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1 (Poisson) Model for (Sampling)Variability of
a Count in a given amount of “experience”

The Poisson Distribution: what it is, and some of its features

• The (infinite number of) probabilities P0, P1, ..., Py, ..., of observing Y =
0, 1, 2, . . . , y, . . . “events”/“instances” in a given amount of “experience.”

• These probabilities, Prob[Y = y], or PY [y]’s, or Py’s for short, are gov-
erned by a single parameter, the mean E[Y ] = µ.

• P [y] = exp[−µ] µy/y! {note recurrence relation: Py = Py−1 × (µ/y).}

• Shorthand: Y ∼ Poisson(µ).

• V ar[Y ] = µ ; i.e., σ2
Y = µY .

• Approximated by N(µ, σY = µ1/2) when µ >> 10.

• Open-ended (unlike Binomial), but in practice, has finite range.

• Poisson data sometimes called ”numerator only”: (unlike Binomial) may
not “see” or count “non-events”: but there is (an invisible) denominator
“behind’ the no. of “wrong number” phone calls you receive.

How it arises / derivations

• Count of events (items) that occur randomly, with low homogeneous in-
tensity, in time, space, or ‘item’-time (e.g. person–time).

• Binomial(n, π) when n→∞ and π → 0, but n× π = µ is finite.1

• Y ∼ Poisson(µY )⇔ T time b/w events ∼ Exponential(µT = 1/µY ).2

• As sum of ≥ 2 independent Poisson rv’s, with same or different µ’s:
Y1 ∼ Poisson(µ1) Y2 ∼ Poisson(µ2)⇒ Y = Y1 + Y2 ∼ Poisson(µ1 + µ2).

• Examples: numbers of asbestos fibres, deaths from horse kicks*, needle-
stick or other percutaneous injuries, bus-driver accidents*, twin-pairs*,
radioactive disintegrations*, flying-bomb hits*, white blood cells, typo-
graphical errors, “wrong numbers”, cancers; chocolate chips, radioactive
emissions in nuclear medicine, cell occupants – in a given volume, area,
line-length, population-time, time, etc. [*e.g. on website]

1See also: derivation & applications (counting yeast cells in beer) in Student’s 1907
paper “On the Error of Counting with a Haemacytometer”; and Ch. from Armitage et al.

2cf. ***** “Randomness at the root of things: Poisson sequences” – Physics Education.
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Figure 1: Events in Population-Time.. randomly generated from intensities
that are constant within (2 squares high by 2 squares wide) ‘panels’, but vary
between such panels. In Epidemiology, each square might represent a number
of units of population-time, and each dot an event.

1.1 Does the Poisson Distribution apply to.. ?

• Yearly variations in numbers of persons killed in plane crashes? 3

• Daily variations in numbers of births?4

• Daily variations in no.s of deaths [variation over the seasons]

• Daily variations in numbers of traffic accidents [variation over the seasons,
and days of week, and with weather etc.]

• Daily variations in numbers of deaths in France in summer 2002 & 20035

3Yearly variations in no.s of plane crashes may be closer to Poisson [apart from variation
due to improvements in safety, fluctuations in numbers of flights etc].

4See e.g. Number of weekday and weekend births in New York in August 1966 on web
page: the variations are closer to Poisson if use weekly count.

5c.f. Impact sanitaire de la vague de chaleur en France survenue en août 2003. Rapport
d’étape 29 aot 2003 [on course webpage] and Vanhems P et al. Number of in-hospital deaths
at Edouard Herriot Hospital ,and Daily Maximal Temperatures during summers of 2002
and 2003, Lyon, France. New Eng J Med Nov 20, 2003, pp2077-2078. ibid. see Resources.
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Figure 2: Events in Time: 10 examples, randomly generated from constant
over time intensities. Simulated with 1000 Bernoulli(small π)’s per time unit.

• Variations across cookies/pizzas in numbers of chocolate chips/olives.

• Variations across days of year in numbers of deaths from sudden infant
death syndrome.

1.2 Calculating Poisson probabilities:

1.2.1 Exactly

• pdf: formula for Py (can use recursion).

• cdf:

– Summation of terms in pdf

– Using link between this sum and the cdf of χ2 Distribution6.

• Spreadsheet — Excel function POISSON(y, µ, cumulative)

• Statistical Packages: SAS function POISSON; see www.ats.ucla.edu/

stat/stata/faq/pprob.htm for ‘how to’ in Stata; R functions dpois(),
ppois(), qpois() probability, distribution, and quantile functions.

