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17 Survival analysis

17.1 Introduction

In many studies the variable of direct interest is the length of time that elapses
before some event occurs. This event may be death, or death due to a particular
disease, and for this reason the analysis of such data is often referred to as
survival analysis.

An example of such a study is a clinical trial for the treatment of a
malignant tumour where the prognosis is poor; death or remission of the
tumour would be the end-point. Such studies usually include individuals for
whom the event has not occurred at the time of the analysis. Although the
time to the event for such a patient is unknown, there is some information on
its value since it is known that it must exceed the current survival time; an
observation of this type is referred to as a censored value. Methods of analysis
must be able to cope with censored values. Often a number of variables are
observed at the commencement of a trial, and survival is related to the values of
these variables; that is, the variables are prognostic. Methods of analysis must be
able to take account of the distribution of prognostic variables in the groups
under study.

The number of studies of the above type has increased during the last three
decades and statistical methods have been developed to analyse them; many of
these methods were developed during the 1970s. Some of the methods will be
described in this chapter; readers interested in more details are referred to a
review by Andersen and Keiding (1998), to the books by Kalbfleisch and
Prentice (1980), Lawless (1982), Cox and Oakes (1984), Collett (1994), Marubini
and Valsecchi (1995), Parmar and Machin (1995), Kleinbaum (1996) and Klein
and Moeschberger (1997), and to the two papers by Peto et al. (1976, 1977).
Software for performing the computations are reviewed by Goldstein and
Harrell (1998).

A second situation where survival analysis has been used occurs in the study
of occupational mortality where it is required to assess if a group of workers who
are exposed to a pollutant are experiencing excess mortality. Subjects enter the
study when healthy and, for this reason, a common method of analysis has been
the comparison of observed mortality, both in timing and cause, with what
would be expected if the study group were subject to a similar mortality to that
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of the population of which it is a part. Discussion of this situation is deferred
until §19.7.

Many of the methods of analysis are based on a life-table approach and in the
next section the life-table is described.

17.2 Life-tables

The life-table, first developed adequately by E. Halley (1656-1742), is one of the
basic tools of vital statistics and actuarial science. Standardization is introduced
in §19.3 as a method of summarizing a set of age-specific death rates, thus
providing a composite measure of the mortality experience of a community at
all ages and permitting useful comparison with the experience of other groups of
people. The life-table is an alternative summarizing procedure with rather similar
attributes. Its purpose is to exhibit the pattern of survival of a group of individ-
uals subject, throughout life, to the age-specific rates in question.

There are two distinct ways in which a life-table may be constructed from
mortality data for a large community; the two forms are usually called the
current life-table and the cohort or generation life-table. The current life-table
describes the survival pattern of a group of individuals, subject throughout life to
the age-specific death rates currently observed in a particular community. This
group is necessarily hypothetical. A group of individuals now aged 60 years will
next year experience approximately the current mortality rate specific to ages 60—
61; but those who survive another 10 years will, in the 11th year, experience not
the current rate for ages 70-71 but the rate prevailing 10 years hence. The current
life-table, then, is a convenient summary of current mortality rather than a
description of the actual mortality experience of any group.

The method of constructing the current life-tables published in national
sources of vital statistics or in those used in life assurance offices is rather
complex (Chiang, 1984). A simplified approach is described by Hill and Hill
(1991). The main features of the life-table can be seen from Table 17.1, the left
side of which summarizes the English Life Table No. 10 based on the mortality
of males in England and Wales in 1930-32. The second column gives g, the
probability that an individual, alive at age x years exactly, will die before his or
her next birthday. The third column shows /;, the number of individuals out of
an arbitrary 1000 born alive who would survive to their xth birthday. To survive
for this period an individual must survive the first year, then the second, and so
on. Consequently.

lx:l()])()pl~-~px—lv (171)

where p, = 1 — g,. This formula can be checked from Table 17.1 for x = 1, but
not subsequently because values of ¢, are given here only for selected values of x;
such a table is called an abridged life-table.
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Table 17.1 Current and cohort abridged life-tables for men in England and Wales born around 1931.

