use of the model with values of p other than zero or one,
because effect parameters measured as differences in the value of

(Rate)? — 1
p

TThis follows because, for small 0,

RF = [exp(log(R))]” = exp[plog(R)] ~ 1 + plog(R).
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would be hard to interpret. The sole purpose of the extended model is to
provide a framework in which to choose between additive and multiplicative
models.

Using the extended model to discriminate between multiplicative and
additive models involves fitting a non-standard regression model for each
of a range of values of p. Even with software which allows non-standard
models this can be quite a lot of work.

28.3 Additive models with case-control studies

There are some special problems which arise when trying to fit additive
models to data from case-control studies. To illustrate these we shall con-
sider a case-control study of the joint effect of two exposures A and B in
which the ratio of sampling probabilities is

_ Probability of selecting a failure as a case
~ Probability of selecting a survivor as a control’

We showed in Chapter 23 that parameters which are defined as ratios of
the odds of being a case are also ratios of the corresponding odds of failure
in the study base. Unfortunately this does not apply to additive models.
Parameters which are defined as differences in the odds of being a case
are K times the corresponding differences in the odds of being a failure in
the study base. The factor K, which relates the odds of being a case to
the odds of faliure, cancels in ratios but not in differences. It follows that
fitting an additive model to case-control data tells us nothing about the
additive effects on the odds of failure in the study base except in those rare
cases where the value of K is known. It is still possible, of course, to test
hypotheses about zero parameter values since a zero additive effect on the
odds of being a case corresponds to a zero additive effect on the odds of
being a failure in the study base.

Although it is not possible to estimate the additive effects of A and B
on the odds of failure in the study base it is still possible to estimate the
ratio of these effects to the corner. This is less satisfactory than estimating
differences in the odds themselves, but better than nothing. These new
parameters are estimated by fitting the model

Odds = Corner x (1.0 + A + B).

When the model is written in this way the corner parameter is still the

~odds of being a case when A and B are at level zero, but the A and B

parameters are now differences in the ratio

Odds
Corner’
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Table 28.1. Estrogen replacement, weight, and endometrial cancer

Estrogen replacement

Weight No Yes

(kg) Cases Controls Cases Controls
< b7 12 183 20 61
57-75 45 378 37 113

> 75 42 140 9 23

This model can be fitted to data using likelihood in the same sort of way
as for conventional models but special software is required.

Exercise 28.1. Table 28.1 shows results of a case-control study relating endome-
trial cancer incidence to use of estrogen therapy and body weight. Calculate odds
ratios for each category of weight and estrogen use relative to the corner (top left
corner cell). Obtain differences in these odds ratios for estrogen replacement yes

compared to estrogen replacement no, at each level of weight. Do the data appear
consistent with an additive model?

When a case-control study is stratified by age at time of diagnosis, and
controls are sampled separately in each age stratum, there will be a different
value of K for each stratum. To make sure the A and B parameters do not
depend on these K’s the parameters must now be defined as differences in
the value of

Odds

Age specific corner’

where the age specific corners are the odds in each age stratum when A
and B are both at level 0. The A and B parameters will then equal the
corresponding differences in the ratio of the odds of failure to the age
specific corners in the study base.

Assuming that the new A and B parameters are constant over age
strata, their common value can be estimated by fitting the model

Odds = Corner x Age x (1.0 + A +B).

where age is a categorical variable with one level for each age stratum.
The | Corner x Age | part of the model corresponds to fitting separate cor-

ner parameters for each age stratum. This model again requires special
software.

28.4 Discriminating between models using case-control studies

The extended model containing the extra parameter p can also be used
to compare the fit of a multiplicative model with an additive model using
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data from a case-control study. The two models we wish to compare are
QOdds = Corner x A x B,
in which A and B parameters are ratios of odds, and
Qdds = Corner x (1.0 + A + B),

in which the A and B parameters are differences in the ratios of odds to
the corner. The multiplicative model can also be written in the form

log(Odds) = Corner + A + B,

in which the A and B parameters are defined as differences in log odds.
The extended model is now

(Odds/Corner)? — 1.0 _ A+B.
p

As p approaches 0 this model approaches
log(Odds/Corner) = A + B,

which simplifies to
log(Odds) = log(Corner) + A + B.

This is the multiplicative model written in log form, apart from the fact
that because the corner parameter is on the original scale in the extended
model it appears as log(Corner). As p approaches 1, the extended model

approaches
0Odds = Corner x (1.0 + A + B),

which is the additive model. N
The procedure for comparing the fit of a multiplicative and an additive
model is illustrated by fitting the extended model to the data in Table 28.1
for a range of values of p. To actually do this involved fitting a non-standard
model for each of these values. The resulting log likelihood ratios are shown
in Fig. 28.2. At p = 0 the log likelihood ratio is —2.774 and at p = 1 it
is —0.408. To test for the adequacy of the multiplicative model we take

.. p =0 as the null value. Minus twice the log likelihood ratio for p = 0 is

5.548 (p ~ 0.02), so the data do not support this model. To test for‘the
adequacy of the additive model we take p = 1 for the null value. Minus
twice the log likelihood ratio for p = 1 is 0.816 (p > 0.10) so the data are
consistent with the additive model.
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0.0

Log likelihood ratio
-1.5

T T T T T T T

0.0 0.5 1.0 1.5 2.0 2.5 3.0

p
Fig. 28.2. The log likelihood ratio for p.

The most frequent outcome when comparing the fit of multiplicative
and additive models is that both provide an acceptable description of the
data. This has been taken by some epidemiologists as a serious flaw in
the modern modelling approach to statistical analysis, since additive and
multiplicative models have radically different public health implications
(notably in relation to the targeting of interventions). This difficulty is
indeed serious, but it is attributable more to an attempt to extrapolate
beyond the data than to any shortcomings in statistical methodology.

A good example of this arises in attempts to study the implication of
different dose-response relationships for the carcinogenic effect of ionizing
radiation. The public health problem (if there is one) is one of relatively
large populations exposed to low doses, but the available epidemiological
studies have concentrated upon high exposure groups — A-bomb survivors,
irradiated patient groups and so on. Additive and multiplicative dose-
response models make similar predictions at high doses so these studies are
poorly discriminated. However, they make very different predictions for
subjects receiving low dose exposure. If data were available for subjects
receiving low dose exposure the two models would be easily discriminated;
the problem lies in trying to discriminate between them using data from a
range of dose levels for which the two models make the same predictions.

Exercise 28.2. We plan to reduce the total burden of disease in a, community by
attempting to eliminate exposure A but another explanatory variable, B, is also
known to be important. Should the intervention be targeted on individuals whose
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exposure to B is greatest? Consider how the answer to this question c%epends on
whether the effects of A and B on the rate are additive or multiplicative.

Solutions to the exercises

28.1 The odds ratios are shown below.

Weight  Estrogen replacement

(kg) No Yes Difference

< 57 1.00 5.00 4.00

57-75  1.82 4.99 3.17

> 75 4.58 5.97 1.39
The additive model does not appear to fit particularly well as the differences
between the odds ratios for the two estrogen groups seems to fall with
increasing weight. Further examination of the table suggests the possibility
that there is only a relationship with weight when there is no estrogen

replacement.

28.2 Consider a population classified according to the two factors A and
B. When these act additively or multiplicatively, the rates follow one of the
following patterns:

Additive model Multiplicative model
A Potential A Potential.
B No Yes reduction No Yes reduction
No 1 3 2 1 3 2
Yes 3 5 2 3 9 6

When the multiplicative model holds the reduction in rates by eliminating
exposure A is greater in the B-Yes group than in the B-No group. It \?vould
therefore be cost effective to target intervention at the high- risk section of
the population. When the additive model holds this is no longer the case
— there is an equal potential reduction in both sections of the population,
and targeted intervention makes little sense.
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Conditional logistic regression

In an individually matched case-control study, it is necessary to introduce a
new parameter for every case-control set, if the matching is to be preserved
in the analysis. This means that the number of parameters in the model
exceeds the number of cases and in this case the profile likelihood does
not lead to sensible estimates. Instead the nuisance parameters must be
eliminated using a conditional likelihood. In Chapter 19 we indicated how
this is done for a simple binary exposure. In this chapter we show how to
use a conditional likelihood with the logistic regression model.

29.1 The logistic model

Suppose we wish to fit a logistic regression model which contains param-
eters for the case-control sets in addition to parameters for the effects of
two explanatory variables A and B. Using a categorical variable to define
the set to which each subject belongs, the model would be written

log(Odds) = Corner + Set + A + B.
The model can also be written in the multiplicative form as
Odds = Corner x Set x A x B.

For the case where A has three levels and B has two levels, the parameters
in this model are Corner, A(1), A(2), B(1), together with

Set(1), Set(2), ---, Set(N —1)

where N is the number of case-control sets. These set parameters are those
used in standard logistic regression models, but they are no longer the most
convenient choice. It is now more convenient to choose a separate corner
for each set, namely the odds parameter for each set when A and B are
at level 0. The corner for the first case-control set is the corner parameter
referred f0 above, the corner for the second case-control set is

Corner x Set(1),
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and so on. This corresponds to splitting the terms in the model into two
groups, as follows:

Odds ={ Corner x Set |x|A x B|.

The first part of the model contains the separate corners, and these are the
nuisance parameters to be eliminated, while the second part contains the
effects of interest. When a conditional logistic program is used to fit this
model the nuisance parameters are eliminated using conditional likelihood
and estimates of the effects of A and B are reported. No estimates of either
the corner or the set parameters are obtained in this method, so none can
be reported.

To see how the nuisance parameters are eliminated using conditional
likelihood it is convenient to return to the algebraic notation for parame-
ters using Greek letters. For any particular case-control set let the corner
parameter be we. Let the odds for any subject in the set be w;, where
i=1,2,..., indexes the subjects within the case-control set, and write

w; = wobs,

so that 8; is the ratio of the odds for subject ¢ to the corner odds. The

way 6 is related to the effects of A and B is determined by the part
of the model. The corner parameter refers to subjects within the set with
both A and B at'level 0, so that the value of € for such subjects is 1. For
subjects with A at level 1 and B at level 0,

6= A(1),
for subjects with A at level 1 and B at level 1,
6= A(1) x B(1),

and so on.
To be specific about which case-control set is being referred to, the

parameters should be written with superscripts ¢, as in

t_ tot
w; = wgb;.

where t = 0,1, 2,... refers to the lLvels of the variable defining set mem-

bership. The parameters wf correspond to the

part of the moedel, and are the nuisance parameters to be eliminated. In
the rest of this chapter we shall derive the contribution to the conditional
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Subject 1 Subject 2 Probability
w2 /(1 + wz) Case K(wc)29192
Case

w1 /(1 +w1)
/(14 ws) Control Kwct
Case Kuwcbs

/(1 +w1)

Control

Control K

Fig. 29.1. Disease status for two subjects in a case-control study.

log likelihood for a single case-control set, and shall therefore omit the ¢
superscript. The total log likelihood is found by adding the contributions
from the single sets.

29.2 The conditional likelihood for 1:1 matched sets

First we derive the contribution for case-control studies with one case and
one control in each set. The possible case or control status for any two
subjects are represented as a probability tree in Fig. 29.1. Using the rela-
tionship between odds and probability, the probabilities that subject 1 is a
case or a control are wy/(14+w;) and 1/(1 +w, ) respectively. Similarly, the
probabilities for subject 2 are wy/(1+w2) and 1/(1+4ws). The probabilities
of the outcomes for the pair of subjects are obtained by multiplying along
branches of the tree in the usual way. The last column of the figure shows
such probabilities, after writing

w1 = webi, wy = wehy,
and
1 1
=X —
I+wr 14w

These probabilities refer to any two subjects from the study base. Con-
ditional on the fact that one of the subjects is a case and the other is a
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control, the probability that subject 1 is the case is

Kw001 . 01
ch;01 + Kw002 - 01 + 02.

and the probability that subject 2 is the case is
02/(61 + 62).

The contribution to the log likelihood of the case-control set is, therefore

log e(for case)
e(for case) T e(for control)

This way of writing the log likelihood makes it clear that it does not depend
on the arbitrary numbering of the subjects in the pair but only on the
expressions for § in terms of A(1), A(2) and B(1), the parameters to be
estimated. The total log likelihood thus depends only on A(1), A(2), and
B(1), and the nuisance parameters wf, have been eliminated.

Exercise 29.1. Table 29.1 shows the data for the first two case-control sets in
a 1:1 matched study. The set variable indicates which set each subject belongs
to, and case or control status is indicated using a variable taking the value 1
for cases and 0 for controls. Illustrative parameter values for the multiplicative
effects of the explanatory variables age and exposure, where age has three levels
(< 55,55 — 64,65 — 74) and exposure has two levels, are shown below.

Parameter Value
Age (1) x1.5
Age (2) x3.0

Exposure (1) x5.0

The corner is defined as unexposed and age < 55. Calculate the values of 8
predicted by the model for these four subjects. Calculate the log likelihood
contributions for the two sets.

Before leaving the 1:1 case we shall verify that the method of obtaining
the log likelihood described above gives the same answer as the method
described in Chapter 19, for a binary exposure. The model is now

Odds = l Corner x Set [ X ﬁ*]xposure‘

which has only one parameter, Exposure(1), apart from the nuisance pa-
rameters. This parameter is the multiplicative effect of exposure and we
shall refer to it as ¢. The values of 8 for the case and control are determined
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Table 29.1. Data file for a 1:1 matched case-control study

Subject Set Case/control Age Exposure

1 1 1 48 1
2 1 0 64 0
3 2 1 52 1
4 2 0 70 1

Table 29.2. Likelihood contributions for the 1:1 matched study

Exposure @ for case 4 for control Likelihood
Neither 1 1 1/1+1)y=1/2
Both ¢ ¢ ¢/(d+¢)=1/2
Case only ¢ 1 o/(6+1)

. Control only 1 o) 1/(1+¢)

by whether or not they were exposed. For example, if the case was not ex-
posed then § = 1, while if the case was exposed then 6 = ¢. Similarly
for the control. Table 29.2 sets out the four possible outcomes for each
case-control set and the corresponding contributions to the log likelihood.
The first two outcomes, in which the exposure status of case and control is
the same, lead to log likelihood contributions which do not depend upon
the parameter, and can be ignored. If N; and N, are the frequency of
occurrence of the remaining outcomes, the total log likelihood is

N:log (%) + Nylog (ﬁl-—qs)

which is the same as we obtained in Chapter 19, except that here we have
called the effect ¢ rather than § to avoid confusion.

