A finely stratified log-rank test with effectively-infinite-size comparison groups
[How long did their hearts go on? Survival analysis of the Titanic Survivors]

Background

Erroneous analyses in longevity comparisons [Jazz Musicians, Oscar winners]
Beyond "who survived": longterm effects

Data

Passengers ; Comparison Groups

Methods

Passengers: K-M curves
Comparison Groups: "Cohort from Current" (U.S.) \& Cohort(Sweden) Lifetables

Results

Overall; By Gender and Class

Methodological

Stratified log-rank test: each passenger versus effectively infinite comparison group

Peer-review and beyond

BMJ ; Media

Natural Sciences \& Engineering
Research Council of Canada

Fonds Québécois de la recherche sur la nature et les technologies.

Premature Death in Jazz Musicians: Fact or Fiction?

commonly held view: More	Statistical Study: $70(82 \%)$ of 85
liable than other professions to	US-born jazz musicians listed in
die early from drink, drugs,	university syllabus exceeded
women, or overwork.	their life expectancy

Longevity of popes and artists between 13th \& 19th century Likely, in past centuries, to be Longevity significantly longer better fed, clothed \& sheltered, and to had better medical care \& to survive longer than most of their contemporary people.
than that of artists ($\mathrm{P}=0.02$); ... artists had 1.5 -fold higher risk of death before age 70 years than Popes (95\% Cl: 1.08-2.16)

Survival in Academy Award-Winning Actors and Actresses

Social status is an important predictor of poor health. Most studies of this issue have focused on lower echelons of society

Life expectancy 3.9 years longer for Academy Award winners than for other, less recognized performers (79.7 vs. 75.8 years; $\mathrm{P}=0.003$).
titanic.dat
titanic.txt

JSE ARCHIVE

http://www.amstat.org/publications/jse/

Male / Female

Adult / Child
Socio-Economic Class
[1/2/3 / unclassified]
Survived?

NAME: Population at Risk and Death Rates for an Unusual Episode
TYPE: Complete record for all of population at risk
SIZE: 2201 observations, 4 variables
The article associated with this dataset appears in the Journal of Statistics Education, Volume 3, Number 3 (November 1995).

SUBMITTED BY:
Robert Dawson
Dept.of Mathematics and Computing Science
Saint Mary's University
Halifax, Nova Scotia
Canada B3H 3C3
email: rdawson@husky1.stmarys.ca

How long did their hearts go on? A Titanic study

James A Hanley, Elizabeth Turner, Carine Bellera, Dana Teltsch

Several studies have examined post-traumatic stress in people who survive disasters but few have looked at longevity. The 1997 film Titanic followed one character, apparently fictional, but the longevity of the actual survivors, as a group, has not been studied. Did the survivors of the sinking of the Titanic have shortened life spans? Or did they outlive those for whom 14-15 April 1912 was a less personal night to remember?

Subjects, methods, and results

We limited our study to passengers. We used data from biographies listed in Encyclopedia Titanica, a website that claims to have "among the most accurate passenger and crew lists ever compiled." ${ }^{1}$ Of the 500 passengers listed as survivors, 435 have been traced. We calculated the proportion alive at each anniversary of the sinking.

Home
 People
 Resources
 Discussions
 Members

Sunday 30th of October 2005

Latest Discussions
165149 posts from 1736 current members. Most

Ads by Gocoonoogle

Cruise Ship Injury Lawyer

Call Free 1-800-429-4529 (4LAW) 20 Year Experienced Lawyer www.bernsteinandmaryanoff.com

Sinking Titanic Model

Titanic Submersible Model \& Book Ship splits in 2 and really sinks! www.thconline.com

Beard Stacey Trueb

Maritime Lawyers: Assisting Seamen and clients throughout the U.S. www.maritimelawyer.us