Current life-tables 1930-32 Cohort life-table,
” - 1931 cohort

Probability of death

Age between age Life-table Expect-ution Lifc—.table
(years) x and x + 1 SUrvivors ofnllfe SUrvivors
X g I e, [N

0 0-0719 1000 58-7 1000

1 0-0153 9281 62:2 927-8

0-0034 900.7 60-1 903-6

10 0-0015 890-2 55-8 894-8
20 0-0032 8724 46-8 884-2
30 0-0034 8442 382 874-1
40 0-0056 809-4 296 861-8
50 0-0113 7479 216 829.7
60 0-0242 6362 14-4 -
70 0-0604 433.6 8.6 —
80 0-1450 162-0 4.7 —

The fourth column shows é,, the expectation of life at age x. This is the mean
length of additional life beyond age x of all the /, people alive at age x. In a
complete table &, can be calculated approximately as

1
= (Ley1 + o+ )/ + (17.2)

5
since the term in parentheses is the total number of years livedv beyqnd age x by
the /[, individuals if those dying between age y and age y + 1 did so immediately
after their yth birthday, and the % is a correction to allow for the fact t}}at death:
take place throughout each year of age, which very roughly adds half a year tc
the mean survival time.

The cohort life-table describes the actual survival experience of a group, ot
‘cohort’, of individuals born at about the same time. Those born in 1900, fo
instance, are subject during their first year to the mortality under I year of ..’:lg(
prevailing in 1900-01; if they survive to 10 years of age they are subj?c
to the mortality at that age in 1910-11; and so on. Cohort life-tables summariz
the mortality at different ages at the times when the cohort would have beer
at these ages. The right-hand side of Table 17.1 summarizes the /, column fron
the cohort life-table for men in England and Wales born in the 5 years centrec
around 1931. As would be expected, the values of /; in the two life-tables are ver
similar, being dependent on infant mortality in about the same calendar ye'ar:s
At higher ages the values of 7, are greater for the cohort tabile becal{se this 1
based on mortality rates at the higher ages which were experienced since 193
and which are lower than the 1931 rates
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Both forms of life-table are useful for vital statistical and epidemiological
studies. Current life-tables summarize current mortality and may be used as an
alternative to methods of standardization for comparisons between the mortality
patterns of different communities. Cohort life-tables are particularly useful in
studies of occupational mortality, where a group may be followed up over a long
period of time (§19.7).

17.3 Follow-up studies

Many medical investigations are concerned with the survival pattern of special
groups of patients-—for example, those suffering from a particular form of
malignant disease. Survival may be on average much shorter than for members
of the general population. Since age is likely to be a less important factor than
the progress of the disease, it is natural to measure survival from a particular
stage in the history of the disease, such as the date when symptoms were first
reported or the date on which a particular operation took place.

The application of life-table methods to data from follow-up studies of this
kind will now be considered in some detail. In principle the methods are applic-
able to situations in which the critical end-point is not death, but some non-fatal
event, such as the recurrence of symptoms and signs after a remission, although
it may not be possible to determine the precise time of recurrence, whereas the
time of death can usually be determined accurately. Indeed, the event may be
favourable rather than unfavourable; the disappearance of symptoms after the
start of treatment is an example. The discussion below is in terms of survival
after an operation.

At the time of analysis of such a follow-up study patients are likely to have
been observed for varying lengths of time, some having had the operation a long
time before, others having been operated on recently. Some patients will have
died, at times which can usually be ascertained relatively accurately; others are
known to be alive at the time of analysis; others may have been lost to follow-up
for various reasons between one examination and the next; others may have had
to be withdrawn from the study for medical reasons—operhaps by the interven--
tion of some other disease or an accidental death. '

If there were no complications like those just referred to, and if every patient
were followed until the time of death, the construction of a life-table in terms
of time after operation would be a simple matter. The life-table survival rate, /.,
15 /y times the proportion of survival times greater than x. The problem would be
merely that of obtaining the distribution of survival time—a very elementary
task. To overcome the complications of incomplete data, a table like Table 17.2
is constructed.