29.3 The conditional likelihood for 1: m matched sets

We now extend the above argument to sets with one case and m controls. If
the sampling had not been carried out deliberately so as to obtain a single
case and m controls in the set, the probability that sub, ject 1is a case and
the remaining m subjects are controls would be

wl' % 1 % 1
X
14w 14wy 14ws
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and making the substitutions

w; = weh;

1 1 1
K = X X X
14w 14wy 14ws

this may be written as Kwcf;. Similarly, the probability that subject 2
is a case and all other subjects controls is Kwg#2, and so on. The sum of
probabilities for all the outcomes in which one member of the set is a case
and all other members are controls is

Kuwe(01 + 605+ 603+---)
so that the conditional probability that subject 1 ‘{s the case is:

Kwe0y _ 6,
KWC(01+92+03+"') _01+92+03+

The contribution of one set to the log likelihood is, therefore,

log <e(for case) Z 0) :

Case-control set

The total log likelihood is obtained by adding the contributions for all
case-control sets.

From the form of this log likelihood it is clear that the conditional
approach does not allow estimation of multiplicative effects of variables
used in matching. Since all subjects in the set share the same value for
such a variable its multiplicative effect will cancel out in the ratio of  for
the case to the sum of all §’s in the case-control set. However, interaction
terms involving matching variables can be fitted. For example, for a case-
control study in which sex was one of the matching variables, the sex effect
cannot be estimated but the parameters for interaction between sex and
exposure can be, because they will not occur in all of the §’s from the same
case-control set.

29.4 Sets containing more than one case

The conditional argument can be generalized quite easily to allow for case-
control sets containing more than one case, although the computation of
the log likelihood may become rather lengthy. The idea is illustrated for a
set containing two cases and one control. Fig. 29.2 shows the probability
tree for case/control status of a set of three subjects. In three of the eight
possible outcomes there are two cases and one control. The probabilities
for these branches are written to the right of the figure, again using the
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Subject 1 Subject 2 Subject 3 Probability

ws/(l + w3) - Case

w2/(1 4 wa)

1/(1 + ws) ™ Control K{(wc)?610,

Case

wl/(l * U-’Zl)‘ Case K(wc)29193

1/(1 =+ wz)
Control

<
-
<

K (wc)?0203

1

/(1 +w1) Contro
Control
Case

Control

Control

Fig. 29.2. Sets with two cases and one control.
abbreviation
1 1 1
X X .
14w 14w, 14w

Conditional on the observed outcome being one of the three with two cases
and one control the probability that the cases are subjects 1 and 2 is

K=

K(wc)?6,6, _ 0,62
K(wc)20192 + K(wc)20103 + K(wc)202'03 o 0192 + 0103 + 9293 )

The log of this conditional probability is the contribution of the set to the
log likelihood.

It is easy to see how this argument can be extended to deal with any
number of cases and controls in a set. For example, for sets of size 6
containing 3 cases, the conditional probability that subjects 1, 2, and 3 are
the cases is

610203
610203 + 0,0204 + 6160205 + - - -

The denominator contains a term for each of the 20 ways of selecting three
subjects from 6, and does not depend on the way the subjects have been
numbered.
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Solutions to the exercises

29.1 The values of 8 for the four subjects are:

Multiplicative effects

Subject Corner Age ~ Exposure 7

1 1.0 x5.0 5.0
2 1.0 x1.5 1.5
3 1.0 x5.0 5.0
4 1.0 x3.0 x5.0 15.0

Subject 1 is the case in the first set and subject 3 is the case in the second
set. The log likelihood contributions are, therefore

5.0 5.0
_o9 _29 ) — _0.262 — 1.386.
log (5.0 ¥ 1.5) +log (5.0 ¥ 15.o>
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Cox’s method for follow-up studies

) When using Poisson regression models to analyse data from follow-up stud-
“. les, time is divided into fairly broad bands such as 5 or 10 years of age.
Age is the most comumon time scale but in some applications other time
scales may be more relevant. This point is discussed in more detail in the
next chapter, but for the moment we refer to the time scale simply as time.
Cox’s method is very similar to Poisson regression but is based on a much
finer subdivision of time.

30.1 Choosing parameters

When there are two explanatory variables, A and B, and the rate is allowed
to vary with time, the multiplicative model for the rate takes the form

Rate = Corner x Time x A x B.

Here time is a categorical variable with one level for each time band. Again
we split the model into two parts, as in

Rate = LCorner X Timel X lixf' .
Algebraically this corresponds to a reparametrization of the model as
A= ALg;,

where A% is a corner parameter measuring the rate for time band ¢t when
A and B are both at level 0, and 6; is the rate ratio which compares the
rate for subject 4, in time band ¢, to the corner rate for that time band.
The parameters A}, correspond to the-

Corner x Time

part of the model and the parameters 6; to the

part of the model.
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30.2 The profile likelihood

The parameters AL are also called the baseline rates, and are generally
nuisance parameters. The main interest is in the parameters of the second
part of the model. The profile likelihood for the parameters in the second
part of the model is obtained by deriving formulae for the most likely values
of the nuisance parameters, A%, and substituting these into the expression
for the log likelihood. The number of nuisance parameters depends upon
the number of time bands into which the total study period has been par-
titioned. For the present we shall consider a finite number of bands, but
in the next section the argument is generalized to the case where time is
divided into clicks.

The contribution of subject 7 to the log likelihood is the sum of contri-
butions for each time band. These have the Poisson form:

di log(Af) — yiA;

where 3! is the observation time in time-band ¢ and df indicates whether
the event occurred (d = 1) or not (d = 0). The total log likelihood is the
sum of such terms over all subjects (7) and all time bands (¢). Rewriting
Al as ALY;, this becomes

> [dilog(AE8:) — yEAL6:] .

it

The rules of calculus show that, given the 6;, the most likely values of
the baseline rates A% are

dt
Vi
where d® represents the total number of events occurring in time band .
Substituting these values into the expression for the log likelihood yields a

profile log likelihood which depends only on the parameters in the second
part of the model. This is

0.
dt lo <——Z J )

30.3 Time divided into clicks

,“’I“he profile log likelihood derived by stratifying the follow-up interval into

bands provides a satisfactory method for regression analysis of cohort stud-
ies; but although this is the approach used with frequency records it is rarely
used with individual records. The reason for this is that a further gener-
alization offers increased flexibility without seriously compromising either
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statistical or computational efficiency. In this generalization the time scale
is subdivided into clicks which can contain no more than one event, thus
allowing rates to vary continuously over time.

The consequence of this generalization for the profile log likelihood are
quite minor. First consider the effect upon the observation times, y¢. If the
duration of the time bands is h and we allow h to become very small, almost
every y¢ will become either zero (if subject ¢ was not observed at click t)
or h (if subject ¢ was observed). In these circumstances, it is convenient to
redefine yf to be at risk indicators taking on the values 0 or 1 respectively.
The observation times then become hy! and the profile log likelihood for
the rate ratio model becomes

9.
S diion (e )

gt

which. may be further simplified to
> dilog <—91—> — Dlog(h)
§ 0. :
2% OB\ i,

Since the term Dlog(h) does not depend upon any parameters, it may be
omitted.

Examination of the profile likelihood equation shows it to be constructed
of a sum of terms, in which d_f,- is a multiplier which takes on the value 1 for
clicks in which an event occurs, and 0 everywhere else. Thus the profile log
likelihood receives an additive contribution for every failure event. Each of
these is the log of a ratio whose numerator is the rate ratio, 6;, predicted
by the model for subject j in whom the event occurred (the case), and
whose denominator,

> uto;
K3

is the sum of rate ratios, ;, for those subjects under observation at z, the
time of occurrence of the failure.

The collection of subjects contributing to the denominator is known
as the risk set for the observed failure. Using this terminology the profile
likelihood can be written

Z log <0(for case) Z 9) :

Failures Risk set

The ratio in brackets is the conditional probability that, given a failure
occurred in this set of subjects, it occurred in the case rather than in
some other member of the risk set. The profile log likelihood therefore
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Fig. 30.1. Compositijon of risk sets.

corresponds exactly with the conditional log likelihood obtained for indi-
vidually matc¢hed case-control studies, and analysis of a cohort study using
the above profile likelihood is equivalent to its analysis as a matched case-
control study in which each case is matched on time'with all other members
of the corresponding risk set. The composition of risk sets is illustrated by
Fig. 30.1. The risk set for each failure contains all subjects whose observa-
tion lines cross the appropriate vertical, including the subject in whom the
defining event occurred.

The recognition that this likelihood is a profile likelihood came some
years after Cox’s original proposal of the method, in which he called it
the partial likelihood.® This name has stuck, and is in general use, so we
shall continue to use it, but we emphasize that partial likelihood is the
profile likelihood for the parameters in the second part of the regression
model when Cox’s method has been used to eliminate the parameters in the
first half. Because a very large number of nuisance parameters have been
eliminated — infinitely many, in fact, we have no right to expect that the
partial likelihood will maintain the properties of likelihood. In the present
aﬁplication, however, it has been proved to behave the same way as a true

*Cox originally used an argument identical to that we used in Chapter 29 for in-
dividually matched case-control studies and referred to it as a conditional likelihood.
There are, however, difficulties with this argument when applied in the present context.
While each term which contributes to the log likelihood is indeed the logarithm of a
conditional probability, the total is not. A later paper correcting this error introduced
the term partial likelihood.
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Table 30.1. A cohort of 10 subjects

Entry to Study =~ End of Study
Subject Sex Date Age Date Age
13/ 6/65 29.3 31/12/89 53.8
23/10/72 252 31/12/89 42.4
3/ 3/59 221 31/12/89 52.8
10/10/67 32.2  31/12/89  54.4
2/1/60 331 4/ 7/79 52.6
9/ 1/75 421 31/12/89 57.1
5/ 8/53 352  3/10/68 50.4
10/10/69 27.0 31/12/89 47.2
2/ 3/72 448 31/12/89 627
1/11/70 515 31/12/89 70.6

ST QEmEUQws
MEEHMEREIERT

likelihood as the amount of data increases.

The composition of risk sets (and hence the results of the analysis)
depend upon the choice of time scale for the analysis, as is demonstrated
by the following exercise.

Exercise 30.1. The data set out in Table 30.1 refer to 10 subjects from a cohort
study. Subjects E and G died at the second date while the remaining eight
subjects survived until the date of analysis (31/12/89). List the members of the
risk sets for both deaths when the appropriate time scale is (a) calendar date (b)
age (c) time since entry into the study. '

The difference between these analyses is that they represent three different
models. In each case the A, parameters represent variation of baseline
rates along different time scales.

30.4 Choice of time scale

Our derivation of Cox’s method allows for time to be interpreted in the most
appropriate manner for a particular analysis. Usually this will mean the
time scale with the strongest relationship to failure rate. Regrettably it is
still the case that some major software packages do not allow such flexibility.
This reflects the fact that the method was motivated by problems of survival
following medical treatment. In such studies the appropriate time scale is
time since start of follow-up so that all observation of all subjects starts at
time zero. In such studies, risk sets always become smaller {as a result of
failure and censoring) as time advances.

.On other time scales there will be late entry of subjects (observation
starting at time > 0) and risk sets may be supplemented by new entrants
as time advances. In order to be able to select the most appropriate time
scale for an analysis, the software must be capable of allowing for late entry.
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30.5 Confounders other than time

The confounding effect of time is allowed for by including time in the
first part of the model. For example, taking age as the time variable,
the multiplicative model

includes the effect of age in the baseline rate parameters. The most‘ ok.)vious
way to deal with another confounder, such as sex, is to include it in the
second part of the mode], as in

Rate = | Corner x Age|x|Sex x A x B|.

" This model assumes that the effect of sex is constant with age so that the

baseline rates for males are a constant multiple of those for females. To
extend the model to allow for different patterns of baseline rates for each
sex, the interaction between age and sex must be included in tpe model.
When the age scale is divided into clicks this interaction term involves a
very large number of parameters, so it is best to absorb these parameters
in the baseline rate part of the model, giving

Rate = l?]orner x Age X Sex x Age-Sexl x|AxB)

This model has the effect of allowing different sets of baseline rate param-
eters for males and females. If we estimate these algebraically as before,
we find that the profile likelihood for the rate ratio part of the model still
has the form of a partial likelihood:

Z log (e(for case) Z 9)

Failures Risk set

but the risk set is now restricted to contain only those subjects who (a)
were under study at the time of failure of the case, and (b) belonged to the
same sex as the case. Thus the analysis simulates a matched case-control
study in which controls are matched to cases with respect to sex. )
This extension of Cox’s method is usually referred to as a stratlﬁed
analysis, although more properly it should be referred to as dou{)ly strati-
fied — Cox’s method stratifies by time alone, while the extended metk%od
stratifies by both time and a further variable. In our example stratification

-is by age and sex.

Exercise 30.2. Repeat Exercise 30.1 for an analysis which is to be stratified by
Sex.

" Tt can be seen from the last exercise that when an analysis is doubly strat-
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ified the risk sets contain fewer subjects than when it is stratified on time
alone. Rather unexpectedly, therefore, the effect of adopting a more compli-
cated model is to reduce the amount of computation required to estimate
the parameters of interest. Further stratification can be introduced but
there is a limit. If a study is overstratified, some risk sets will contain
only the case, there being no other subjects matching the case in respect
of all stratifying variables. Such sets make no contribution to the profile
likelihood, so the information from these events is lost.

30.6 Estimating the baseline rates

;. In some circumstances the dependence of rates upon time is of some inter-

est, and we would wish to estimate the baseline rates, AL. In this section
we shall show that the plot of the most likely estimate of the baseline rate
against time turns out to be very similar in form to the Aalen— Nelson
estimator introduced in Chapter 5.