Maritime Law Information

Need cruise ship crime? Legal Articles and Resources www.searchscribe.com

Permissions Privacy Policy Contribute Contact Subscribe to hide all adverts

Search

Ads by Goooooogle

First Class Passengers

We found 346 people. Showing 1 to 346

Name v	Age	Class/Dept	Ticket	Fare	Group	Ship	Joined	Job		Cruise
$\begin{aligned} & \frac{\text { ALLEN, Miss }}{\text { Elisabeth Walton }} \end{aligned}$	29	1st Class	24160	$£ 211$ 6s 9d			Southampton		2	Call Fre Experien www.berns
ALLISON, Mr Hudson Joshua Creighton	30	1st Class	113781	$\begin{aligned} & £ 151 \\ & 16 \mathrm{~s} \end{aligned}$			Southampton	Businessman		
$\begin{aligned} & \text { ALLISON, Mrs } \\ & \hline \text { Bessie Waldo } \end{aligned}$	25	1st Class	113781	$\begin{aligned} & £ 151 \\ & 16 \mathrm{~s} \end{aligned}$			Southampton			
ALLISON, Miss Helen Loraine	2	1st Class	113781	$\begin{aligned} & £ 151 \\ & 16 \mathrm{~s} \end{aligned}$			Southampton			
ALLISON, Master Hudson Trevor	11 m	1st Class	113781	$\begin{aligned} & £ 151 \\ & 16 \mathrm{~s} \end{aligned}$			Southampton		11	
$\begin{aligned} & \text { ANDERSON, Mr } \\ & \underline{\text { Harry }} \end{aligned}$	47	1st Class	19952	$\begin{aligned} & £ 26 \\ & 11 \mathrm{~s} \end{aligned}$			Southampton	Stockbroker	3	
ANDREWS, Miss Kornelia Theodosia	62	1st Class	13502	$\begin{aligned} & £ 77 \\ & 19 \mathrm{~s} \\ & 2 \mathrm{~d} \end{aligned}$			Cherbourg		10	
$\begin{aligned} & \text { ANDREWS, Mr } \\ & \hline \text { Thomas } \end{aligned}$	39	1st Class	112050		H\&W Guarantee Group		Belfast	Shipbuilder		
$\begin{aligned} & \text { APPLETON, Mrs } \\ & \text { Charlotte } \end{aligned}$	53	1st Class	11769	$\begin{aligned} & £ 51 \\ & 9 \mathrm{~s} \\ & 7 \mathrm{~d} \end{aligned}$			Southampton		D	
$\begin{aligned} & \text { ARTAGAVEYTIA, } \\ & \hline \text { Mr Ramon } \end{aligned}$	71	1st Class	17609	$\begin{aligned} & £ 49 \\ & 10 \mathrm{~s} \\ & 1 \mathrm{~d} \end{aligned}$			Cherbourg	Businessman		22
$\begin{aligned} & \text { ASTOR, Colonel } \\ & \hline \underline{\text { John Jacob }} \end{aligned}$	47	1st Class	17757	$\begin{aligned} & £ 247 \\ & 10 \mathrm{~s} \\ & \text { 6d } \end{aligned}$			Cherbourg	Property Developer / Real Estate		124
ASTOR, Mrs Madeleine Talmaqe	18	1st Class	17757	$\begin{aligned} & £ 247 \\ & 10 \mathrm{~s} \\ & 6 \mathrm{~d} \end{aligned}$			Cherbourg		4	

SUMMARY

Miss Elisabeth Walton Allen

Elisabeth Allen
Miss Elisabeth Walton Allen, 29, was born in St. Louis, Missouri, USA, on 1 October 1882, the daughter of George W. Allen, a St. Louis judge, and Lydia McMillan. She was returning to her home in St. Louis with her aunt, Mrs Edward Scott Robert , and her cousin, fifteen-year-old Georgette Alexandra Madill. Miss Madill was the daughter of Mrs Robert from a former marriage.

Miss Allen was engaged in 1912 to a British physician, Dr. James B. Mennell, and was going home to St. Louis to collect her belongings in preparation for moving to England where she would live with her future husband. Miss Allen, Mrs Robert, Miss Madill, and Mrs Robert's maid Emilie Kreuchen all boarded the Titanic in Southampton. For the voyage, Miss Allen was in cabin B-5, along with cousin Miss Madill, while Mrs Robert was across the hall in cabin B-3. The entire party travelled under ticket number 24160 ($£ 221$ 16s 9d). She escaped with her relatives in lifeboat 2, one of the last boats to leave the Titanic, under the command of Fourth Officer Joseph G. Boxhall. After the sinking, Elisabeth filed a $\$ 2,427.80$ claim against the White Star Line for the loss of personal property in the disaster.

BORN: SUNDAY 1ST OCTOBER 1882 IN ST. LOUIS MISSOURI UNITED STATES
AGE: 29 YEARS 6 MONTHS AND 14 DAYS.
MARITAL STATUS: SINGLE.
LAST RESIDENCE: IN ST. LOUIS MISSOURI
UNITED STATES
1ST CLASS PASSENGER
FIRST EMBARKED: SOUTHAMPTON ON
WEDNESDAY 10TH APRIL 1912
TICKET NO. 24160 , £211 6S 9D
CABIN NO. B5
RESCUED (BOAT 2)
DISEMBARKED CARPATHIA: NEW YORK CITY ON
THURSDAY 18TH APRIL 1912
DIED: FRIDAY 15TH DECEMBER 1967
CAUSE OF DEATH: HEART FAILURE / DISEASE

Ads bv Gooooooqle

Bow \& Stern Thruster

Total manoeuvring systems for boats between 20 200'. Tunnel \& Retracts
www.max-power.com

Master Hudson Trevor Allison

Grave of Hudson Trevor Allison
Courtesy of Jason D. Tiller
more pictures
Master Hudson Trevor Allison, 11m, was born May 7, 1911 in Westmount, Quebec.
Shortly after Trevor was born, the Allison family travelled to England for business purposes, and it was in England that young Trevor was baptised.