This table is adapted from that given by Berkson and Gage (1950) in one of
the first pavers describing the method. In the original data. the time intervals
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Table 17.2 Life-table calculations for patients with a particular form of malignant disease, adapted
from Berkson and Gage (1950).

1 2 (3) 4 (5) (6) 7 ®)
Interval Last reported
since during this Estimated Percentage
operation interval Living at Adjusted Estimated probability of
(ycars) S v startof  number probability of SUrvivors
xtox +1 Died Withdrawn  interval at risk of death survival after x years
dy Wy fy nf\, q. D [,
0-1 90 0 374 3740 0-2406 0-7594 100-0
-2 76 0 284 284-0 0-2676 0-7324 759
2-3 51 0 208 2080 0-2452 0-7548 556
34 25 12 157 151-0 0-1656 0-8344 420
45 20 5 120 117-5 01702 0-8298 350
5--6 7 9 95 90-5 0-0773 0-9227 29-1
6-7 4 9 79 74-5 0-0537 0-9463 26-8
78 1 3 66 64-5 0-0155 0-9845 254
8.9 3 5 62 59-5 0-0504 0-9496 25.0
9 10 2 5 54 515 0-0388 0-9612 23.7
10 21 26 47 — - 22-8

were measured from the time of hospital discharge, but for purposes of ex-
position we have changed these to intervals following operation. The columns
(1)—(8) are formed as follows.

(1) The choice of time intervals will depend on the nature of the data. In the
present study estimates were needed of survival rates for integral numbers of
years, to 10, after operation. If survival after 10 years had been of particular
interest, the intervals could easily have been extended beyond 10 years. In that
case, to avoid the table becoming too cumbersome it might have been useful to
use 2-year intervals for at least some of the groups. Unequal intervals cause no
problem; for an example, see Merrell and Shulman (1955).

(2) and (3) The patients in the study are now classified according to the time
interval during which their condition was last reported. If the report was of a
death, the patient is counted in column (2); patients who were alive at the last
report are counted in column (3). The term ‘withdrawn’ thus includes patients
recently reported as alive, who would continue to be observed at future follow-
up examinations, and those who have been lost to follow-up for some reason.

(4) The numbers of patients living at the start of the intervals are obtained by
cumulating columns (2) and (3) from the foot. Thus, the number alive at 10 years
is 21 + 26 = 47. The number alive at 9 years includes these 47 and also the
2 +5 =7 died or withdrawn in the interval 9-10 years; the entry is therefore
47 + 7 = 54.
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(5) The adjusted number at risk during the interval x to x + 1 is

", =n,— %wx~ (17.3)
The purpose of this formula is to provide a denominator for the next column.
The rationale is discussed below.

(6) The estimated probability of death during the interval x to x + 1 is

g = di /1 (17.4)
For example, in the first line,
go = 90/374-0 = 0-2406.

The adjustment from n, to #. is needed because the w, withdrawals are neces-
sarily at risk for only part of the interval. It is possible to make rather more
sophisticated allowance for the withdrawals, particularly if the point of with-
drawal during the interval is known. However, it is usually quite adequate to
assume that the withdrawals have the same effect as if half of them were at risk
for the whole period; hence the adjustment (17.3). An alternative argument is
that, if the w, patients had not withdrawn, we might have expected about %qxwx
extra deaths. The total number of deaths would then have been d, + %qxlm and
we should have had an estimated death rate

1 ;
o dx + 56],01 X
Hx

4x (17.5)

(17.5) 1s equivalent to (17.3) and (17.4).