Given the values of the parameters in the second part of the model the
most likely values of the baseline rates, A%, were shown in Section 30.2 to
be

dt
2o vl

where 6; is given by the second part of the model. When we divide time
into clicks of duration h and redefine y} to be 0 or 1 at-risk indicators, this
expression becomes
dt
> hyi;

In most clicks no failure occurs, d* = 0, and the estimate of the rate is zero.
In a click in which a failure occurs, d* = 1, the estimated rate is

1
th yfei,

which becomes very large as h becomes very small. However, the cumulative
baseline rate increases at each click by the amounts hA%, and the estimated
values of these are either Zero or

1
2 Y50

when a failure occurs. Thus the cumulative baseline rate is estimated by
stepped curve with jumps at the observed failure times. This is called the
Aalen-Breslow estimate and is illustrated in Fig. 30.2. The height of the
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Fig. 30.2. The Aalen—Breslow estimate of the cumulative baseline rate.

jump at each failure time is now given by

1/ >0
Risk set

rather than by
1 /(Number of subjects at risk)

as in the simpler case discussed in Chapter 5. As noted there, examination
of the cumulative rate plot allows us to assess the dependence of failure
rate on time.

Solutions to the exercises

30.1 When date is the time scale, membership of risk sets is determined
by whether or not the subject was observed at the date of occurrence of
the death. The risk sets corresponding to the two deaths are as follows:

Date of death Subjects in risk set
3/10/68 A, C, D, E, G (case) _
4/ 7/79 A, B, C, D, E (case), F, H, I, J
The risk set corresponding to the death of subject G contains fewer indi-
viduals since it occurred at a date earlier than some subjects had joined
the cohort.
When age is the time scale, risk set membership is determined by whether
the subject was observed at the age at which the death occurred. The risk
sets are now as follows:
Age at death Subjects in risk set
50.4 A, C, D, E, F, G (case),]
52.6 A, C, D, E (case), F, I, J

When time in study is the scale, the risk sets are as follows:
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Time in study at death Subjects in risk set
15.2 yrs A, B, C D, E, G (case), H, I, J
19.5 yrs A, C, D, E (case), H

30.2 Since subject G is female and subject E is male, the risk set for
the failure of G contains only female subjects and risk sets for the fail-
ure of E contains only males. When date is the time scale, the risk sets
corresponding to the two deaths are as follows:

Date of death Subjects in risk set
3/10/68 A, D, G (case)
4/ 7/79 B, C, E (case), H, I

When age is the time scale, the risk sets are
Age at death  Subjects in risk set
50.4 A, D, G (case)
52.6 C, E (case), F, I

When time in study is the scale, the risk sets are:
Time in study at death Subjects in risk set
15.2 yrs A, D, G (case), J
19.5 yrs C, E (case), H




31 { |
Time-varying explanatory variables

Cox’s method provides a convenient way of controlling for time in the
analysis of follow-up studies. In its simple form the method assumes that
other explanatory variables do not change with time. In this chapter we
show how the method can be extended to allow for this. We also discuss the
closely related problem of analysis strategies when rates vary in relation
to more than one time scale, and draw attention to some dangers and
difficulties.

31.1 The model and the likelihood

We have seen that Cox’s method amounts to dividing the multiplicative
model for rates into two parts:

Rate = CornerxTime]x]AxBx--- .

The first part refers to the baseline rates while the second part specifies
how the rate ratio

6. — Rate for subject ¢ at time ¢
" Baseline rate at time ¢

is related to the explanatory variables A, B, etc.. On a log scale

log(Rate) = | Corner + Time | + | A+B+ J .

In the simple form of the method 8; is assumed to be independent of time.

The extension of Cox’s method with which we are now concerned allows
the relationship between 6; and the explanatory variables to vary with time.
This would be necessary, for example, when studying levels of hazardous
industrial exposures in occupational studies and when studying changing
treatments in long term follow-up studies of chronic disease aetiology. In-
deed most explanatory variables of interest to epidemiologists vary with
time if follow-up is over a sufficiently long period.

Allowing the rate ratio part of the model to change over time involves
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only a simple change to the contribution

log (9(for case) Z 0) )

Risk set

from each risk set to the partial log likelihood. Since the model now predicts
different values of @ at different times the contribution of each risk set must
now be calculated using the values of @ current at the time of occurrence
of the failure.

COMPUTATION

When it comes to computing the likelihood and finding the values of pa-
rameters which maximize it this simple change turns out to have major
consequences, and computation times can increase by several orders of
magnitude. To understand why the computation is so heavy it helps to
look at the simpler version of Cox’s method to see why this does not in-
volve hedvy computations. There are two reasons. First, for any particular
set of values for the parameters, the value of 8 only needs to be worked
out once for each subject. Second, the value of 3~ 6 does not have to be
calculated from scratch for each risk set because the equivalent term from
the previous risk set can be updated by subtracting the values of ¢ for all
subjects lost to follow-up in the intervening period and adding the con-
tributions of those newly joining the cohort. Other terms needed in the
computation of gradient and curvature of the log likelihood can be updated
in a similar way.

When the model allows the rate ratios 8 to change over time a subject
who appears in several risk sets can have different values of 8 in each. This
means that not only must the values of 6 be re-calculated for each risk set

but 3" @ and other gradient and curvature terms must be calculated from

scratch. The result is that the computing time rises dramatically.

Some reduction in computing time can be achieved by sampling the risk
sets. The algebraic equivalence of the partial likelihood in Cox’s method
and the conditional likelihood for matched case-control studies means that
analyzing a cohort study using Cox’s method is the same as analyzing it
as a case-control study in which each incident case is individually matched
with a control set in which the controls are all other subjects under study
at the moment of incidence. Since a case-control study which draws many
controls for each case provides very little more information than one which
draws only a few, we shall lose little by taking a random sample of controls
drawn from each risk set rather than using the entire risk set. Sampling
risk sets in this way creates what is called a nested case-control study. Such
studies offer a number of practical advantages in addition to considerable
computational savings and will be discussed further in Chapter 33.
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Fig. 81.1. Changing exposure group.

31.2 Changing exposure group

One simple but important way in which an explanatory variable can change
with time arises when a subject can change from being unexposed to being
exposed group (or vice versa) during the course of follow-up (see Fig. 3_1.1).
This is most easily dealt with by splitting the follow-up for such subjects
into an unexposed part and an exposed part, and treating the parts as
distinct subjects. The data can then be analysed using the simple form of
Cox’s method in which the explanatory variables do not change with time.
The validity of the analysis depends on a relatively strong assumption con-
cerning the reasons for the change of exposure group, namely that transfer
is unrelated to the subsequent probability of failure. If the transfer mech-
anism operates in a way that selects particularly high or low risk subjects
then subsequent comparisons will be distorted. This is another example of
selection bias. More formally, it is required that transfer must be indepen-
dent of subsequent failure conditional upon the values of all other variables
in the model. If transfer and failure are both strongly related to age (say)
there will be an overall association between transfer time and outcome, but
this will not bias estimates of other effects providing there is no relationship
between transfer time and outcome for subjects of the same age, and pro-
viding the model takes proper account of the relationship between age and
failure rate. Similar considerations apply when there are more than two
categories of exposure or when the level of exposure varies continuously.

Exercise 31.1. Subjects enter a heart transplant programme as unexposed
on joining a waiting list for a transplant, and switch to the exposed group on
receiving the tramsplant. Do you think the assumptions discussed above are

likely to be met in this case?

31.3 Time scales as explanatory variables

Another very common form of time-dependent explanatory variable is. an
additional time scale. For example, in a clinical study in which survival
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Fig. 31.2. Follow-up by age and time.

is analysed largely in relation to time since diagnosis, it will usually be
necessary to control the comparison of different treatments for the age of
the subjects receiving them. For short studies this can be achieved by
including age at. diagnosis, which is fixed for every subject. When follow-
up is over many years it is better to include age itself, which varies with
time. Fig. 31.2 illustrates follow-up of a subject in which observation time
is classified by time since diagnosis and age. The risk sets are determined
by the times of occurrence of failures. Two such times are illustrated in
the figure by narrow vertical bands. One corresponds to the risk set for
the failure of the subject shown while the other is an earlier failure. The
subject shown contributes to both risk sets, but is of a different age on the
two occasions.

One possible analysis would be to include time since diagnosis in the first
part of the model, so that this is the time scale which is used to determine
the risk sets, and to include age as a time varying explanatory variable in
the second part of the model. This could be done either by dividing the
age scale into 5- or 10-year bands and treating it as a categorical variable,

as in
log(Rate) = | Corner + Time |+ LAge +A+B+-.- | ,

or by treating age as a quantitative and fitting linear effects, and possibly
quadratic effects too, as in

log(Rate) = | Corner + Time +I [Age] + [Age-sq] + A+B+--- ‘ .
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When the partial log likelihood is formed for either of these analyses each
risk set contributes a term of the form log(6/ > 8) where the values of 8
for the subjects in the risk set are determined by the relationship between
log(8) and the parameters in the ‘second part of the model. As an example
of this computational process consider the model

log(Rate) = Corner + Time |+ Age+A+B

where age has five levels, A has two levels and B has three levels. The
parameters in the second part of the model are then Age(1), ---, Age(4),
A(1), B(1) and B(2). Now consider a subject, at level 1 for A and level 2
for B, who appears as a survivor in the risk sets at two failure times, and
suppose that this subject is in age band 3 at the time of the first failure,
and in age band 4 at the time of the second failure.

Exercise 31.2. Write down an expression, in terms of the parameters, for the
values of log(6) for this subject, in the two risk sets.

When there are two time scales a natural question to be considered is
which should be included in the baseline rates part of the model and which
should be included in the rate ratio part. The choice depends on the way
that rates vary along each time scale. If this variation is to be modelled in
the rate ratio part of the model then we must either divide the scale into
broad bands or fit simple mathematical functions of time, such as linear or
quadratic. The former strategy is adequate if the variation of rates is not
too rapid, while the latter is only possible if the variation is regular enough
to describe by simple mathematical functions. If variation is both rapid
and irregular neither approach works very well and the variation should be
modelled in the baseline rates. Thus if it is suspected that variation along
one scale will be rapid and irregular this should be the scale whose effects
are modelled by the baseline rates, and other scales should be treated as
time varying explanatory variables. If variation is smooth along all scales
it is better to use. the scale with the strongest effects for the baseline rates.

Exercise 31.3. Discuss appropriate strategies for modelling the effects of age
and calendar time on incidence of (a) a chronic degenerative disease, and (b) an
infectious disease.

31.4 Dependencies between time scales

Different time scales are not truly different variables but the same variable
measured from different origins. It is therefore impossible for a subject
to advance one year on one scale without simultaneously advancing one
year on other time scales. For example, we cannot pass through a year
of calendar time without advancing a year in age — would that we could!
This dependency between time scales can lead to difficulties when trying
to interpret the estimated effects of changes on these time scales.
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As an illustration we shall return to the example of age and time since
diagnosis in a clinical follow-up study. Let us first consider the model

log(Rate) = | Corner + Time +’ [Age-at-diagnosis] + - - - | ,

in which the effect of time since diagnosis is the main time scale and is
included in the first part of the model, while age at diagnosis is included
as a linear effect in the second. The parameter [Age-at diagnosis] measures
the change in the log rate per one year change in age, holding time since
diagnosis constant at any arbitrary value. Fig. 31.3 shows two subjects who
are diagnosed at ages 47 and 61 respectively; if we assume these subjects
have the same values for any other explanatory variables the difference in
log rate predicted by the model, at diagnosis, or at any value of time since
diagnosis, is

(61 — 47) x [Age-at-diagnosis] = 14 x [Age-at-diagnosis).

Now consider the model

log(Rate) ={ Corner + Time |+ | [Age] + - - -

in which age varies with time. The two subjects in Fig. 31.3 have a 14
year age difference at diagnosis, so this model predicts a difference in log
rates between the two subjects of 14 x [Age] at diagnosis. Because these
two subjects have a 14 year age difference not only at diagnosis but at any
time after diagnosis, the model also predicts a difference of 14 x [Age| at
any value of time since diagnosis. Thus both models predict a constant
difference in log rate at any value of time since diagnosis. In the one
case the prediction is 14 x [Age-at-diagnosis], in the other the prediction is
14 x [Age]. This is true for any pair of subjects; the models make identical
predictions and cannot be differentiated, the [Age-at-diagnosis] parameter
in the first model is making the same comparison as the [Age] parameter
in the second.

There may well be scientific interest in discriminating between models
in which the age at diagnosis determines prognosis, and models in which
age itself is the determinant, but if we were to fit the model

log(Rate) = | Corner + Time +“Age] + [Age-at-diagnosis] + - - - ’ ,

in order to try and separate the linear effect of age controlled for time since
diagnosis from the linear effect of age at diagnosis controlled for time since
diagnosis, we would run into difficulties. When time since diagnosis and
age are held constant, there can be no further variation in age at diagnosis
so that the [Age-at-diagnosis] parameter cannot be estimated. Likewise,
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Fig. 31.3. Observation of two subjects.

time since diagnosis and age at diagnosis uniquely determine age so that
the [Age] parameter cannot be estimated. Again the two subjects shown in
Fig. 31.3 demonstrate the problem. The new model also predicts that the
difference in log rates remains constant at any value of time since diagnosis
but this difference is now equal to

14 x [Age] + 14 x [Age-at-diagnosis] = 14 x ([Age] + [Age-at-diagnosis]),

where the parameters [Age] and [Age-at-diagnosis] now refer to the new
model which contains both linear effects. Because any values for the two
parameters which have the same sum, make the same predictions, the
parametérs-cannot be estimated individually. They are said to be non-
identifiable or aliased.

A computer program will usually warn the user when two parameters
are non-identifiable and then omit one of them from the model. This is
quite useful when the object is to control for age and age at diagnosis, but
if the object is to disentangle their effects, what the computer program is
saying is that we are attempting the impossible.

The non-identifiability of parameters for different time scales refers to

--their linear effects. When we come to fit models with non-linear terms,

things are not so bad. Consider for example the predictions of the model

log(Rate) = | Corner + Time +| [Age] + [Age-sq] + - - l
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for the two subjects shown in Fig. 31.3. At the time of diagnosis the model
predicts a difference in log rates of

(61 — 47) x [Age] + (61% — 47%) x [Age-sq] = 14 x [Age] + 1512 x [Age-sq].