He travelled on the Titanic with his father Hudson Allison his mother Bess Allison and sister Loraine. He was also accompanied by a nurse Alice Cleaver.

Of the Allison family, only baby Trevor was saved.
After the sinking, baby Trevor returned home to Canada, where he would be raised by his aunt and uncle, George and Lillian Allison.

Trevor died on 7 August 1929 at the age of 18 in Maine, USA of ptomaine poisoning and was buried beside his father in Chesterville, Ontario.

SUMMARY

BORN: SUNDAY 7TH MAY 1911
AGE: 11 MONTHS AND 8 DAYS.
LAST RESIDENCE: IN MONTREAL QUÉBÉC CANADA 1ST CLASS PASSENGER
FIRST EMBARKED: SOUTHAMPTON ON
WEDNESDAY 10TH APRIL 1912
TICKET NO. 113781, £151 16S
CABIN NO. C22/26
RESCUED (BOAT 11)
DISEMBARKED CARPATHIA: NEW YORK CITY ON
THURSDAY 18TH APRIL 1912
\longrightarrow DIED: WEDNESDAY 7TH AUGUST 1929
CAUSE OF DEATH: PTOMAINE POISONING
BURIED: MAPLE RIDGE CEMETERY CHESTERVILLE
ONTARIO CANADA

Ads by Goooooogle

Gay \& Lesbian Tours
Independent/Escorted Tours Montreal Quebec city, Pride \& Jazz Festivals
www.hermestours.com
The Titanic Exhibit
Learn about the Titanic! Exhibits, Artifacts, History \&
Canada's Role
ww.virtualmuseum.ca
Quebec Accommodation
Hotels, Inns, b\&bs, houses, motels camping in all region of Quebec
www.QuebecReservation.com
Quebec City Accommodation
Directory Of Quebec City B\&B Inns, Boutique Hotels \& Anartment Suites

Third Class Passengers

We found 708 people . Showing 1 to 708

Name v	Age	Class/Dept	Ticket	Fare	Group	Ship	Joined	Job	Bo	
$\begin{aligned} & \text { ABBING, Mr } \\ & \text { Anthony } \end{aligned}$	42	3rd Class	5547	$\begin{aligned} & £ 7 \\ & 11 \mathrm{~s} \end{aligned}$			Southampton	Blacksmith		
$\begin{aligned} & \text { ABBOTT, Mrs Rhoda } \\ & \text { Mary 'Rosa' } \end{aligned}$	39	3rd Class	CA2673	$\begin{aligned} & £ 20 \\ & 5 \mathrm{~s} \end{aligned}$			Southampton		A Carnival Cru Carnival's Off Day Cruise F www.CarnivalCru	
$\begin{aligned} & \text { ABBOTT, Mr } \\ & \text { Rossmore Edward } \\ & \hline \end{aligned}$	16	3rd Class	CA2673	$\begin{aligned} & £ 20 \\ & 5 \mathrm{~s} \end{aligned}$			Southampton	Jeweller		
ABBOTT, Mr Euqene Joseph	14	3rd Class	CA2673	$\begin{aligned} & £ 20 \\ & 5 \mathrm{~s} \end{aligned}$			Southampton	Scholar		
$\begin{aligned} & \text { ABELSETH, Miss } \\ & \text { Karen Marie } \end{aligned}$	16	3rd Class	348125	$\begin{aligned} & \text { £7 } \\ & 13 \mathrm{~s} \end{aligned}$			Southampton		16	
ABELSETH, Mr	25	3rd Class	348122	$\begin{aligned} & £ 7 \\ & 13 \mathrm{~s} \end{aligned}$			Southampton	Farmer	A	
$\begin{aligned} & \text { ABRAHAMSSON, Mr } \\ & \text { Abraham Auqust } \\ & \text { Johannes } \end{aligned}$	20	3rd Class	3101284	$\begin{aligned} & £ 7 \\ & 18 \mathrm{~s} \\ & 6 \mathrm{~d} \end{aligned}$			Southampton		15	
ABRAHIM, Mrs Mary Sophie Halaut	18	3rd Class	2657	$\begin{aligned} & £ 7 \\ & 4 \mathrm{~s} \\ & 7 \mathrm{~d} \end{aligned}$			Cherbourg		C	
ADAMS, Mr John	26	3rd Class	341826	$\begin{aligned} & £ 8 \\ & 1 \mathrm{~s} \end{aligned}$			Southampton			103
AHLIN, Mrs Johanna				£9						

SUMMARY

Mr Abraham August Johannes Abrahamsson

Mr August Abrahamson, 20, a single man from Dalsbruk (Taalintehdas), Kimito Island, in southwest Finland boarded the Titanic at Southampton. He was travelling to Hoboken, New Jersey. He travelled with Eino Lindqvist and Helga Hirvonen. He shared a cabin with 5 other Finns.