(N px=1—1¢-

(8) The estimated probability of survival to, say, 3 years after the operation is
po pi p2- The entries in the last column, often called the life-table survival rates,
are thus obtained by successive multiplication of those in column (7), with an
arbitrary multiplier /, = 100. Formally,

L=bpopr. -pe, (17.6)

asin (17.1).

Two important assumptions underlie these calculations. First, it is assumed
that the withdrawals are subject to the same probabilities of death as the non-
withdrawals. This is a reasonable assumption for withdrawals who are still in the
study and will be available for future follow-up. It may be a dangerous assump-
tion for patients who were lost to follow-up, since failure to examine a patient for
any reason may be related to the patient’s health. Secondly, the various values of
Px are obtained from patients who entered the study at different points of time. It
must be assumed that these probabilities remain reasonably constant over time;
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otherwise the life-table calculations represent quantities with no simple interpre-
tation.

In Table 17.2 the calculations could have been continued beyond 10 years.
Suppose, however, that dyp and wyo had both been zero, as they would have been
if no patients had been observed for more than 10 years. Then n1g would have
been zero, no values of ¢,y and py could have been calculated and, in general, no
value of /;; would have been available unless /;y were zero (as it would be if any
one of po, p1, ..., ps were zero), in which case /;; would also be zero. This point
can be put more obviously by saying that no survival information is available for
periods of follow-up longer than the maximum observed in the study. This
means that the expectation of life (which implies an indefinitely long follow-
up) cannot be calculated from follow-up studies unless the period of follow-up,
at least for some patients, is sufficiently long to cover virtualty the complete span
of survival. For this reason the life-table survival rate (column (8) of Table 17.2)
is a more generally useful measure of survival. Note that the vatue of x for which
I = 50% is the median survival time; for a symmetric distribution this would be
equal to the expectation of life.

For further discussion of life-table methods in follow-up studies, see Berkson
and Gage (1950), Merrell and Shulman (1955), Cutler and Ederer (1958) and
Newell et al. (1961).

17.4 Sampling errors in the life-table

Each of the values of p, in a life-table calculation is subject to sampling vari-
ation. Were it not for the withdrawals the variation could be regarded as
binomial, with a sample size n,. The effect of withdrawals is approximately the
same as that of reducing the sample size to /.. The variance of /. is given
approximately by the following formula due to Greenwood (1926), which can
be obtained by taking logarithms in (17.6) and using an extension of (5.20).

In Table 17.2, for instance, where I, = 35-0%,

0 51 25
(374)(284) * (284)(208) © (208)(157) + (151)(126)

var(ly) = (35-0)?
=6-14
so that SE(/4) = v/6-14 = 2-48, and approximate 95% confidence limits for 4 are

35-0+(1-96)(2-48) = 30-1 and 39-9.
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Application of (17.7) can lead to impossible values for confidence limits
outside the range 0 to 100%. An alternative that avoids this is to apply the
double-log transformation, In(—In/;), to (17.6), with /, = 1, so that /, is a
proportion with permissible range 0 to 1 (Kalbfleisch & Prentice, 1980). Then
Greenwood’s formula is modified to give 95% confidence limits for /, of

Jexplt 1-963)’ (17.8)
where
s=SE(L)/(=I In I,).

For the above example, Iy = 0-35,SE(/y) = 0-0248,5s = 0-0675,exp(1-96s) =
1-14,exp(—1-965) = 0-876, and the limits are 0-35"1% and 0-35°%7¢, which
equal 0-302 and 0-399. In this case, where the limits using (17.7) are not near
either end of the permissible range, (17.8) gives almost identical values to
(17.7).

Peto et al. (1977) give a formula for SE(/,) that is easier to calculate than
(17.7):

SE(L) = Loy/[(1 — L)/} (17.9)

As in (17.8), it is essential to work with /. as a proportion. In the example, (17.9)
gives SE(l4) = 0-0258. Formula (17.9) is conservative but may be more appro-
priate for the period of increasing uncertainty at the end of life-tables when there
are few survivors still being followed.