However, 5 years after diagnosis, their ages are 66 and 52 and the model
predicts a difference in log rates of

(66 — 52) x [Age] + (662 — 52%) x [Age-sq] = 14 x [Age] + 1652 x [Age-sq].

In the model with non-linear effects, therefore, the difference between log
rates for the two subjects does vary with time since diagnosis. The model

log(Rate) +

[ [Age-at-diagnosis] + [Age-at-diagnosis-sq] + - - - |

predicts a difference in log rates of
(61 — 47) x [Age-at-diagnosis] + (612 — 47%) x [Age-at-diagnosis-sq]

throughout the follow-up, and this is a different prediction than the one
obtained from the model with age and age-squared. The linear parts of the
two predictions are still the same and cannot be separately estimated, but
the non-linear parts are different and can be.

Similarly, if we were to fit the model

log(Rate) = +

[Age] + [Age-sq] + [Age-at-diagnosis]+
[Age-at-diagnosis-sq] + - - - )

the parameters [Age] and [Age-at-diagnosis| are not identifiable while the
parameters [Age-sq] and [Age-at-diagnosis-sq] can be estimated. The same
is true for any other non-linear component of the relationships.

31.5 Discrete time bands

In the above discussion the time variables are measured exactly; when the
time scales are divided into discrete bands the position is slightly more com-
plicated. To illustrate this we shall return to the two subjects of Fig. 31.3
and imagine a model in which age has been grouped into 5-year bands but
time since diagnosis is still measured exactly. At the beginning of follow-
up one subject is in the 45-49 band and the other is in the 60-64 band.
However, after three years the former subject has moved into the 50-54
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band while the latter remains in the 60-64 band. It will appear to a com-
puter program that the age difference between the subjects has narrowed!
As a result the program will not spot the underlying non-identifiability of
models such as

log(Rate) = rCorner + Time | + lﬁge + Age-diag + - J

and fit them without complaint. However, the linear components of the
relationships with age and age at diagnosis have only become estimable
because of the inaccuracy introduced by banding and the resulting param-
eter estimates are uninterpretable.

31.6 Modelling vital rates

A familiar-exgmple of these problems arises in ‘age-period-cohort’ mod-
elling of mor‘gzty and other vital rates, where the aim is to disentangle
the dependence of rates upon age, calendar time (period), and date of
birth (birth cohort). This comparison raises exactly the same problem as
above and has provoked a lot of discussion in the epidemiological litera-
ture. Much of this has been based on the misconception that the problem
is a shortcoming of current statistical methods and that its solution awaits
only methodological advances. This is not the case. The difficulty is in-
escapable and arises from the fact that subjects cannot move in one time
scale without an identical move in others.

Fig. 31.4 shows a table in which both both age and calendar period have
been divided into 10-year bands. Tables of rates, classified in this way, are
frequently available from official published sources, and allow effects of year
of birth (birth cohort effects) to be estimated approximately. If we remem-
ber that observation of individual subjects is represented by diagonal lines
in the age and calendar time Lexis diagram (illustrated by the arrow), it
is clear that diagonal groupings of cells in the table correspond approzi-
mately to birth cohorts. The cell labelled 0 refers to subjects born around
1870, those labelled 1 to subjects born around 1880, and so on. Although
this correspondence is only approximate, the new discrete codings for age
period and cohort behave very much like the underlying continuous scales.
In particular, they are linearly dependent. In our example,

Cohort = 3 + Period — Age.

This means that when two are fixed the third is also fixed and in models

* such as

log(Rate) = Corner + [Age] + [Period] + [Cohort]

the parameters are unidentifiable, and it is impossible to disentangle the
linear effects of all three variables.
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Period
1945-54 1955-64 1965-74 1975-84
Age (Band) (0) (1) (2) (3
75-84 (3) 0 o1 2 3
65-74 (2) 1 2 3 4
5564 (1) 2 3 4 5
45-54 (0) 3 4 5 6

Fig. 31.4. Approximate birth cohorts.

Some investigators have returned to the raw data in order to allo-
cate subjects to their true birth cohort. This avoids the approximation
in Fig. 31.4 but leads to a serious fallacy. Fig. 31.5 shows how the exact
birth cohorts move across the Lexis diagram. The cell labelled 0 refers to
the 1860-69 birth cohort, those labelled 1 to the 187079 cohort, and so
on. The discrete codings no longer behave like the underlying scales. For
example, birth cohort 1 is observed in 3 cells; the transition from the first
to the second involves a change of age band ( from 65-74 to 75-84) without
change in calendar period, while the transition from second to third corre-
sponds to a move through calendar time without change in age! Looked at
naively it would appear that, by grouping, we have created a natural exper-
iment in which subjects can age instantaneously and travel in time without
ageing. The fallacy lies in the fact that the regions are triangular and that
regions shaped 74 disproportionately represent ages towards the upper end
of the 10-year band and dates towards the lower end of the period, while
regions shaped / disproportionately represent ages at the lower end of the
band and periods at the upper end. Unfortunately, computer programs
have no way of knowing this. They will believe that a miraculous natural
experiment has been observed, and estimate separate linear effects for all
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Period
1945-54 1955-64 1965-74 1975-84
Age (Band) (0) (1) (2) (3)
0 1 2
75-84 (3)
1 2
1 2
65-74 (2)
2
2
55-64 (1)
6
6
45-54 (0)
6 7

Fig. 31.5. Exact birth cohorts.

three scales without complaint. This uncritical behaviour of computer pro-
grams (which can’t know better) has been hailed by some epidemiologists
and statisticians (who should) as a ‘solution’ to the identifiability ‘prob-
lem’. The reverse is the case; the computer solution is fallacious, being
based entirely on grouping inaccuracies, and the resultant estimates are
uninterpretable. It is worth pointing out that this pitfall is not confined
to the age-period-cohort problem, but can be encountered whenever more
than one time scale is involved in an analysis. ’

Solutions to the exercises

31.1 When a heart becomes available for transplantation and there is
more than one patient eligible to receive it, there is potential selection bias.
A controlled study would randomize such choices to exclude selection bias,
but in an observational study it will always be difficult to know whether

.. the recipient was selected because the clinician felt that this patient was

most likely to benefit. Such selection would cause serious bias in a simple
analysis. In theory this can be offset by including in the analysis any
prognostic factors likely to have been used by the clinician making the
decision, but in practice one can rarely be sure that all relevant factors
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have been taken into account. We shall discuss this example in more detail
in Chapter 32.

31.2 For the first risk set
log(#) = Age(3) + A(1) + B(2).
For the second risk set
 log(6) = Age(4) + A(1) + B(2).

31.3 Incidence rates of chronic degenerative diseases such as ischaemic
heart disease and most cancers rise steeply with age. In such diseases age
may usually be thought of as a surrogate for the cumulative damage in-
flicted by a large number of influences throughout life. Such cumulative
damage will be reflected in a smooth increase of rates with age so that
simple linear or quadratic models for the age effect are usually satisfactory.
Grouping age by 5 or 10 year bands will also work quite well. Age rela-
tionships for incidence of infectious diseases are usually more complicated.
Increasing immunity with age will produce a smoothly decreasing curve,
but where transmission of the infectious agent depends upon various social
influences such as schooling, employment, sexual activity etc., these may
give rise to rather irregular age curves. Simple mathematical functions for
age-incidence curves are therefore less likely to be useful. Grouping may
also be difficult because of abrupt changes in incidence due to age related
changes in social behaviour.




32
Three examples

This chapter describes three studies where the explanatory variables change
with time and where the analysis has been helped by the statistical methods
discussed in immediately preceding chapters. The first is a clinical follow-
up study of heart transplant patients and has already been introduced in
Exercise 31.1. The second is an epidemiological study into the effects of
bereavement in old people. The third is concerned with the important
problem of estimating the parameters of cancer screening programmes to
help public health administrators in planning such services.

32.1 Mortality following heart transplantation

The first example concerns the survival of patients in the Stanford heart
transplant program.* The basic nature of the data is illustrated in Fig. 32.1.
The follow-up of patients starts as soon as they are enrolled in the program
to await a suitable heart. In this phase of the follow-up, patients are in the
pre-transplant state. When a heart becomes available, and if selected, trans-
plantation takes place and the patient transfers into the post-transplant
state. The diagram shows two patients, one of whom dies some time after
transplantation while the other dies while awaiting a suitable heart.

The diagram also indicates (by the two vertical lines) a stratification
by time in programme. In this time band there is some person-time pre-
transplant and some post-transplant. This allows comparison of mortality
- in post-transplant patients with that in controls who are still awaiting
transplantation. The possible biases in this comparison were the subject
of Exercise 31.1. Here we are more concerned with the mechanics of the
analysis. In this comparison it would be necessary to control for such vari-
ables as age (either itself, or at enrollment into the programme), date when
enrolled, date when transplanted, and prognostic factors such as record of
previous surgery. Multiplicative models fitted using Cox’s method can be
used to do this.

*Crowley, J. and Hu, M., Journal of the American Statistical Association, T2, 27-36.
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Post-transplant
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t=0 ! Time in
| programme,
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Pre-transplant |
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Fig. 32.1. Mortality following heart transplant.

"These models are based on the assumption that

Mortality rate for transplanted patient
Mortality rate for untransplanted patient

= Constant,

that is, the rate ratio does not vary either with time since entry into the
program or with time since transplantation. The latter seems very unlikely.
We might even expect an initial adverse effect of transplantation (rate
ratio greater than 1) which would later be replaced by a beneficial effect
(rate ratio less than 1). The assumption can be relaxed by allowing the
transplantation effect to vary with time since transplantation — a variable
whose evolution over time can be demonstrated by adding a further axis
to the follow-up diagram, as in Fig. 32.2.

Exercise 32.1. Time since transplant can be included in the model for the
rate ratio in a number of ways. Perhaps the simplest is to include time since
transplant as a quantitative variable as in

log(Rate) = Corner + Time + Transplant -+ Transplant - [Time-since-transplant] ,

where time is time in program. What signs would you expect for the two pa-
rameters of this model? Sketch the graph showing how the rate ratio would vary
with time since transplant in this model. (You should assume that Time-since-
transplant is coded zero until transplantation occurs.)

Other potential effect modifiers are age at transplantation, time spent
awaiting transplantation, and closeness of matching of tissue type with
the donor.

32.2 Bereavement in the elderly

The second example is drawn from a study of the effect of bereavement
(death of spouse) in an elderly population.! There is some empirical evi-

fJagger, C. and Sutton, C.J., Statistics in Medicine, 10, 395-404.
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Time
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Fig. 32.2. Incorporating time since transplantation.

dence that, for a period following the death of a spouse, the mortality rate
of the surviving partner is elevated. Fig. 32.3 shows a plausible relation-
ship between mortality rate, expressed relative to mortality in persons with
surviving partners, and time since death of spouse. Such a relationship can
be modelled by a simple function such as

Rate ratio = a + S exp(—7t),

where a, (3, and <y are parameters. At t = 0 the rate ratio is o+ and, with
the passage of time since bereavement, it falls away to «. The parameter
-~ controls how soon the rate ratio dies away. ’

Fig. 32.4 shows follow-up of four subjects in a cohort study by calendar
time and by time since loss of spouse. Before bereavement, subjects are fol-
lowed through time, thus allowing measurement of baseline mortality rates.
Following death of a spouse, observation may be represented by diagonals
in the Lexis diagram formed by plotting calendar time against time since
bereavement. QOur diagram shows the pattern of observation of two cou-
ples. For the sake of clarity, the diagram has been simplified by omitting
age, although this must be included in the analysis. In a fuller representa-

..tion, observation of subjects with living spouses would be represented by

lines in an age by calendar time Lexis diagram, while bereaved subjects
would be represented by lines in a three-dimensional diagram formed by
age, calendar time and time since bereavement.

The analysis of this study must relate mortality rates to all three time
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Fig. 32.3. Mortality following bereavement.

Time since bereavement
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Fig. 32.4. A study of mortality following bereavement.

Calendar time
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-

scales. The effect of time since bereavement is modelled by
Rate ratio = a + B exp(—~t),

which describes the relationship using three parameters. For modelling the
effects of age and calendar time, all three possibilities discussed in Chap-
ter 31 are open to us. A frequent recommendation is that the scale used in
the construction of risk sets should be that with the strongest relationship
with event occurrence, and this would argue for age being dealt with in
this way. However, mortality in the elderly also varies quite markedly with
calendar time, owing to climatic fluctuations, influenza epidemics, and so
on. While the age relationship is a smoothly increasing function and may
easily be modelled by a linear or quadratic function, the relationship with
calendar time is very irregular. It follows that a better strategy is to take
calendar time as the scale for definition of risk sets, and to include age in
the model as a time-dependent continuous quantitative variable.

Fig. 32.4 illustrates the construction of the risk set in calendar time.
The risk set corresponding to each death consists of all those subjects
under study in the time slice containing it — illustrated by the vertical
band in the diagram. Two of our four subjects belong to the indicated risk
set — one as the case. At the relevant date, both have been bereaved and
the model would assign them different values of 6 (> 1.0) according to the
time since their bereavement.

The analysis could also be carried out by creating a nested case- control
study by sampling risk sets. This possibility also suggests the design of a
true case-control study.

Exercise 32.2. Describe a case-control study into mortality following bereave-
ment which mirrors the analysis described above. What sources of bias can you
foresee?

32.3 Estimating the parameters of a screening test

Our final example concerns the estimation of the parameters of a cancer
screening programme.* The aim of such programmes is to detect cancer
during the preclinical detectable phase (PCDP) — the period, prior to the
time at which the disease would have been detected symptomatically, dur-
ing which there is some possibility of detecting the disease by screening.
Two parameters which it is important to know are the sojourn time (the
name given to the duratiori of the PCDP) and the sensitivity, defined as the
probability of detecting disease by screening during the PCDP. We shall

“denote these parameters by 7 and 7 respectively, so that « is the proba-

bility that screening would detect the disease if applied within a period of

tDay, N.E. and Walter, S.D., Biometrics, 40, 1-14.
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duration 7 before the time at which the disease would have been discovered
anyway.