At the time of the collision August was asleep, at first he had no intention to go up and investigate the cause, however, he changed his mind and went to the adjacent cabin to warn Eino Lindqvist, when he began to suspect something was wrong.

He went up to the Boat Deck and entered, most likely, lifeboat 15 he later reported hearing stifled explosions as the ship went down.

After his arrival in New York August was quartered at St. Vincent hospital in New York. He went back to Finland but, in 1914, got married and returned to America where he died in 1961.

References

Claes-Göran Wetterholm $(1988,1996,1999)$ Titanic. Prisma, Stockholm. ISBN 91518 36440

Acknowledgements

Claes-Göran Wetterholm, Sweden

Contributors

Leif Snellman, Finland

AGE: 20 YEARS

LAST RESIDENCE: IN DAISBRUK FINLAND 3RD CLASS PASSENGER
FIRST EMBARKED: SOUTHAMPTON ON
WEDNESDAY 10TH APRIL 1912
TICKET NO. 3101284 , £7 18S 6D DESTINATION: HOBOKEN NEW JERSEY UNITED STATES
RESCUED (BOAT 15)
DISEMBARKED CARPATHIA: NEW YORK CITY ON THURSDAY 18TH APRIL 1912
DIED: 1961

Ads by Goooooogle
Furnished Apts NYC
850 Furnished Apartments From 4 Days to 1 yr. Stay Different.
www.FurnishedQuarters.com
New York Sightseeing Tour
The most fun tours of New York City Small group tours with lic'd guides
www.NewYorkPartyShuttleTours.com
Tandblekning Nu 895:-
Vita tänder snabbt och säkert. Tandläkarnas val. Kampanj just nu!
www.dentway.se
See New York City Tours

$\begin{aligned} & \text { NOSWORTHY, Mr } \\ & \hline \text { Richard Cater } \\ & \hline \end{aligned}$	21	3rd Class	39886	$\begin{aligned} & £ 7 \\ & 16 \mathrm{~s} \end{aligned}$	Southampton	Farm Labourer	
NYSTEN, Miss Anna Sofia	22	3rd Class	347081	$\begin{aligned} & £ 7 \\ & 15 \mathrm{~s} \end{aligned}$	Southampton		13
NYSVEEN, Mr Johan Hansen	60	3rd Class	345364	$\begin{aligned} & £ 6 \\ & 4 \mathrm{~s} \\ & 9 \mathrm{~d} \end{aligned}$	Southampton	Farmer	
$\begin{aligned} & \text { O'BRIEN, Mr } \\ & \hline \text { Timothy } \\ & \hline \end{aligned}$	21	3rd Class	330979	$\begin{aligned} & £ 7 \\ & 16 s \\ & 7 \mathrm{~d} \end{aligned}$	Queenstown		
$\begin{aligned} & \text { O'BRIEN, Mr } \\ & \hline \text { Thomas } \end{aligned}$	27	3rd Class	370365	$\begin{aligned} & £ 15 \\ & 10 \mathrm{~s} \end{aligned}$	Queenstown	Farm Labourer	
$\begin{aligned} & \text { O'BRIEN, Mrs } \\ & \text { Johanna "Hannah" } \end{aligned}$	26	3rd Class	370365	$\begin{aligned} & £ 15 \\ & 10 \mathrm{~s} \end{aligned}$	Queenstown	Housewife	
$\frac{\text { O'CONNELL, Mr }}{\text { Patrick Denis }}$	17	3rd Class	334912	$\begin{aligned} & £ 7 \\ & 14 \mathrm{~s} \\ & 8 \mathrm{~d} \end{aligned}$	Queenstown	General Labourer	
$\begin{aligned} & \text { O'CONNOR, Mr } \\ & \hline \text { Maurice } \end{aligned}$	16	3rd Class	371060	$\begin{aligned} & £ 7 \\ & 15 \mathrm{~s} \end{aligned}$	Queenstown	General Labourer	
$\begin{aligned} & \text { O'CONNOR, Mr } \\ & \hline \text { Patrick } \end{aligned}$	23	3rd Class	366713	$\begin{aligned} & £ 7 \\ & 15 \mathrm{~s} \end{aligned}$	Queenstown	Farmer	
$\frac{\text { O'DRISCOLL, Miss }}{\text { Bridqet }}$	27	3rd Class	14311	$\begin{aligned} & £ 7 \\ & 15 \mathrm{~s} \end{aligned}$	Queenstown		D
O'DWYER, Miss Ellen "Nellie"	25	3rd Class	330959	$\begin{aligned} & £ 7 \\ & 17 \mathrm{~s} \\ & 7 \mathrm{~d} \end{aligned}$	Queenstown		
O'KEEFE, Mr Patrick	21	3rd Class	368402	$\begin{aligned} & £ 7 \\ & 15 \mathrm{~s} \end{aligned}$	Queenstown	Farm Labourer	B
O'IFADV Mice				£7			