Methods for calculating the sampling variance of the various entries in
the life-table, including the expectation of life, are given by Chiang (1984,
Chapter 8).

17.5 The Kaplan-Meier estimator

The estimated life-table given in Table 17.2 was calculated after dividing the
period of follow-up into time intervals. In some cases the data may only
be available in group form and often it is convenient to summarize the data-
into groups. Forming groups does, however, involve an arbitrary choice
of time intervals and this can be avoided by using a method due to Kaplan
and Meier (1958). In this method the data are, effectively, regarded as
grouped into a large number of short time intervals, with e¢ach interval as
short as the accuracy of recording permits. Thus, if survival is recorded to an
accuracy of 1 day then time intervals of 1-day width would be used. Suppose
that at time #; there are d4; deaths and that just before the deaths occurred
there were nj’. subjects surviving. Then the estimated probability of death at
time ¢; 18
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gy = d/n]. (17.10)

This is equivalent to (17.4). By convention, if any subjects are censored at time
4j, then they are considered to have survived for longer than the deaths at time ¢;
and adjustments of the form of (17.3) are not applied. For most of the time
intervals d; = 0 and hence g, = 0 and the survival probability p, (= 1 —¢,) = L.
These intervals may be ignored in calculating the life-table survival using (17.6).
The survival at time ¢, /,, is then estimated by
/
L= TIr =T (17.11)
/ i i
where the product is taken over all time intervals in which a death occurred, up
to and including ¢. This estimator is termed the product-limit estimator because it
is the limiting form of the product in (17.6) as the time intervals are reduced
towards zero. The estimator is also the maximum likelihood estimator. The
estimates obtained are invariably expressed in graphical form. The survival
curve consists of horizontal lines with vertical steps each time a death occurred
(see Fig. 17.1 on p. 580). The calculations are illustrated in Table 17.4 (p. 579).

17.6 The logrank test

The test described in this section is used for the comparison of two or more
groups of survival data. The first step is to arrange the survival times, both
observed and censored, in rank order. Suppose, for illustration, that there are
two groups, A and B. If at time #; there were d; deaths and there were nj’.A and nj’.B
subjects alive just before #; in groups A and B, respectively, then the data can be
arranged in a 2 x 2 table:

Died Survived Total

Group A dia n}A —dia nj’.A
Group B dig Hp — dm iy
Total d; n} —d; n}

Except for tied survival times, d; = 1 and each of d;4 and dj is 0 or 1. Note also
that if a subject is censored at #; then that subject is considered at risk at that time
and so included in n}.

On the null hypothesis that the risk of death is the same in the two groups,
then we would expect the number of deaths at any time to be distributed between

the fwa oronng in nronartion to the numbere at risk That is
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E(dja) = n,"Adj/”/‘s

var(d) = DV~ Dmiate - (17.12)
’ mj (= 1)
In the case of d; = 1, (17.12) simplifies to
E<d.fA) :p;’/\a

var(dia) = pia(1 fp/’.A)’

where p, = n, /n}, the proportion of survivors who are in group A.

The difference between djs and E(d;a) is evidence against the null hypothesis.
The logrank test is the combination of these differences over all the times at
which deaths occurred. It is analogous to the Mantel-Haenszel test for combin-
ing data over strata (see §15.6) and was first introduced in this way (Mantel,
1966).

Summing over all times of death, ¢;, gives

Oa =2 din
Exr =Y E(da) . (17.13)
Va = var(dia)

Similar sums can be obtained for group B and it follows from (17.12) that
Ea + Eg = Op + Op.