Interpretation of these parameters and comparisons between different
population groups and screening tests requires some care. In general, a
better test will lead to increases in both 7 and 7. More rapid development
of tumours will be reflected in decreased values for 7, since the disease will
move through the PCDP more quickly. Finally, 7 will also be affected by
factors which determine rapidity of diagnosis in the absence of screening,
so that populations with better access to medical services will usually have
smaller values for .

We shall now show how these parameters may be estimated from stud-
ies of interval tumours — incident cases detected by normal clinical means
in the intervals between screening appointments. Let us consider the ex-
pected variation of incidence following a negative screening test under our
simple model, assuming first that the test is 100% sensitive (i.e. 7 = 1.0).
In this case, there would be zero incidence of interval tumours for a period
of length 7 following the negative screen, since all the tumours which would
have arisen in this period will have been detected at screening. Conversely,
after a time 7 has elapsed since screening, the rate of diagnosis of interval
tumours will return to the normal incidence rate in an unscreened popu-
lation, since no tumour detected in this period could possibly have been
found at the screening appointment. Thus, the rate ratio

Incidence rate of interval tumours following negative screening test
- Incidence rate in the unscreened population

will be 0 until time 7 following screening, and then jump to 1. Making
allowance for less than 100% sensitivity leads to the relationship shown in
Fig. 32.5; the proportion of the normal incidence seen in the period after
screening is contributed by those cases missed by the screening test.

This model is clearly oversimplified, and we would not expect to ob-
serve anything so clearly defined in practice. A more realistic model may
be obtained either by allowing for sojourn times to vary or, alternatively,
allowing the sensitivity of the test to vary smoothly throughout the PCDP
from zero up to . These models are indistinguishable and lead to a pre-
dicted incidence pattern such as is shown in Fig. 32.6. The curve shown is
a simple exponential function of time elapsed since negative screen,

Time since screen
~ .

Rate ratio =1 — wexp (—

The parameters of this curve, 7 and 7, may be thought of as the sensitivity
and mean sojourn time respectively.

Fig. 32.7 illustrates observation of four subjects in a follow-up study.
Three of these enter the study prior to having been screened but are
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Fig. 32.5. Incidence following a negative screen.
screened during follow-up, while the fourth enters the study some time

after a negative screening test. T'wo of the subjects subsequently develop
interval tumours. In an analysis with calendar time as the major time scale,

Rate ratio

1-7

o] Time since screen

Fig. 32.6. A more realistic evolution of incidence.
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Fig. 32.7. A follow-up study of incidence following a negative screen.

these cases will be compared with risk sets comprising all individuals under
study at the date of diagnosis. In the diagram this is illustrated for. the
first case by the vertical band. It can be seen that all four of the indicated
subjects fall into this risk set; one is still unscreened and is assigned 8 = 1
by the model, while the other three have different times since their negative
screening test and, for dny values of 7 and 7, a model such as that illus-
trated by Fig. 32.6 assigns three different values of 8 to the others. Each
interval tumour contributes similarly to the log likelihood, and computer
programs may be used to maximize this with respect to 7 and « to obtain
best estimates of these quantities. Approximate confidence intervals may
be found in the usual way from the curvature of the profile log- likelihoods.

Exercise 32.3. What assumption concerning selection of subjects for screening
must hold for this analysis to yield unbiased results?

The above discussion slightly over-simplifies the analysis. In particular,
it will be necessary to allow for age in the model. As in our previous
example, sampling risk sets to create a nested case-control study will avoid
some computation, and also suggests a true case-control design.

Exercise 32.4. Describe a case-control study to investigate sensitivity and so-
journ time of a screening test for breast cancer. Would you expect to obtain
approximately the same results as in a cohort study?
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Solutions to the exercises

32.1 The Transplant main effect measures the log rate ratio immediately
following transplantation. We might expect this to be positive immediately
after surgery, corresponding to an elevated mortality rate, but then to
decrease with time, giving way eventually to a beneficial effect. In.this
case the interaction parameter would be negative.

The predictions of the model in terms of the log rate ratio are shown in
Fig. 32.8. The parameter « is the Transplant initial effect and is shown
here as positive, indicating an adverse effect. The slope of the line is the
Transplant-Time interaction parameter and is shown as negative. This
model predicts that transplantation will have an increasingly beneficial
effect with increased time from transplantation. The horizontal dotted line
represents the level of mortality in untransplanted controls. On the original
scale, the rate ratio initially jumps to exp(a) immediately after transplant
but then falls exponentially towards zero.

32.2 The events of interest are deaths in elderly people, let us say those
over 70 years of age. A geographically based case-control study would
include as cases all such deaths amongst residents of a town or county.
Each time such a death occurs, a set of controls would be drawn from the
study base. Matching of controls to cases for age and sex would improve
the efficiency of the study. Information concerning vital status of spouse
and, where appropriate, date of death of spouse, would be obtained ret-
rospectively for all cases and controls. This study would run little risk of
information bias, since the relevant data are on public record. However,
selection bias could be a problem. These are some of the problems:

e A suitable, accurate, sampling frame may not be available.

e Refusal to participate by potential controls could lead to ‘volunteer’
bias in the control group finally obtained.

e Migration away from the sampling frame as a result of bereavement
is a very real possibility. A bereaved old person may not be able to
care for him or herself and might be forced to go into residential care
or to live with relatives.

These problems do not exist when a cohort of identified subjects is followed
prospectively.

32.3 It must be assumed that individuals selected for screening would

.. have the same subsequent incidence rates as those not selected. This as-

sumption would not be violated by a screening policy which varies with age,
providing confounding by age is dealt with in the analysis. However, if pa-
tients are referred to screening as a result of early non-specific symptoms,
there would be some bias.
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32.4 A population based screening programme requires a computer reg-
ister to generate screening invitations, so this register can form the study
base. The study would be of newly diagnosed cases who were not diag-
nosed as a result of routine screening and whose names could be found on
the computer register. Controls for each case would then be drawn from
this register. If carried out carefully, it is difficult to see any reason why
such a study should give different answers from a cohort study. Indeed, the
existence of the computer register means that the study is really nested
within a cohort study (sée Chapter 33).

Log rate ratio

T N 1

0 Time since transplant

Fig. 32.8. Log rate ratio against time since transplant.
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Nested case-control studies

Any cohort study can be used to generate a case-control study by sampling
the cohort for controls to use in place of the full cohort. The case-control
study is then said to be nested in the cohort study. For each case the
controls are chosen from those members of the cohort who are at risk at that
moment, in other words from the risk set defined by the case. Although the
idea of nested case-control studies predates Cox’s method for the analysis
of cohort studies, the design and analysis of such studies has been greatly
clarified by the ideas of partial likelihood and risk sets.

33.1 Reasons for using a nested case-control study

The main reason for using a nested study is to reduce the labour and cost
of data collection by collecting complete data only for those subjects who
are chosen for the nested study. For example, in cardiovascular epidemiol-
ogy the habitual energy expenditure of subjects has been measured using
detailed diary records in which subjects record their physical activities in
15-minute blocks. Coding these diary records into energy expenditure is
time consuming and expensive, but with a nested case-control design this
conversion is only needed for the cases and their controls. Similar con-
siderations apply to coding diary records in.cohort studies in nutritional
epidemiology, and to expensive laboratory analyses on biological specimens
— these can be collected for all subjects in the cohort but “banked” and
analyzed only for cases and their controls.

Another use of nested case-control studies is when an on-going cohort
study is to be used to address a question about an exposure or con-
founder not measured in the original design. Data collection can be re-
stricted to those subjects in a nested study. For example, suppose that rou-
tine health service monitoring data shows differences in mortality between
groups of patients but, because information is not available on important
confounders, it is not possible to exclude confounding as an explanation. A
more detailed abstraction of medical records in a nested case-control study
could make it possible to measure the confounders in the nested study and
hence to control for them.

The final reason for using a nested case-control study is to avoid the
computational burden associated with time-dependent explanatory vari-
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4

Time

Fig. 33.1. Definition of risk sets.

ables. This problem was discussed briefly in Chapter 31, where we indi-
cated that a natural design for such studies is to randomly sample the risk
sets on which a full analysis by Cox’s method would be based. In this
chapter we discuss this suggestion in more detail.

33.2 Sampling risk sets

In nested case-control studies, controls are drawn for each case from the
corresponding risk set. Fig. 33.1 shows the risk sets for a follow-up study
of eleven subjects, four of whom fail. Corresponding to each of these four
events is a risk set containing all those subjects under study at the moment
of event occurrence — that is, all subjects whose observation lines cross
the relevant vertical. To select controls we ignore the case and choose a
random sample of the remaining subjects in the risk set. Sampling of a
risk set must be carried out independently both of the sampling of other
risk sets and of any later failure or censoring of its members.

Exercise 33.1. What are the sizes of the four risk sets? Indicate how you would
select a single control for each case.

In the analysis of the full cohort study using Cox’s method, each of the
events contributes a term of the form

log (9(‘for'case) E 9)

Risk set
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to the log partial likelihood. When the risk sets are sampled this becomes

log <9(for case) E 9) )

Case-control set

which is identical to the log likelihood contribution of a matched case-
control set in a conditional logistic regression analysis.

CAN THE SAME SUBJECT BE INCLUDED MORE THAN ONCE?

In the procedure for sampling risk sets described above the same subject
can be selected as a control more than once and may eventually become
a case. This will not happen very often for rare events but when it does
it should be permitted. Any intervention in the sampling procedure to
prevent its happening violates the requirement for independent sampling
of risk sets.

A second aspect of this question is illustrated by the fourth subject
shown in Fig. 33.1 who belongs to all four risk sets. If this subject is
drawn as a control in one of these risk sets it is tempting to use him
or her as an extra control in the other sets. Including a subject in all
samples for which he/she is eligible represents an extremely interdependent
method of sampling risk sets. The result is that the successive terms which
contribute to the partial likelihood are no longer independent — each term
does not contribute quite as much new information as it appears. When
this dependence is taken into account the expected gain in precision as a
result of multiple use of controls largely evaporates. However, there may
be other advantages. One is that, because controls are no longer tied to a
particular risk set, they can be randomly selected at the time of recruitment
into the cohort study. This design has been called a case-cohort study,
and some logistic advantages have been claimed. One situation in which
it might be considered is for studies in which several different types of
event are of interest — for example, occurrence of several different cancers.
Independent sampling of risk sets leads to a different set of controls for each
type of event while the case-cohort design allows a single control sample
to be used for all outcomes. Against this must be weighed the fact that a
more complex analysis is required to take account of the interdependency
in the sampling of controls.

HOW MANY CONTROLS?

If there are m times as many controls as cases, the precision of the case-
control study compared to the cohort study is given by

SD of estimate from case-control data + 1
SD of estimate from entire study base “m
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This. formula applies to the simple situation where the exposure effect is
small and there is no control for confounding, but it can also be used as a
rough guide more generally. Since /1 + 1/m is only slightly greater than
1 for m > 5 little accuracy is lost by taking five or at most ten controls for
each case, rather than the whole risk set.

33.3 Matching

In an occupational study of lung cancer, smoking will be a strong con-
founder, and the comparisén of occupational groups should therefore be
controlled for smoking. An overall sample of (say) five controls per case
could lead to a very different ratio within smokers and non- smokers. Since
there will be many more cases among the smokers than among the non-
smokers it is likely that there will fewer than five controls per case among
smokers and many more than five per case among non-smokers. In such
cases it would be better to match controls to cases with respect to smoking
habits. Of course, this requires that smoking data are available for the
entire cohort. The contribution to the log likelihood now becomes

-log (e(for case) /29)

where the ) 6 denominator refers to summation over the case and the
matched controls. Matching the controls to the cases on smoking does not
allow estimation of the smoking effect, but when smoking is a confounder
this need not concern us.

33.4 Counter-matching

In the previous section we discussed the situation where the values of the
confounding variables are known for all subjects in the cohort and a nested
case-control study is used to reduce the cost of measuring the exposure.
Matching controls to cases on the confounding variables can improve the
precision of the comparison of exposure groups although, as a side-effect,
the effects of the confounding variables cannot be estimated. What about
the opposite situation in which the exposure variable is measured for all
subjects in the cohort and a nested case-control study is used to reduce
the cost of measuring the confounding variables? In this case it would be

disastrous to match the controls to the cases on exposure since we would

then be unable to estimate the effect of exposure. However, the informa-
tion available for the full cohort can still be used to sample controls more
efficiently.

To illustrate this we consider first the case in which all subjects are
classified as exposed or unexposed. For any particular risk set let the
numbers of exposed and unexposed subjects be N; and Ny respectively,

and suppose we are to draw m controls. The nested case-control set will
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contain n = m + 1 subjects (the case plus m controls). Let the split of
these n subjects between exposed and unexposed be n; and ng. When
controls are drawh by simple random sampling of the risk sets this can
produce a very uneven split of exposed and unexposed subjects and lead
to inefficiency. The efficiency of the study can be improved by fixing the
split in advance — usually to be 50:50. '

For example, suppose that there are 10 exposed and 100 unexposed
subjects in the risk set and we wish to select a sample of 5 exposed and
5 unexposed, including the case which defines the risk set. If the case is
exposed this means we need 4 exposed controls and 5 unexposed controls.
If the case is unexposed we need 5 exposed controls and 4 unexposed con-
trols. For a sample of one exposed and one unexposed an exposed case will
always be paired with an unexposed control and an unexposed case with an
exposed control. It is from this that the term counter-matching is derived.

When sampling in this way the contribution of each risk set to the
partial log likelihood must be adjusted to reflect the fact that the exposure
distribution in the sample is different from the exposure distribution in the
risk set. The modified log partial likelihood contributions take the form

log <(W9) (for case) Z (W@)) ’
Case-control set

where W are risk weights for each subject which compensate for the sam-
pling. These weights take the values =
W= Ni/ny for an exposed subject
“ | No/ng for an unexposed subject.

Note that the choice of weight depends only on exposure status and not
upon whether the subject is a case or a control.

Exercise 33.2. What are the weights for exposed and unexposed subjects in a
risk set With N; = 10 exposed subjects and Ng = 100 unexposed subjects, in a
1:1 cdunter-matched study?

Exercise 33.3. For the special case where there are no confounders 8 takes the
value 1 for an unexposed subject and the value ¢ for an exposed subject, where
¢ is the (multiplicative) exposure effect. Show that, using the correct weights,
the partial log likelihood contribution for the 1:1 sampled set is identical to the
contribution of this risk set to the full cohort analysis.