Miss Hanora "Nora" O'Leary

Miss Hanora (Nora) O'Leary, 16, was born in Glencollins, Kingwilliamstown, Co. Cork on June 10, 1895. She was the daughter of John O'Leary and Johanna Healy and had five brothers and two sisters. She was going to her sister Ms. Katie O'Leary at 137 W. 11th Street, New York City.

She boarded the Titanic at Queenstown (ticket number 330919, £7 16s 7d). She was travelling in a group from the Kingwilliamstown area led by Daniel Buckley, and consisting of Hannah Riordan, Bridget Bradley, Patrick Denis O'Connell, Patrick O'Connor, and Michael Linehan.

Nora was rescued, probably in lifeboat 13.
Nora became a domestic in New York City. Upon returning to Ireland for a visit a few years later, she married Thomas J. (Tim) Herlihy and then remained in Ireland where she raised her son and four daughters. She spent the remainder of her life in Ballydesmond where she died on 18 May 1975. She is buried in the parish churchyard just a few feet from fellow survivor, Daniel Buckley.

Sources

Contract Ticket List, White Star Line 1912 (National Archives, New York; NRAN-21-SDNYCIVCAS-55[279]).
Noel Ray (1999) List of Passengers who Boarded RMS Titanic at Queenstown, April 11, 1912. The Irish Titanic Historical Society

Contributors

Cameron Bell, Northern Ireland
Robert L. Bracken, USA
Michael A. Findlay, USA
Noel Ray, Ireland

The largest groups travelling in first and second class were North American or British; most of those in third class were emigrating from Europe to the United States. Unable to find a comparison group with the same mix of backgrounds and selection factors, we created two "next best" comparison groups from available data. We calculated what proportions of an age and sex matched group of white Americans alive in 1912 would be alive at each anniversary. To do so, we converted current (cross sectional) life tables for the years 1912-2000 ${ }^{2}$ into cohort life tables. We created a second comparison group from life table data for Sweden, which was already in cohort form. ${ }^{3}$ Longevity differences were assessed by log rank tests.

National Vital Statistics Reports

Volume 51, Number 3
December 19, 2002

United States Life Tables, 2000

by Elizateth Arias, Ph.D., Division of Vital Statistics

Introduction

There are two types of life tables-the cohort (or generation) life table and the period (or current) life table. The cohort life table presents the mortality experience of a particular birth cohort, all persons born in the year 1900, for example, from the moment of birth through consecutive ages in successive calendar years. Based on age-specific death rates observed through consecutive calendar years, the cohort life table reflects the mortality experience of an actual cohort from birth until no lives remain in the group. To prepare just a single complete cohort life table requires data over many years.

Unlike the cohort life table, the period life table does not represent the mortality experience of an actual birth cohort. Rather, the period life table presents what would happen to a hypothetical (or synthetic) cohort if it experienced throughout its entire life the mortality conditions of a particular period in time. Thus, for example, a period life table for 2000 assumes a hypothetical cohort subject throughout its lifetime to the age-specific death rates prevailing for the actual population in 2000. The period life table may thus be characterized as rendering a "snapshot" of current mortality experience, and shows the long-range implications of a set of age-specific death rates that prevailed in a given year. In this report the term "life table" refers only to the period life table and not to the cohort life table.

Figure 2. Percent surviving by age, race, and sex: Unilted States, 2000

Figure 3. Percent surviving by age: Death-registration States, 1900-1902, and United States, 1949-51 and 2000

Table 6. Life table for white females: United States, 2000

Age	Probability of dying between ages x to $x+1$	Number surviving to age x
	q_{x}	I_{x}
0-1	0.005127	100,000
1-2	0.000414	99,487
2-3	0.000268	99,446
3-4	0.000178	99,419
4-5	0.000154	99,402
5-6	0.000148	99,386
6-7	0.000140	99,372
7-8	0.000134	99,358
8-9	0.000126	99,344
9-10	0.000117	99,332
10-11.	0.000109	99,320
11-12.	0.000112	99,309
12-13	0.000134	99,298

Table 10. Survivorship by age, race, and sex: Death-registration States, 1900-1902 to 1919-21, and United States, 1929-31 to 2000-Con.