Ex may be referred to as the ‘expected’ number of deaths in group A but
since, in some circumstances, E4 may exceed the number of individuals starting
in the group, a more accurate description is the extent of exposure to risk of death
(Peto et ul., 1977). A test statistic for the equivalence of the death rates in the two
groups is

Oa — Ex)?
xi o { L A) (17.14)

which is approximately a X%l)' An alternative and simpler test statistic, which .

does not require the calculation of the variance terms, is
2 2

(Oa—Ea)"  (Op— Ep)"

X5 =
: Ea * Ep

(17.15)

This statistic is also approximately a X%n' In practice (17.15) is usually adequate,
but it errs on the conservative side (Peto & Pike, 1973).

The logrank test may be generalized to more than two groups. The extension
of (17.14) involves the inverse of the variance—covariance matrix of the O — E
over the groups (Peto & Pike, 1973), but the extension of (17.15) is straightfor-
ward. The summation in (17.15) is extended to cover all the groups, with the
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quantities in (17.13) calculated for each group in the same way as for two groups.
The test statistic would have & — 1 degrees of freedom (DF) if there were k
groups.

The ratios Oa/Ea and Og/Ep are referred to as the relative death rates and
estimate the ratio of the death rate in each group to the death rate among both
groups combined. The ratio of these two relative rates estimates the death rate in
Group A relative to that in Group B, sometimes referred to as the hazard ratio.
The hazard ratio and sampling variability are given by

_ Oa/Ea
Og/Eg
(17.16)
1 1
SE[In{A)] = \/(V+—>
Y
An alternative estimate is
h = exp <*-—OAV7AEA)
(17.17)

SE[In(h)] = \/VLA

(Machin & Gardner, 1989). Formula (17.17) is similar to (4.33). Both (17.16)
and (17.17) are biased, and confidence intervals based on the standard errors
(SE) will have less than the nominal coverage, when the hazard ratio is not close
to unity. Formula (17.16) is less biased and is adequate for /4 less than 3, but for
larger hazard ratios an adjusted standard error may be calculated (Berry et al.,
1991) or a more complex analysis might be advisable (§17.8).

Example 17.1

In Table 17.3 data are given of the survival of patients with diffuse histiocytic lymphoma
according to stage of tumour. Survival is measured in days after entry to a clinical trial.
There was little difference in survival between the two treatment groups, which are not
considered in this example.

The calculations of the product-iimit estimate of the life-table are given in Table 17.4
for the stage 3 group and the comparison of the survival for the two stages is shown in
Fig. 17.1. It is apparent that survival is longer, on average, for patients with a stage 3
tumour than for those with stage 4. This difference may be formally tested using the
logrank test.

The basic calculations nccessary for the logrank test are given in Table 17.5. For
brevity, only deaths occurring at the beginning and end of the observation period are
shown. The two groups are indicated by subscripts 3 and 4, instead of A and B used in the

oeneral deserintion
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Table 17.3 Survival of patients with diffuse hystiocytic lymphoma according to stage of tumour (data
abstracted from McKelvey ef al., 1976).

Survival (days)

Stage 3 6 19 32 42 42 43% 94 126%

169* 207 211* 227* 253 255% 270* 310*
3l6* 335% 346*
Stage 4 4 6 10 11 11 11 13 17

20 20 21 22 24 24 29 30
30 31 33 34 35 39 40 41*
43* 45 46 50 56 61* 61% 63
68 82 85 88 89 90 93 104
110 134 137 160* 169 171 173 175
184 201 222 235% 247* 260* 284* 290*

291* 302% 304* 341* 345*

*Still alive (censored value).

Table 17.4 Calculation of product-limit estimate of life-table for stage 3 tumour data of Table 17.3.

Estimated probability of:

Time Living at —— J— Percentage of survivors
(days) Died start of day Death Survival at end of day
y 4 g 9 Py by
0 — 19 — — 100-0
6 1 19 0-0526 09474 94.7
19 1 18 0-0556 0-9444 89-5
32 1 17 0-0588 0-9412 84.2
42 2 16 0-1250 0-8750 737
94 1 13 0-0769 0-9231 68-0
207 1 10 0-1000 0-9000 612
253 1 7 0-1429 0-8571 525

Applying (17.14) gives

XP = (8- 16-6870)2/11-2471
= 8-6870%/11-2471
=671 (P =0-010).