The design and analysis extends readily to the case where there are
more than two exposure categories. If the risk set contains N; subjects in
exposure category i and the case-control set is to contain n;, then we draw
either n; — 1 or n; controls at random according to whether or not the
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case falls into this category. The risk weight for subjects in this category

The same design and analysis may be used when exposure data is dif-
ficult or expensive to collect, but in which we have a surrogate measure
available for all subjects. If exposure is rare, it makes sense to use the sur-
rogate exposure measurements to construct a more efficient nested study in
which there is a more even split between exposed and unexposed subjects.
In a 1:1 study, for example, a case classified as exposed by the surrogate
measure would be paired with a control classified as unexposed, and a case
classified as unexposed paired with a control classified as exposed. Remem-
bering that in the 1:1 study only exposure discordant pairs are informative

" for the estimation of the exposure effect, this design is more efficient since

it should increase the number of such pairs.

An area in which counter-matching by surrogate exposure measurement
could prove particularly useful is pharmacoepidemiology. Exposure to any
one drug is rare and can usually only be ascertained after detailed checking
of medical records. However, a simple questionnaire might be very success-
ful at identifying a subgroup particularly likely to have taken the drug of
interest. The nested case-control study should contain all subjects in the
group likely to have taken the drug, and a random sample of the remain-
der. With this design, the introduction of the correct risk weights into the
partial likelihood analysis provides a valid estimate of the drug effect.

33.5 Two-stage sampling of controls

Both matching and counter-matching require that some information is
available for al]l subjects in the cohort. The general rule is that, when this
concerns a confounder we should consider using it for matching controls
to cases while, if it concerns an exposure of interest, we should consider
counter-matching.

Similar ideas may be useful even when we have no such data for the full
cohort or, indeed, in a conventional case-control study. The information to
be used in the final matching or counter-matching is collected in an initial
study but complete data collection is only followed through in a subsample.
This is known as a two-stage case-control study.

Solutions to the exercises

33.1 The risk set for the first event contains 10 subjects, the others con-
tain 9, 7, and 4 subjects respectively. A control for the first case is selected
at random from the remaining 9 subjects in the risk seét. Similarly the
remaining controls are sampled at random from the 8, 6, and 3 eligible
subjects in the remaining risk sets.

33.2 In the 1:1 counter-matched study each set contains n = 2 subjects,
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1 exposed and 1 unexposed so that n; = ng = 1. The risk weights used in
the analysis are therefore,

W= 10  for an exposed subject
~ ] 100 for an unexposed subject.

33.3 Suppose the case is exposed. Using the whole risk set the contribu-
tion to the log partial likelihood is

log ———¢————-— .
10x ¢+100x1

Using the 1:1 counter-matched design, the contribution to the partial log
likelihood is

(10¢) _ ¢
log ((10¢) ¥ (100)) = 1og(10) +log (10 X &+ 100 x 1) '

These two expressions are the same except for a constant term, log(10),
which does not depend on ¢ and can be ignored. The same is true when
the case is unexposed.



34
Gaussian regression models

Most of this book has been about events such as the incidence of disease or
mortality. Although events are particularly important in epidemiology, in
some studies the response of interest is a quantitative measurement such as
blood pressure. The most widely used probability model for such responses
is the Gaussian model, described in Chapter 8. In this chapter we show how
regression models are used in conjunction with the Gaussian probability
model. We shall call this combination Gaussian regression although it
is more usual for it to be called simply regression or multiple regression
because it was developed before other regression methods.

34.1 Models for the mean

The Gaussian probability model differs from the binary model in having
two parameters instead of one. These are u, the mean, and o, the standard
deviation. In the simplest situation changing the level of an explanatory
variable changes the value of y but leaves o unchanged. The distributions of
response for a comparison of exposed and unexposed subjects predicted by
such a model is illustrated in Fig. 34.1. The effect of exposure is measured
by the difference between the means, p; — puo.

To control for confounding by age, using stratification, we would stratify
by age and make the assumption that p; — g is constant across age groups.
This is equivalent to fitting the regression model

Mean = Corner + Age + Exposure.

The effect of exposure in this model is simply the (common) difference
between mean responses for exposed and unexposed subjects within age
groups.

To illustrate such models we shall use some additional data from the
study of diet and coronary heart disease. These concern daily intake of fi-
bre which is the response variable. Age and occupation are the explanatory
variables, both with three levels.* Table 34.1 shows a simple summary of
these data in which a separate estimate of mean and standard deviation

*Unpublished data
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Fig. 34.1. Effect of exposure on the mean response.

has been calculated for each of the nine age-occupation groups. The main
interest is in differences between occupations and inspection of the esti-
mated means suggests that there is a systematic tendency for bank clerks
to eat more fibre than the drivers and conductors. There is no obvious
systematic variation in the standard deviation parameters, so the assump- -
tion that changing the levels of age and occupation does not affect o is

reasonable. o
The additive regression model relating the mean daily intake of fibre to

the effects of age and occupation is
Mean = Corner + Age + Work.

When both age and work are treated as categorical this has five parameters
in all, namely the Corner, Age(1), Age(2), Work(1), and Work(2) param-
eters. These are called the regression parameters to distinguish them from
o, the common standard deviation, which is called the residual standard
deviation. The square of o is called the residual variance.

34.2 Likelihood, sums of squares, and deviance

From Chapter 8, the log likelihood for a study of size IV is

—Nlog(o) — —;— Z (‘T ; u>2

Subjects
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Table 34.1. Dietary fibre intake (gm/day) by age and occupation

Occupation
Age Bus driver Bus conductor Bank clerk
< 45 N 23 16 38
Mean 16.1 17.2 19.1
SD 3.91 5.00 5.563
45—-49 N 30 29 57
Mean 16.3 17.0 18.5
SD - 4.22 5.42 6.88
50+ N 45 39 56
Mean 16.6 14.8 17.6
SD 6.28 4.48 5.43
All N 98 84 151
Mean 16.4 16.0 18.34
SD 5.17 5.00 6.04

However, in contrast with Chapter 8, the mean parameter p is not a single
constant but can vary from subject to subject according to the regression
model. In our example p can take nine different values according to the
combination of age and occupation. For estimating the regression param-
eters the N log(co) term in the log likelihood can be ignored, and because
o is assumed to be the same for all subjects the parameter values which
minimize the sum of squared differences, '

Z(I - :u/)za

will also maximize the log likelihood, regardless of the value of ¢. Thus
the most likely values of the regression parameters do not depend on o.
Because they minimize a sum of squared differences they are also called
least squares estimates. The minimum value which this sum of squared
differences takes is known as the residual sum of squares.

For example, Table 34.2 shows the parameter estimates for the model

Mean = Corner + Work

for the dietary fibre data. The table shows most likely values for the three
parameters in this model, together with their standard deviations. The
standard deviation of each regression parameter has been calculated from
the profile log likelihood obtained by maximizing the log likelihood with
respect to all the other regression parameters. Although the estimated
values of these parameters do not depend on o their standard deviations
do, and in constructing the table ¢ has been taken equal to 5.5401 (we

et e
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Table 34.2. Effects of work on fibre intake (gm/day)

Parameter Estimate SD

Corner 16.425 0.560
Work(1) —0.402 0.824
Work(2) 1.911 0.719

shall see where this value comes from later in the chapter).

Exercise 34.1. Use the results in Table 34.2 to find the 90% confidence interval
for the Work(1) parameter.

34.3 Analysis of deviance

The deviance for any fitted model is defined as minus twice the log like-
lihood ratio, when this compares the fitted model with a saturated model
which has a parameter for each record. When the records refer to individual
subjects the saturated model has p = z so the deviance is

> (554)

. This is proportional to the residual sum of squares for that model.t As

before, the degrees of freedom for the deviance are equal to the the number
of parameters in the saturated regression model, which is equal to the
number of subjects N, less the number of parameters in the regression
model which has been fitted. These are also the degrees of freedom for the
residual sums of squares.

The deviance can be used to campare models in the same way as in
Chapter 24, but all calculations are first done in terms of residual sums of

" squares and later converted to deviances by dividing by a suitable estimate

of the square of o. The residual sums of squares are obtained from the
analysis of variance table which is usually in the output when a Gaussian
regression model is fitted. For example, the analysis of variance table
produced when fitting the model

Mean = Corner + Age + Work

to the data in Table 34.1 would look something like Table 34.3. The most

.important line in this table is the middle one labelled ‘Error’ which gives

TIn the original definition of the idea of deviance, this was called the scaled deviance
because of its dependence on the unknown scale parameter o and the word deviance
was reserved for its value when o is taken as 1. However, this usage has not received
widespread acceptance.
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Table 34.3. Analysis of variance for the variable work

Source DF SSq
Model 2 369.891
Error 330 10128.636
Total 332 10498.527

the residual sum of squares for the model which has been fitted and its
degrees, of freedom. Since the number of subjects is N = 333 and the
regression model has three parameters, the degrees of freedom here are
v 333 — 3 = 330. The last line of the table, headed ‘Total’ gives the same
information for the degenerate model

Mean = Corner

in which the mean response is the same for all subjects. This regression
model has only one parameter so the degrees of freedom for its residual
sum of squares and deviance are 332. The line labelled ‘Model’ is obtained
by subtracting the degrees of freedom and the residual sum of squares for
the error and total lines. When this difference in residual sum of squares is
converted to a difference in deviance by division by the square of a suitable
estimate of o, it provides us with a test of the null hypothesis that all
parameters in the model, other than the corner parameter, are zero. In
this case this would be a test of the difference between occupations.

With more than one explanatory variable, testing the hypothesis that
all the parameters in the model are zero is rarely of any interest. The only
use of analysis of variance tables for such models is to obtain the residual
sum of squared deviations from the second line. By fitting a series of models
a more useful table can be constructed, as follows. Table 34.4 shows the
residual sums of squares extracted from the analysis of variance tables for
five models fitted to the fibre data. Changes in residual sums of squares
from one model to another can be converted to deviances and used to test
a variety of hypotheses. For example, the effects of work controlled for
age can be tested by using the change in residual sum of squares between
models 3 and 4.

ESTIMATING o

Using the joint likelihood for the regression parameters and o it can be
shown, using calculus, that the most likely value of o is )

\/ Residual sum of squares
N .

i,

- o U

W
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Table 34.4. Analysis of deviance (0 = 5.5445)

Mean = Corner + - - - DF SSq Deviance
1. - 332 10498.527  341.510
2. Work 330 10128.636  329.478
3. Age 330 10384.702  337.807
4. Age + Work 328 10048.456  326.870
5. Age + Work + AgeWork 324  9960.268  324.000

This is the value of & which maximizes the total likelihood and it therefore
also maximizes the profile likelihood for . When the number of regression
parameters is large compared with the number of subjects, it is preferable
to use a conditional likelihood which depends only on o, rather than the
profile likelihood. The most likely value of o is then equal to the residual
sum of squares divided by its degrees of freedom. For example, the value
of o used throughout Table 34.4 was

o = 1/9960.268/324 = 5.5445

which is the conditional estimate obtained from model 5, although the
overall most likely value is

o = 1/9960.268/333 = 5.4691

It can be seen that the use of the degrees of freedom in place of N has
a negligible effect for a study of this size. The reason why o is generally
estimated from the conditional likelihood can be illustrated by a simple
argument. If we imagine a study of 10 subjects and fit a regression model
with 10 parameters it will fit the observations exactly. The overall most
likely value of o would be zero but the reality is that we have no data for
estimating o. Only when we add an eleventh subject to our study do we
start collecting information about o. It follows that the effective size of the
study for the purposes of estimating o is given by the N minus the number
of regression parameters — the degrees of freedom — and the estimated
value of o should be

Residual sum of squares
Degrees of freedom
One consequence of using this estimate is that the deviance for the model
used to estimate o is equal to its degrees of freedom.

A test for interaction between work and age may be obtained by com-
paring the deviances for models 4 and 5. The difference in deviance is
326.870 — 324.000 = 2.870 with 326 — 324 = 2 degrees of freedom. Re-
ferring this to the chi-squared distribution shows this to be clearly non-
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Table 34.5. Effects of age and work on fibre intake (gm/day)

Parameter Estimate SD

Corner 16.430 0.560
Age(1) -0.223 0.814
Age(2) —1.118 0.788
Work(1) —0.387 0.824
Work(2) 1.828 0.720

significant so that we are reassured concerning our assumption of constant
occupational effects over age groups.

The parameter estimates for model 4 are shown in Table 34.5. Note,
however, that the value of o used to calculate the standard deviations of
the parameters is slightly different from that used in Table 34.4. This is
because, whereas the estimate of o used in Table 34.4 was obtained from
model 5, Table 34.5 refers to model 4 and it is therefore logical to estimate
o using this model, that is by

= 1/10048.456,328 = 5.5349.

The significance of the occupational effect, controlled for age, can be tested
by comparing the deviances for models 4 and 3. However, since this test
only makes sense when there is no interaction, deviances should properly
be calculated using the model 4 estimate of o rather than that used in
Table 34.4. :

Exercise 34.2. Carry out the test for the effect of occupation controlled for age.

Similarly, the value of o used to calculate standard dev1at10ns of parameter
estimates in Table 34.2 is obtained from model 2,

= 4/10128.636/330 = 5.5401

and this is the value which would be used if we wished to compare models 1
and 2. Id practice the difference between the possible estimates of o are
usually inconsequential except in very small studies.

F RATIO TESTS

The tests discussed above refer changes in deviance to the appropriate chi-
squared distribution. If the value of o were a known constant, these would
be ezact tests. However, when o is estimated they are only approximate.
Exact tests which take account of the fact that ¢ is estimated may be car-
ried out using F' distributions, tables of which are readily available. Instead
of referring the change in deviance to the chi-square distribution, we divide
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it by the corresponding degrees of freedom to obtain the F ratio. For exam-
ple, the change in deviance for the test for interaction was 2.870, with two
degrees of freedom, so the corresponding F ratio is 1.435. To obtain the
exact p-value, the F ratio is referred to the correct F distribution. However,
to select the correct F distribution, we must specify two different numbers
of degrees of freedom. The first, called the numerator degrees of freedom,
is the same as the degrees of freedom for the approximate chi-squared test
while the second, called the denominator degrees of freedom, is the number
of degrees of freedom used to estimate o. In our example these are 2 and
334 respectively.