[Alaska and Hawaii included beginning in 1959. For decennial periods prior to 1929-31, data are for groups of registration States as follows: 1900-1902 and 1909-11, 10 States and the District of Columbia; 1919-21, 34 States and the District of Columbia. Beginning 1970 excludes deaths of nonresidents of the United States; see Technical Notes]

Age, race, and sex	Number of survivors out of 100,000 born alive ((${ }_{x}$)										
	2000	1989-91	1979-81	1969-71	1959-61	1949-51	1939-41	1929-31	1919-21	1909-11	1900-1902
White female											
0	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000
1	99,487	99,333	99,035	98,468	98,036	97,645	96,211	95,037	93,608	89,774	88,939
5	99,386	99,187	98,841	98,203	97,709	97,199	95,309	93,216	90,721	85,349	83,426
10	99,320	99,099	98,725	98,042	97,525	96,960	94,890	92,466	89,564	83,979	81,723
15	99,243	99,007	98,618	97,902	97,375	96,756	94,534	91,894	88,712	83,093	80,680
20	99,046	98,795	98,374	97,618	97,135	96,454	93,984	90,939	87,281	81,750	78,978
25	98,831	98,547	98,093	97,299	96,844	96,072	93,228	89,524	85,163	79,865	76,588
30	98,586	98,283	97,802	96,945	96,499	95,605	92,320	87,972	82,740	77,676	73,887
35	98,268	97,939	97,445	96,474	96,026	94,977	91,211	86,248	80,206	75,200	70,971
40	97,777	97,472	96,913	95,762	95,326	94,080	89,805	84,256	77,624	72,425	67,935
45	97,044	96,768	96,065	94,649	94,228	92,725	87,920	81,780	74,871	69,341	64,677
50	95,970	95,608	94,710	92,924	92,522	90,685	85,267	78,572	71,547	65,629	61,005
55	94,283	93,730	92,594	90,383	89,967	87,699	81,520	74,321	67,323	61,053	56,509
60	91,590	90,789	89,451	86,726	86,339	83,279	76,200	68,462	61,704	54,900	50,752
65	87,385	86,339	84,764	81,579	80,739	76,773	68,701	60,499	54,299	47,086	43,806
70	81,163	79,984	78,139	74,101	72,507	67,545	58,363	49,932	44,638	37,482	35,206
75	72,254	70,834	68,712	63,290	60,461	54,397	44,685	37,024	32,777	26,569	25,362
80	59,792	58,454	55,770	48,182	44,676	38,026	28,882	23,053	20,492	15,929	15,349
85	43,112	42,274	38,774	30,490	26,046	21,348	14,487	10,937	9,909	7,152	7,149
90	24,439	24,270	20,996	14,406	10,219	8,662	5,061	3,719	3,372	2,291	2,322
95	9,638	9,495	7,900	4,526	2,203	2,200	1,109	797	721	434	448
100.	2,244	2,239	1,858	872	265	294	139	74	63	44	41

Interpolation l for ages $2,3,4,6,7,8,9, \ldots$ in 1910, 1920, \ldots
l for entire set of ages for years 1911-1919, 1921-1929, ...

(Synthetic) Cohorts of Persons Alive on April 15, 1912

$\operatorname{Pr}[>\{a+1, y+1\} \mid>\{a, y\}]=\operatorname{Pr}[>a+1 \mid a]$ using obsd mortality in year y.

$+$

$+$
etc.

John R. Wilmoth, Director
Vladimir Shkolnikov, Co-Director

University of California, Berkeley

Max Planck Institute for Demographic Research

The Human Mortality Database (HMD) was created to provide detailed mortality and population data to researchers, students, journalists, policy analysts, and others interested in the history of human longevity. The project began as an outgrowth of earlier projects in the Department of Demography at the University of California, Berkeley, USA, and at the Max Planck Institute for Demographic Research in Rostock, Germany (see history). It is the work of three teams of researchers in the USA, Germany, and Canada (see research teams), with the help of financial backers and scientific collaborators from around the world (see acknowledgements).

The main goal of the database is to document the longevity revolution of the modern era and to facilitate research into its causes and consequences. To that end, the guiding principles of the HMD include:

Sweden

WARNING: The quality of the data for 1751-1860 are lower than in later years and should be used with caution. For details, please see the "Data Quality Issues" section of the General Comments file.