To calculate (17.15) we first calculate Ey. using the relationship O; + Oy = E3 + F4. Thus
E4=37-3130 and

X7 = 8-68707(1/16-6870 + 1/37-3130)
=654 (P=0-010).
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Fig. 17.1 Plots of Kaplan-Meier product-limit estimates of survival for patients with stage 3 or stage
4 lymphoma. e times of death. 4 censored times of survivors.

Table 17.5 Calculation of logrank test (data of Table 17.3) to compare survival of patients with
tumours of stages 3 and 4.

Days when Numbers at risk Deaths
deaths - e
occurred h A ds dy E(ds) var(ds)
4 19 61 0 1 0-2375 0-1811
6 19 60 1 1 0-4810 0:3606
10 18 59 0 1 0-2338 0-1791
11 18 58 0 3 0-7105 0-5278
13 18 55 0 ! 0-2466 0-1858
17 18 54 0 1 0-2500 0-1875
19 18 53 0 0-2535 0-1892
20 17 53 0 2 0-4857 0-3624
201 10 12 0 1 0-4545 02479
207 10 11 | 0 0-4762 0-2494
222 8 11 0 1 0-4211 0-2438
253 7 8 1 0 0-4667 0-2489
Total 8 46 16-6870 11-2471
03 04 E} V}

)
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Thus it is demonstrated that the difference shown in Fig. 17.1 is unlikely to be due to
chance.

The relative death rates are 8/16-6870 = 0-48 for the stage 3 group and 46/37-3130 =
1-23 for the stage 4 group. The ratio of these rates estimates the death rate of stage 4
relative to that of stage 3 as 1-23/0-48 = 2-57. Using (17.16), SE[In{#)} = 0-2945 and
the 95% confidence interval for the hazard ratio is exp[In(2.57) + 1-96 x 0-2945]
= 1-44 to 4-58. Using (17.17), the hazard ratio is 2-16 (95% confidence interval 1-21 to
3.88).

The logrank test can be extended to take account of a covariate that divides
the total group into strata. The rationale is similar to that discussed in §§15.6 and
15.7 (see (15.20) to (15.23)). That is, the quantities in (17.13) are summed over
the strata before applying (17.14) or (17.15). Thus, denoting the strata by A,
(17.14) becomes

Xlzzﬂwh_@,f (17.18)

As in analogous situations in Chapter 15 (see discussion after (15.23)),
stratification is usually only an option when the covariate structure can be
represented by just a few strata. When there are several variables to take into
account, or a continuous variable which it is not convenient to categorize, then
methods based on stratification become cumbersome and inefficient, and it is
much preferable to use regression methods (§17.8).

The logrank test is a non-parametric test. Other tests can be obtained by
modifying Wilcoxon’s rank sum test (§10.3) so that it can be applied to compare
survival times for two groups in the case where some survival times are censored
(Cox & Oakes, 1984, p. 124). The generalized Wilcoxon test was originally
proposed by Gehan (1965) and is constructed by using weights in the summa-
tions of (17.13). Gehan’s proposal was that the weight is the total number of
survivors in each group. These weights are dependent on the censoring and an
alternative avoiding this is to use an estimator of the combined survivor function
(Prentice, 1978). If none of the observations were censored, then this test is
identical to the Wilcoxon rank sum test. The logrank test is unweightedrthat\»
is, the weights are the same for every death. Consequently the logrank test puts
more weight on deaths towards the end of follow-up when few individuals are
surviving, and the generalized Wilcoxon test tends to be more sensitive than the
logrank test in situations where the ratio of hazards is higher at early survival
times than at late ones. The logrank test is optimal under the proportional-
hazards assumption, that is, where the ratio of hazards is constant at all survival
times (§17.8). Intermediate systems of weights have been proposed, in particular
that the weight is a power, &, between 0 and 1, of the number of survivors or the
combined survivor function. For the generalized Wilcoxon test £ = 1, for the
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logrank test £ = 0, and the square root, § = %, is intermediate (Tarone & Ware,
1977).