In practice there is only a noticeable difference between F ratio tests
and the approximate chi-squared test in small studies. In our example,
the p-value obtained from the chi-squared distribution is 0.2381 while that
obtained from the F distribution is 0.2396. Since the F ratio test is only
exact if the assumptions of Gaussian distribution shape and constancy of o
are true, they are not usually worth the (admittedly slight) extra trouble.

34.4 Multiplicative models

A basic assumption in the Gaussian regression model is that changes in
the explanatory variables affect the mean level of response but not the
variability. However, it is commonly the case that as the level of response
goes up, so does its variability. A simple multiplicative model acting at the
individual level would explain this, for if the effect of changing the level
of work is to double the values of the individual responses, then the stan-
dard deviation of these individual values will also get doubled. On a log
scale, however, the effect of doubling the response will be to add log(2) to
the log response, leaving the standard deviation of the log responses un-
changed. This suggests that when the effects appear to act multiplicatively
at an individual level, the log response should be analysed in place of the
response.

There is some suggestion in Table 34.1 that standard deviation of fibre
intake goes up with the mean, so that a multiplicative model may be more
appropriate. This suggests analysing log fibre intakes rather than fibre
intakes themselves. Inspection of the data suggests that the distribution of
log fibre intake is closer to the Gaussian shape than the distribution of fibre
intake, and this is another point in favour of analysing log fibre intakes.
When the Gaussian regression model

Mean = Corner + Age + Work.

is fitted to the logs of the fibre intakes we obtain the parameter estimates

shown in Table 34.6.
The effect parameters shown in this table are additive effects upon log
fibre intake and these should be exponentiated to express them as multi-
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Table 34.6. Effects of age and work on log fibre intake

Parameter Estimate SD

Corner 2.8039  0.0430
Age(1) —0.0253  0.0445
Age(2) —0.0800  0.0431
Work(1) —0.0345 0.0451

Work(2) 0.0962 0.0394

plicative effects on fibre intake. The error factor method can be used to
calculate confidence intervals for the multiplicative effects.

Exercise 34.3. Express the estimates of the Work parameters as multiplicative
effects, and calculate 90% confidence intervals. .

Apart from this change in the way the parameter estimates are interpreted
the use of the log response in place of the response does not affect matters.
Models are compared using residual sums of squares in the same way as
before.

If the effect of the explanatory variables is multiplicative at a group
level, but not at an individual level, so that o is constant, a multiplicative
model such as '

Mean = Corner x Age x Work,

can be fitted to the data on the original scale. Computer programs are
available for fitting such models but the need for them rarely arises because
the idea of an explanatory variable acting multiplicatively at a group level
but not at an individual level is rather implausible.

Solutions to the exercises

34.1 The 90% confidence interval is from —0.402—1.645x0.824 = —1.757
to —0.402 4+ 1.645 x 0.824 = 0.953. The lower limit is a reduction of 1.757
gm, the upper limit is an increase of 0.953 gm.

34.2 The appropriate value for ¢ is 5.5349, taken from the model which
includes both age and work. The deviance for this model is then 328.000,
and the deviance for the model which includes age alone is

10384.702/5.5349% = 338.982.
The change in deviances is 338.982 — 328.000 = 10.982 on 2 degrees of

freedom, for which p = 0.004 (from the chi-squared distribution on two
degrees of freedom.
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34.3 The Work(1) parameter is estimated as —0.0345, and since
exp(—0.0345) = 0.966,

the fibre intakes of conductors are 0.966 times those of drivers. The 90%
confidence interval for this ratio is found from the error factor

exp(1.645 x 0.0451) = 1.077,
to be from 0.966/1.077 = 0.897 to 0.966 x 1.077 = 1.04. Similarly, the

multiplicative effect of Work(2) is 1.101 with 90% confidence interval from
1.032 to 1.175.
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Postscript

No scientific methodology stands still and statistical modelling is no ex-
ception. In this book we have deliberately restricted our attention to well-
established methods which have become a routine part of modern epidemi-
ology, and omitted newer developments, even though some of these will
undoubtedly make important contributions to epidemiology in the future.
Two areas in particular are worth mentioning. The first is the extension
of the models discussed in this book to deal with errors of measurement of
explanatory variables (see Chapter 27). The second concerns the extension
of these models to longitudinal studies in which the response is measured
on severa) different occasions for each subject.

The methods we have described concentrate on the analysis of response
at the level of the individual subject. Even when these analyses have been
carried out using frequency records this has been purely for computational
convenience and parameters still refer to the effects upon the response for
an individual subject. However, some epidemiological research is based
upon the behaviour of aggregated groups of individuals, for example the
inhabitants of a country, region, or town. Statistical analysis then con-
centrates on description and ‘explanation’ of differences in the aggregate
responses of such groups in time and space. By analogy with the disci-
pline of economics, such activity could be termed macro-epidemiology. We
have not dealt with it in this book, firstly because this field is currently
undergoing active development, and secondly because new likelihoods and
fitting procedures become necessary as a result of the more complicated
probability models which are a necessary response to lack of data at the
subject level.

Some further reading

A good elementary introduction to statistical modelling using the computer
program GLIM is:

Healy, M. (1988) GLIM. An Introduction. Oxford Science Publications,
Oxford University Press, Oxford.

The reader who requires more mathematical details can find them in a
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number of statistical texts. General treatments of regression model, in-
cluding Poisson and logistic regression, are given by the following authors.

Aitkin, M., Anderson, D., Francis, B., and Hinde, J. (1989) Statistical
modelling in GLIM. Oxford Science Publications, Oxford University Press,
Oxford. .
McCullagh, M. and Nelder, J.A. (1989) Generalized linear models (2nd
edn). Chapman and Hall, London.

Descriptions of modern statistical approaches to the analysis of life tables
and survival data are given by the following authors.

Cox, D.R. and Oakes, D. (1984) The analysis of survival data. Chapman
and Hall, London.

Kalbfleisch, J.D. and Prentice, R.L. (1980) The statistical analysis of fail-
ure time data. Wiley, New York.

A detailed exposition of a more general mathematical approach to mod-
elling event occurrence in time is to be found in:

Andersen, P.K., Borgan, @., Gill, R.D., and Keiding, N. (1993) Statistical
models based on counting processes. Springer, New York.

Intermediate in technical level between these purely statistical texts and
this book are:

Breslow, N.E. and Day, N. (1980) Statistical methods in cancer epidemiol-

ogy. Vol. I - The analysis of case-control studies. IARC Scientific Publi-
cations No. 32. International Agency for Research on Cancer, Lyon.

Breslow, N.E. and Day, N. (1987) Statistical methods in cancer epidemiol-
ogy. Vol. II — The design and analysis of cohort studies. IARC Scientific
Publications No. 82. International Agency for Research on Cancer, Lyon.

A collection of papers dealing with very recent research in epidemiological
modelling is:

Moolgavkar, S.H. and Prertice, R.L. (ed.) (1986) Modern statistical meth-
ods in chronic disease epidemiology. Wiley, New York.

An extensive review of the more recent statistical literature is:

Gail, M.H. (1991) A bibliography and comments on the use of statistical
models in epidemiology in the 1980s. Statistics in Medicine, 10, 1819-95.
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Appendix A
Exponentials and logarithms

Raising 10 to different powers is a familiar operation. For example,
10! =10, 10% = 100, 10% = 1000, ---

Mathematically this is regarded as a rule for getting from the power (1, 2,
3, etc.) to the value of 10 raised to that power (10, 100, 1000, etc.). The
power is often referred to as the ezponent and 10 raised to a power is called
an exponential with base 10.

Raising 10 to a power can be extended to cover fractional powers using
the convention that 10% stands for the square root of 10, 103 stands for the
cube root of 10, and so on. The rule can also be extended to cover negative
powers using the convention that 10~! stands for 1/10 = 0.1. Table A.1
shows the rule for obtaining 10% from z for a variety of values of z.

Now suppose that we wish to go the other way and, starting with a
value of 10%, find the value of z. For example, starting with 1000 gives
z = 3, while starting with 0.1 gives x = —1. Starting with any positive
number y, the value of z which makes 10” = y is called the logarithm of y
with the base 10 and is written log,¢(y). Taking logarithms with base 10
is the inverse operation to exponentiation with base 10. Thus 10° = 1000
and log,,(1000) = 3.

Table A.1. Rules for finding 10* from z

y = 10°
1
10
100
1000
0.1
0.01
0.001
V10
J10

!
W-NI- G2 D = W N = OIR
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Table A.2. Multiplication using logarithms

Number Logarithm
72 — 0.8573

16.9 — 1.2279
121.7 «— 2.0852

Logarithms were introduced as a computational device in the seven-
teenth century to avoid multiplication and division. Tables were prepared
so that the logarithm of any number could be looked up. Similarly, tables
of exponentials were prepared so that logarithms could be converted back
to the original numbers. These tables of exponentials were called antiloga-
rithms. The use of logarithms to multiply 7.2 by 16.9 is shown in Table A.2.
Arrows from left to right refer to looking up logarithms while arrows from
right to left refer to looking up antilogarithms (exponentiation). The result
line follows from addition on the logarithmic (right-hand) side or multipli-
cation on the exponential (left-hand) side. The widespread availability of
cheap electronic calculators means that nobody now uses logarithms for
multiplication or division. However, their mathematical property of con-
verting multiplication to addition, embodied in

log(7.2 x 16.9) = log(7.2) + log(16.9)
is still very useful. Another useful property which follows from this is that
log(7.2%) = 2 x log(7.2)

log(7.2%) = 3 x log(7.2)

and so on.

Raising 2 to a power is called exponentiation with base 2. The inverse
process produces logarithms to the base 2 and these are written logy(y).
Both exponentials and logarithms can be defined with respect to any base.
Fig. A.1 shows plots of the exponential functions 107, 3%, €%, and 2%, where
the symbol e represents the number 2.71828183. The number e is chosen
so that the tangent to the plot of e* versus z drawn at £ = 0 has a slope of
exactly 1 (shown by the broken line). It follows that when z is very small,

141z,

and, therefore,
log, (1 + z) =~ .

Logarithms to the base e are referred to as natural logarithms, and it is
‘the above property that makes them ‘natural’. The natural logarithm
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Fig. A.1. Plots of the function y = c*

function is sometimes written as In(y), but in this book we shall always use
logarithms to the base e, and write them simply as log(y). We also write
the exponential function with base e as exp(z). Note, however, that many

" electronic calculators assign an entirely different meaning to a key marked

ezp.
The logarithms of the same number, using different bases, are related
by a simple constant multiplier. For example

log, (y) = log;(y) x 2.3026
where 2.3026 = log,(10). Similarly

logy(y) = logyo(y) x 3.3219

where 3.3219 = log,(10).



Appendix B
*] Some basic calculus

The gradient of the graph of y versus z measures the rate at which y is
" increasing (or decreasing) at any point on the graph. It is most easily
defined for a straight line graph, such as the one in Fig. B.1. In this case
the rate of increase or decrease is the same at any point on the graph, and is
measured by the ratio of the rise to the run. For a straight line relationship
in which y decreases with x the gradient is negative. Gradients have units
equal to those of y/z. The central idea of calculus is that over a small run
any curve is approximately a straight line and the gradient of the curve at
any point in the run is approximately equal to the gradient of this line.
Differential calculus consists of a number of simple rules which are used
to evaluate gradients of curves for which the y co-ordinate of any point on
the curve is given by some function of the z co-ordinate. The most useful
of these are shown in Table B.1. A further very important rule is that the
gradient of a function constructed as the sum of two simpler functions is

4

rise

run

Fig. B.1. Gradient_ of a straight line graph
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Table B.1. Gradients of some simple functions of =

Function Gradient
¢ (constant) 0

T 1

- -1

ez ¢
(z)? 2z
(=)™ m(z)™!
=@ -0 =g
exp(z) exp(z)
log() :
(c+ x)2 2c+z
(c—x)? —2(c—x)
log(c + x) =z
log(c — z) =

the sum of the gradients of the constituent functions so that, for example,
the gradient of z + log(z) is 1 4+ 1/z.

The use of these rules is now illustrated by finding the gradient of the
log likelihood for a rate A, based on D cases and Y person years. The log
likelihood for A is

Dlog()) — Y.

From Table B.1 the gradient of log()) is 1/X and the gradient of X is 1.
Hence the gradient of the log likelihood is

D

A Y
The maximum value of the log likelihood occurs when the gradient is zero,
that is, when A = D/Y, so the most likely value of X is D/Y.

The curvature of the log likelihood curve at the peak is important in
determining the range of supported values. A highly curved peak corre-
sponds to a narrow range. The curvature at a point on a curve is a measure
of how fast the gradient is changing from one value of x to the next; if the
gradient is changing quickly then the curvature is high, while if the gradient

" is changing slowly the curvature is low. For log likelihood curves the gra-

dient changes from a positive quantity (on the left) to a negative quantity

.. (on the right) so the gradient decreases as z increases and the curvature is

negative.

The curvature of a curve, at a point, is defined.to be the rate of change
of the gradient of the curve at that point. The way that Table B.1 can
be used to find curvature is now illustrated using the log likelihood for X
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again. The gradient of the log likelihood at any value of A has been shown
to be D

5 -Y

From Table B.1 the gradient of a constant is zero and the gradient of 1/\
is —1/())?, so the curvature of the log likelihood at any value of X is

D
—W'

Appendix C
Approximate profile likelihoods

This appendix describes the mathematics underlying Gaussian approxima-
tion of profile log likelihoods.

C.1 The difference between two parameters

We shall start with an important special case. Consider a model with
two parameters, 8; and By, and suppose that our main interest is in the
difference

v = b1 — Bo.

We shall further assume that the log likelihoods for 51 and By are based
on two independent sets of data so that the total log likelihood is the sum
of the two separate log likelihoods.