Data Files Explanation

General Comments

List of Data Sources

1. Births 1749-2003
2. Deaths 1751-2003 Lexis triangles $1 \times 15 \times 1$
3. Population size (January 1st) 1751-2004 1-year 5-year
4. Exposure-to-risk

By year of death (period)

- 1751-2003 1 $\underline{1} 1 \times \underline{1} 1 \times 105 \times 15 \times 5 \underline{5 \times 10}$

By year of birth (cohort)

- 1676-1973 1×1 1x5 1×10 5x1 $\underline{x} \times 5 \underline{5 \times 10}$

5. Death rates

By year of death (period)

By year of birth (cohort)

6. Life tables

By year of death (period)
1751-2003

- Female $1 \times 11 \times 51 \times 10 \leq \times 15 \times 5 \leq 10$
- Male $1 \times 11 \times 51 \times 105 \times 15 \times 55 \times 10$
- Total 1x1 1×5 1×10 5x1 5×5 5x10

By year of birth (cohort)
1751-1912

- Female $1 \times 1 \times 1 \times 51 \times 105 \times 15 \times 55 \times 10$
- Male $1 \times 1 \times 1 \times 51 \times 105 \times 15 \times 55 \times 10$
- Total 1×1 1x5 1×10 ㅈx $5 \times 51 \times 10$

7. Life expectancy at birth 1751-2003

Sweden, Life tables (cohort 1x1), Females

Last modified: 20-Apr-2005, MPv4 (Feb05)

Year	Age	$\mathbf{l x}$	$\mathbf{d x}$	$\mathbf{q x}$	$\mathbf{L x}$	$\mathbf{e x}$	$\mathbf{I} \mathbf{\prime} \mathbf{x}$	(Re-Scaled)
1751	0	100000	20834	0.208	86458	35.8		
1751	1	79166	4997	0.063	76416	44.1		
1751	2	74169	2743	0.036	72819	46.0		

1852	0		1000001	14957	0.149	90278	46.9		
1852	1		85043	3730	0.043	83014	54.1		
1852	2		81313	2121	0.026	80251	55.6		
-•••									
1852	60	$<$	49042 (*)	804	0.016	48629	17.3	100000	
1852	61		48238 (1)	830	0.017	47830	16.6	98361	(1) \div (*)
1852	62		47408 (2)) 937	0.019	46937	15.8	96668	(2) \div (*)

1892	0		100000	9517	0.095	93694	58.0		
1892	1		90483	2514	0.027	89168	63.1		
1892	20	<	79360 (*)	410	0.005	79157	52.1	100000	
1892	21		78950 (1)	341	0.004	78787	51.3	99483	(1) \div (*)
1892	22		78609(2)	447	0.005	78389	50.5	99053	(2) \div (*)
1892	23		78162	468	0.006	77932	49.8		
1892	24		77694	372	0.005	77509	49.2		
1892	25		77322	504	0.006	77091	48.4		
1892	26		76818	1185	0.015	76123	47.7		
1892	27		75633	419	0.005	75430	47.4		
1892	28		75214	410	0.005	75017	46.7		

Sweden, Life tables (cohort 1x1), Females
Last modified: 20-Apr-2005, MPv4 (Feb05)

Year	Age	1x	dx	qx	Lx	ex	I'x (Re-Scaled)
1912	$0<$	100000	6248	0.062	95231	68.7	100000
1912	1	93752	1400	0.014	93023	72.3	93752
1912	2	92352	701	0.007	92004	72.3	92352
1912	3	91651	494	0.005	91402	71.9	91651
1912	4	91157	416	0.004	90945	71.3
1912	5	90741	355	0.003	90569	70.6	-••••
1912	6	90386	536	0.005	90100	69.9	
1912	7	89850	330	0.003	89682	69.3	
1912	8	89520	208	0.002	89418	68.5	
1912	9	89313	203	0.002	89212	67.7	
1912	10	89110	135	0.001	89043	66.9	
1912	11	88975	138	0.001	88904	66.0	

$+$

$+$
etc.

Hazardous journeys

Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, 1020
Pine Avenue West, Montreal, QC, Canada H3A 1A2 James A Hanley professor
Carine Bellera graduate student Dana Teltsch graduate student

Department of Mathematics and
Statistics, McGill
University
Elizabeth Turner graduate student

Percentage still alive on each anniversary of sinking of Titanic among 435 survivors and Swedish and white American comparison groups matched for age and sex. Inset: analysis by sex and class of travel ($\mathrm{n}=$ No of passengers; age=median age in 1912)

Males

2nd class

The survival of the 435 passengers was slightly, but not significantly, longer than that of the two comparison groups (figure). On average they lived 1.7 years longer than the general population of the United States and 0.5 years longer than that of Sweden. This small advantage was limited to female passengers in first and second class (figure). Five women lived past 100 , and the three survivors still alive are now in their 90s. Despite their higher socioeconomic status, male passengers in first class did not outlive similar age males in the general populations.