17.7 Parametric methods

In mortality studies the variable of interest is the survival time. A possible
approach to the analysis is to postulate a distribution for survival time and to
estimate the parameters of this distribution from the data. This approach is
usually applied by starting with a model for the death rate and determining the
form of the resulting survival time distribution.

The death rate will usually vary with time since entry to the study, ¢, and
will be denoted by A(z); sometimes A(f) is referred to as the hazard func-
tion. Suppose the probability density of survival time is f(r) and the corres-
ponding distribution function is F(¢). Then, since the death rate is the rate at
which deaths occur divided by the proportion of the population surviving, we
have

1= FQ) (17.19)
=f(1)/S(1)

where S(f) = 1 — F(¢) is the proportion surviving and is referred to as the
survivor function.

Equation (17.19) enables f(¢) and S(r) to be specified in terms of A1)
The general solution is obtained by integrating (17.19) with respect to ¢ and
noting that f(r) is the derivative of F(r) (§3.4). We shall consider certain
cases. The simplest form is that the death rate is a constant, i.e. A(7) = \ for all
t. Then

Nt = —In[S{f)]. (17.20)
That is,
S(t) = exp(—\1).

The survival time has an exponential distribution with mean 1/\. If this dis-
tribution is appropriate, then, from (17.20), a plot of the logarithm of the
survivor function against time should give a straight line through the origin.
Data from a group of subjects consist of a number of deaths with
known survival times and a number of survivors for whom the censored length
of survival is known. These data can be used to estimate A, using the method of
maximum likelihood (§14.2). For a particular value of A, the likelihood consists
of the product of terms f(¢) for the deaths and S(z) for the survivors. The
maximum likelihood estimate of A, the standard error of the estimate and a
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significance test against any hypothesized value are obtained, using the general
method of maximum likelihood, although, in this simple case, the solution can be
obtained directly without iteration.

The main restriction of the exponential model is the assumption that the
death rate is independent of time. It would usually be unreasonable to expect this
assumption to hold except over short time intervals. One way of overcoming this
restriction is to divide the period of follow-up into a number of shorter intervals,
and assume that the hazard rate is constant within each interval but that it is
different for the different intervals (Holford, 1976).

Another method of avoiding the assumption that the hazard is constant is to
use a different parametric model of the hazard rate. One model is the Weibull,
defined by

M) = aytr !, (17.21)

where +y is greater than 1. This model has proved applicable to the incidence of
cancer by age in humans (Cook et al., 1969) and by time after exposure to a
carcinogen in animal experiments (Pike, 1966). A third model is that the hazard
increases exponentially with age, that is,

A1) = aexp(B1). (17.22)

This is the Gompertz hazard and describes the death rate from all causes in adults
fairly well. A model in which the times of death are log-normally distributed has
also been used but has the disadvantage that the associated hazard rate starts to
decrease at some time.

17.8 Regression and proportional-hazards models

It would be unusual to analyse a single group of homogeneous subjects but the
basic method may be extended to cope with more realistic situations by model-
ling the hazard rate to represent dependence on variables recorded for each
subject as well as on time. For example, in a clinical trial it would be postulated
that the hazard rate was dependent on treatment, which could be represented by-
one or more dummy variables (§11.7). Again, if a number of prognostic variables -
were known, then the hazard rate could be expressed as a function of these
variables. In general, the hazard rate could be written as a function of both time
and the covariates, that is, as A(z, x), where x represents the set of covariates
(x1,x2, ..., xp)

Zippin and Armitage (1966) considered one prognostic variable, x, the
logarithm of white blood count, and an exponential survival distribution,
with

Aex) = (a4 Bx) (17.23)