Fig. C.1 illustrates the construction of the profile likelihood for 7. The
upper panel of the figure shows the total log likelihood obtained by adding
the log likelihoods for 8, and fBy. Contours are shown for log likelihood
ratios of —5,—4,...,—1. The four diagonal lines correspond to different
values of 4. For example, the top leftmost line represents values of 51, 8o
satisfying

Br—Bo=0

so that this line corresponds to v = 0. Similarly, the remaining lines
correspond to values of v of 0.5, 1.0, and 1.5 respectively. To find the
profile likelihood for ~, we find the maximum value of the log likelihood
along each of these lines. This maximum is plotted against v in the lower
panel of the figure.

The Gaussian approximation of the profile log likelihood can be ob-
tained from making use of the relationship between gradients and curva-

_tures of the total log likelihood (upper panel), and the gradient and curva-

ture of the profile log likelihood (lower panel). These relationships can be
derived using the laws of calculus but are only quoted here.

If, at the maximum of the log likelihood along the line 8, — By = v, the
gradient is G, with respect to 81 and Gy with respect to fy the gradient
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Fig. C.1. The profile log likelihood
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of the profile log likelihood at « is G, where
G =G1 = —Gy.

If Cy, Cy are the corresponding curvatures with respect to 51 and f, then
the curvature of the profile log likelihood at v is C, where '

i1 1
cC O G

From these results it follows directly that, if the most likely values of
B and By are M and M, respectively, and the corresponding standard
deviations of the estimates are S; and Sg, then the most likely value of
is
M = M, — Moy,

and the standard devié,tion of the estimate is
S = 1/(51)2 + (S0)2.

THE RATE RATIO REVISITED

As an example, we shall apply use these general rules to the problem of
estimating and testing the logarithm of the rate ratio. Let A\¢ and A; be
the two rate parameters and define

51 =log(A1), Bo = log(Mo)

then

Il

—

@]

oQ
N
>,|>,
Q| =
~—

Il
—
(o]
0Q
—
5e)
~

the log of the rate ratio.

If, in the exposed group, D; cases are observed in Y; person-years, and
in the unexposed group Dy cases are observed in Y; person-years, the total
log likelihood is

D1 log(/\l) - A1Y1 -+ Do IOg(Ao) — AoYl.
The gradients of this with respect to 81 and fp are

Gi=D; -\ Go = Do — AoYo,
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and the curvatures are
Ci=-\uY Co = —\Ys.
The most likely values for 3 and Gy are
M, =log(D1/Y1), My = log(Do/Yo)
and the corresponding standard deviations are

Sl=\/1/D1, S()=\/1/D0.

Using the rules given at the end of the last section, the Gaussian approxi-
mation for the profile log likelihood for v = log(#) has

M log(D1/Y1) — log(Do/Yo)

lo ——-—Dl/yl
g Do/Y )’

/1 1
S— D_1+D_0-

These expressions are identical to those obtained in Chapter 13.

The Wald test is also based on the Gaussian approximation shown
above. The score test is obtained from the gradient and curvature of the
profile log likelihood at the null value of the parameter, v = 0. Here \;
and Ap are equal and their most likely common value is D/Y so that the
gradients and curvatures are

and

G1 = Dy—-E; Go = Do—E()
C: = —El Co = —Ey

where By = (D/Y)Y1 and Ey = (D/Y )Y represent ‘expected’ numbers of
failures in the two groups under the null hypothesis. The score, U, is given
by either G; or —Gy (it can easily be verified that these are identical). The
score variance is minus the curvature of the profile log likelihood and, using
the relationship

1_1.1
cC ¢ G
this is
1 1\7?
Vo= (f*f)
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E1Ey
E

Since D = E, this can also be written

E Ey
V.= bpgm

and this agrees with the expression given in Chapter 13.

THE DIFFERENCE BETWEEN TWO MEANS

A second example is the difference between two mean parameters in a
Gaussian model for responses measured on a continuous metric scale. For
example, we might wish to compare blood pressure in two groups of sub-
jects. We shall let p; and po represent the mean parameters for the two
groups and assume that the standard deviation of responses about the
mean is the same in both groups, o let us say. As in Chapter 8 we shall
assume o to be a known constant although, in practice, it would also have
to be estimated from the data.

Exercise C.1. Derive expressions for the most likely value and for the standard
deviation of the estimate of the parameter
*

Y = H1 — Ho-

C.2 Weighted sums

Similar results hold for more general problems. For example, the parameter
of interest may be defined as

v = W11+ Wofo

where W; and Wy are known constants. In this case the same argument
illustrated in Fig. C.1 may be applied, but the parallel lines corresponding
to fixed values of v now have different slopes. The relationship between
gradients in the total log likelihood and the gradient of the profile likelihood

is now
G1 Gy

G = =20
W, Wy

and for the curvatures we have

1 _ (W) n (Wo)®
C Cy Cy
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These results generalize in an obvious way to a function of more than
two parameters, of the form

v=WiB +Wafo + Wafs +---

the gradient of the profile log likelihood now being

_6_ GGy _

=W, W

and its curvature

1 (W2 (Wa)? | (Ws)?
S/ i o ta o

If the most likely values of £1,8z,... are My, Ms,... with standard
deviations S, Sa, ..., then the most likely value of « is

M=W1M1+W2M2+W3M3+"-

with standard deviation

S = \/(W151)2 + (W252)2 + (W3S53)2 + - -

Solutions to the exercises

C.1 The log likelihoods for p; and po are Gaussian with most likely
values M; and My — the arithmetic means of the N; observations in the
first group and the Ny observations in the second. The corresponding
standard deviations are

o o

S) = ——, Sp= —.
YN YT N,

It follows from the results of this section that the profile log likelihood for
11 — po has most likely value M; — My and standard deviation

@2 2 _J1 . 1
N TN, VWM TN

Appendix D |
Table of the chi-squared distribution

Probability Degrees of freedom, v

p 1 2 3 4 5

0.50 0.455 1.386  2.366  3.357  4.351
0.25 1.323 2.773 4.108 5385  6.626
0.10 2706  4.605 6.251  7.779 9.2367
0.075 3.170 5181  6.905 8.496 10.008
0.050 3.841 5.991 7.815 9.488 11.070
0.025 5.024 7.378 9.348 11.143 12.833
0.0100 6.635 9.210 11.345 13.277 15.086
0.0075 7.149 9.78 11.966 13.937 15.780
0.0050 7.879 10.597 12.838 14.860 16.750
0.0025 9.141 11.983 14.320 16.424 18.386
0.0010 10.828 13.816 16.266 18.467 20.515
Probability Degrees of freedom, v

p 6 7 8 9 10
0.50 5348 6.346 7.344  8.343  9.342
0.25 7.841 9.037 10.219 11.389 12.549
0.10 10.645 12.017 13.362 14.684 15.987
0.075 11.466 12.883 14.270 15.631 16.971
0.050 12.592 14.067 15.507 16.919 18.307
0.025 14.449 16.013 17.535 19.023 20.483
0.0100 16.812 18.475 20.090 21.666 23.209
0.0075 17.537 19.229 20.870 22.471 24.038
0.0050 18.548 20.278 21.955 23.589 25.188
0.0025 20.249 22.040 23.774 25462 27.112
0.0010 22.458 24.322 26.124 27.877 29.588

The above tables give the value that a variable, distributed according to the chi-squared

~distribution with v degrees of freedom, will exceed with probability p. For example, a

variable distributed according to the chi-squared distribution with one degree of freedom
has a probability of p = 0.1 of exceeding the value 2.706.
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Aalen—Nelson estimate, 48
additive model, 224, 282

for case-control study, 285
affected sib pair method, 97
age-period-cohort model, 315
age-specific rate, 53
Akaike’s information criterion, 272
aliasing, 313
analysis of variance, 339

band (time), 27
baseline rates, 299, 304
Bayes’ rule, 12
and degree of belief, 92
Bayesian theory of statistics, 22, 92, 117
binary data, 5
binary probability model, 6, 18
for case-control study, 159
sequence of, 27
binomial distribution, 112, 129

case-cohort study, 162, 331
case-control study, 153
frequency matched, 178
geographically based, 163
group matched, 178
hospital-based, 163
individually matched, 178, 186
neighbourhood matched, 183
size of, 210
case/control ratio, 158
cause-specific rate, 65
cause-specific risk, 63
censoring, 5, 24, 63
non-informative, 68
chi-squared distribution, 71
click (time}, 42, 146
cohort study, 5
size of, 210
collinearity, 247
competing causes, 65
*-complementary log-log, 235
conditional likelihood, 128
conditional logistic regression, 176, 290
confidence interval, 21, 90
exact, 116, 129, 172
confounding, 53, 133, 264, 272
coverage probability, 89, 99

Cox’s regression analysis, 298
credible interval, 22, 94
cross-validation, 272

cumulative failure rate, 46, 131
cumulative survival probability, 29, 46
curvature, 84, 354, 359

degree of belief, 21, 92

posterior, 93

prior, 93
departures from linearity, 252
deterministic model, 3
deviance, 242
differential misclassification, 277
discriminating between models, 284
dose-response relationship, 249

effect modification, 276

endogenous variable, 276

error factor, 82

exact confidence interval, 116

exogenous variable, 276

expected number of cases, 56, 58, 106, 115,
148, 205

experiment of nature, 133, 272

explanation, 271

exposure, 10, 272

exposure window, 182

F distribution, 342

F ratio tests, 342

factor, 224

factorial, 115

failure, 6

first derivative, 84

Fisher’s exact test, 172

force of mortality, 40

frequency record, 225, 227, 346
frequentist theory of statistics, 21, 89, 173

Gaussian probability model, 71
Gaussian regression, 336
genotype, 13

goodness-of-fit tests, 246
gradient, 84, 854, 357

haplotype, 13
marker, 96
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hazard rate, 40
hypergeometric distribution, 170

incidence, 6
incidence density sampling, 161, 182
independence
of causes, 66
of censoring, 68
of effects, 282
statistical, 11
indicator variable, 254
individual record, 225, 227
instantaneous rate, 40
interaction, 259, 268, 276, 282
% between categorical and quantitative,
266
between confounders, 261
between exposure and confounders,
263
scale dependence, 269
iterative calculation, 144

Kaplan—Meler estimate, 35

late entry, 68, 302

least squares estimate, 338

Lexis diagram, 57, 228

life table, 27
actuarial, 27
cohort, 31
modified, 48

likelihood, 18
Bernoulli, 19
conditional, 128
hypergeometric, 171, 176, 188
partial, 801, 308, 333
Poisson, 44
profile, 124

likelihood ratio, 20

linear effect, 250

linkage, genetic, 96

lod score
and p-value, 107

log likelihood, 22, 117
approximate, 78
for cause-specific rate, 66
for rate parameter, 43

approximate, 79, 84
for risk parameter, 24
approximate, 79, 85

Gaussian, 74

log likelihood ratio, 23, 96
test, 100, 237

log rank test, 146.~
logistic regression, 176, 202, 227, 229

Mantel extension test, 203
Mantel-Cox test, 146

Mantel-Haenszel estimate
in 1:1 matched studies, 186
in 1: m matched studies, 190
in case-control studies, 178
of rate ratio, 145
Mantel-Haenszel test, 177
in 1:1 matched studies, 186
in 1: m matched studies, 190
matched sets
1:1, 292
l:m, 294
maximum likelihood estimate, 20
mean parameter, 73
difference between two, 361
measurement error
confounder, 280
exposure, 277
missing value, 226
Monte Carlo test, 99, 112
most likely value, 20
multiple regression, 336
multiplicative model, 221

nested case-control study, 162, 829
counter-matching in, 332
matching in, 332
two-stage, 334

nested models, 246

non-identifiability, 313

normal distribution, 71

null hypothesis, 96

observation time, 42, 54

Occam’s razor, 237

odds parameter, 7

odds ratio parameter, 155, 161, 166
common across strata, 175

one-sided test, 105

overmatching, 181

p-value, 99
exact, 104, 110, 129, 342
misinterpretation of, 107
one and two-sided, 105, 112
parameter, 3
corner, 220
difference between two, 130, 357
estimation, 8, 18
interaction, 240
location, 73
names, 220
nuisance, 124
null value, 96
scale, 73
person-time, 42
Poisson distribution, 115
Poisson regression, 198, 227
power of study, 206

prediction, 271

prevalence, 6, 235
in case-control studies, 164

probability
additive rule, 6
conditional, 10, 28
marginal, 11, 133
multiplicative rule, 11
subjective, 92

probability rate, 40

proband, 25

profile log likelihood, 125
approximate, 130, 357

proportional hazards model, 142, 147

quadratic curve, 74
quadratic dose-response, 253
Quetelet’s index, 271

rare disease assumption, 8, 161
rate difference parameter, 129, 130, 224
rate parameter, 40

relationship to risk, 46
rate ratio parameter, 124, 161

common across strata, 142
recall bias, 163
reference category, 160
reference rates, 58, 106, 147
regression model, 217
reparametrization, 4, 124
residual standard deviation, 337
residual sum of squares, 338
residual variance, 337
risk, 235
risk parameter, 7

relationship to rate, 46
risk ratio parameter, 13, 161
risk score, 271
risk set, 300

sampling risk sets, 330
saturated model, 242, 339
score, 103
score test, 100, 102
score variance, 103
screening
predictive value, 13
sensitivity, 13
sojourn time, 323
specificity, 13
second derivative, 84
selection bias, 162, 183, 309
due to censoring, 68
due to late entry, 68
significance test, 96, 99
standard deviation parameter, 73
standardization
direct, 136
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indirect, 148
standardized mortality ratio, 60, 148
comparison of, 149
standardized rate, 136
comparison of, 139, 149
stepwise regression, 271
stochastic model, 4
stratification, 135
in case-control studies, 175, 203
in cohort studies, 141, 200
study base, 153
support, 18, 117
supported range, 20
approximate, 79
for odds parameter
approximate, 83
for rate parameter, 44
approximate, 80, 82
for risk parameter, 21
approximate, 79, 83
survival curve, 32
synergism, 282

time band, 227

time scale, 59, 309

transformation of parameter, 80, 86
trend test, 249

trend, testing for, 197, 252

vague prior, 117

variable, 224
binary, 225
categorical, 224
derived, 225
explanatory, 219, 272
levels, 224
quantitative, 224
time-varying, 307

variable selection strategy, 271

variance parameter, 73

Wald test, 100, 101, 237
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