Comment

The longevity of Titanic survivors who could be traced was not remarkably different from that of age and sex matched individuals in the general population. The available life table data did not allow us to match on social class. Nevertheless, those who travelled third class had similar survival to our comparison group. We therefore wonder why males (and maybe even females) in first and second class did not fare considerably better than the general population.

Follow up is complete for 87% of the passengers who survived the sinking; only 65 people, several of them servants to those in first and second class, are still untraced and excluded from our analysis. The quality of the follow up data on those traced seems to be excellent. Most dates of birth, important for age matched comparisons, also seem to be trustworthy.

Although unable to find the perfect comparison group, we avoided errors made in other longevity comparisons. ${ }^{45}$ For the comparison group, we calculated the remaining lifetimes of people alive in 1912. Since age specific death rates fell substantially during the 20th century, we calculated these remaining lifetimes using the 1912-2000 death rates.

In the closing song of the 1997 film, the heroine tells us that her heart "must go on and on" and tells us twice more that it "will go on and on." The Titanic survivors did not have shorter life spans than the general population. Nor did they, despite the determination implied by the lyric, substantially outlive them.

$$
\begin{aligned}
& 40 \\
& 20
\end{aligned}
$$

> 1942
> 1972
> 2003

2003

Figure 2

The age at, and year of death for each of the 435 surviving passengers, separated by class and sex. Each passenger is indicated by a dot. A passenger's age at the time of the disaster can be determined by moving the point diagonally downwards and to the left. For example, the circled dot refers to a female in 2nd class who died in 1933 at age 25 . Thus, she was aged 4 in 1912 (empty circle), and was born in 1908. All of those passengers between two adjacent diagonal lines were in the same decade of age in 1912. The curved lines give, for comparison, the expected median age of death for comparison people (U.S. whites and Swedish) of the same sex and with same year of birth who were themselves alive ("survivors") in 1912.

Stratified Log-rank test in general...

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Stratum \& n_{1} \& no \& $$
\begin{gathered}
\text { lifelines \& } \\
\text { risksets } \\
\text { t }_{0} \quad \Downarrow
\end{gathered}
$$ \& Observed \& \& $$
\begin{aligned}
& \mathrm{V}\left[\mathrm{a} \mid \mathrm{H}_{0}\right] \\
& \mathrm{n}_{1} \mathrm{n}_{0} \mathrm{n}_{\mathrm{X}} \mathrm{n}_{-} \\
& \hdashline \mathrm{n}^{2}(\mathrm{n}-1)
\end{aligned}
$$

\hline 1

2

\ldots \& 2 \& \[
2

\] \& \& | 1 | 1 | 2 |
| :--- | :---: | ---: |
0	2	2
1	3	4
0	1	1
$\frac{1}{1}$	1	2
-	-	--
1	2	3

\left\lvert\, $$
\begin{gathered}
2 \times 2 \times 1 \times 3 \\
-12(4-1) \\
1 \times 2 \times 1 \times 2 \\
-12(3-1)
\end{gathered}
$$\right.
\]

\hline Σ \& Σ \& \& al1 stra \& \[
$$
\begin{aligned}
& \sum \underline{\underline{a}} \\
& a: \frac{\left\{\sum \mathrm{a}\right.}{\sum \mathrm{v}[}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mid \sum \underline{\underline{a}}_{E} \\
& \left.\sum{\underline{\underline{a_{E}}}}\right\}^{2} \\
& H 0]
\end{aligned}
$$
\] \& $\sum \mathrm{V}[\mathrm{a} \mid \mathrm{Ho}]$

\hline
\end{tabular}

Stratified Log-rank test 1 stratum [passenger\&peers] $n_{1}=1$ and $n_{0} \gg 1$ [déjà dead]

Σ over all 435 passengers:
$\frac{\{\Sigma(1+\log [\mathrm{S}[\mathrm{t}]])\}^{2}}{-\Sigma \log [\mathrm{S}[t]]} \sim \chi_{1}^{2}$

Alternatively: Combine $\mathrm{S}\left[\mathrm{t}_{1}\right], \mathrm{S}\left[\mathrm{t}_{2}\right] \ldots \mathrm{S}\left[\mathrm{t}_{435}\right]$ à la Fisher

$S[t]=\operatorname{Prob}[T>t \mid$ Comparison $S[])$ is a 1 -sided p-value.
Under Null: -2 $\log \left[\mathrm{S}[\mathrm{t}]\right.$ \} $\sim \chi_{2}{ }^{2}$
$\mathrm{n}(=435)$ independent p -values: $-\Sigma 2 \log \left[\mathrm{~S}\left[\mathrm{t}_{\mathrm{i}}\right]\right\} \sim \chi_{2 n}{ }^{2}$