6Fisher 1935: see Resources
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1.2.2 Using Gaussian Approximations to distribution of y or trans-
forms of it

Described below, under Inference.

2 Inference re µ, based on observed count y

2.1 “First Principles” Confidence Interval

By first-principles 100(1−α)% CI, we mean “not usual point-estimate ± some
multiple of standard error,” but rather the pair (µLOWER, µUPPER) such that

P (Y ≥ y | µLOWER) = α/2 & P (Y ≤ y | µUPPER) = α/2.

2.1.1 Exact – see Figure 3 for example, based on y = 6

Tables: For a given α, there is just one CI for each value of y; these exact
CI’s have been extensively tabulated and made available in several texts and
Tables, e.g., the Documenta Geigy, and Biometrika Tables for Statisticians.7

If don’t have tables... Can find exact lower and upper limits
µLOWER/UPPER that yield the target α/2’s either by trial & error (rapidly
with software that evaluates Poisson tail areas) or directly using the Link
between the tail areas of the Poisson and tail areas of Chi- Square distribu-
tions (full details in article by Fisher, 1935, under Resources on webpage),
µLOWER = 1

2χ
2
2y,α/2, µUPPER = 1

2χ
2
2y+2,1−α/2. Some specialized software

packages (eg in R) also have functions that provide them directly.8

2.1.2 Quite accurate approximation to exact tail area

Using Wilson-Hilferty approximation to Chi-square quantiles9 This
has high accuracy for y > 10; it uses z, the normal standardized variate

7(See (homemade) “Confidence limits for the expectation [i.e. the ’mean’ parameter] of
a Poisson random variable” on last page and (more fully) under Resources.

8Note that the above ”First Principle” is a general and important one; it “just so
happens” that in this particular discrete distribution, if one has access to the percentiles of
the Chi-Square distribution, the link helps avoid the trial and error process involved.

9Rothman[2002], page 134, provides an adaptation from “D. Byar, unpublished” in which
he makes a further approximation, using the average (y + 0.5) for both the lower an upper
limits, rather than the more accurate y for the lower and y + 1 for the upper limit. JH
is surprised at Rothman’s eagerness to save a few keystrokes on his calculator, and at his

0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17...   
count (y)

 y prob(y|2.2)

 4  0.0182
 5  0.0476
 6  0.0174
 7  0.0055
 8  0.0015
 9  0.0004
10  0.0001
..  ..

Prob (y >= 6) 

= 0.0250

if mean = 2.2

 y prob(y|13.06)

 0  0.0000
 1  0.0000
 2  0.0002
 3  0.0008
 4  0.0026
 5  0.0067
 6  0.0147
 7  0.0274
..  .. observed count6

...

Prob (y <= 6) 

= 0.0250

if mean = 13.06

LOWER

UPPER

Figure 3: Example of Exact 95% CI of {2.2, 13.06} for µ, based on y = 6.

corresponding to α/2, e.g., α = 0.10→ z = 1.645;α = 0.05→ z = 1.96, etc.

µLOWER = y × {1− [9y]−1 − z × [9y]−1/2}3

µUPPER = (y + 1)× {1− [9(y + 1)]−1 + z × [9(y + 1)]−1/2}3

2.1.3 Not quite as accurate an approximation, but 1st principles

Using Y ' N(µ, σ = µ1/2):

reference to an unpublished source, rather than the 1931 publication of Wilson and Hilferty.
The Full Wilson and Hilferty citation, and evaluation of the above equation, can be found
in Liddell’s article “Simple exact analysis of the standardized mortality ratio” in J Epi and
Comm. Health 37 85-88, 1984, available on website.

3
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Figure 4: Poisson Distributions, over range y = 0 to 40, corresponding to
µ = 4, 9, 16, and 25.

Obtained by solving the two equations:

y = µLOWER + z × {µLOWER}1/2 ; y = µUPPER − z × {µUPPER}1/2

to give

µLOWER,UPPER = ([y + z2/4]1/2 ∓ z/2)2.

2.1.4 Variance-stabilizing transformation, so first principles

With µ large enough, Y 1/2 ∼ (approx)N(µ1/2, σ = 1/2), i.e., the SD is
independent of µ1/2, thus providing for a first-principles interval:

µLOWER,UPPER = y ∓ z × c1/2 + (z/2)2.

2.2 “Not First Principles” Confidence Intervals, based
on SE calculated at point estimate

2.2.1 Based on Y ' N(µ, σ̂ = y1/2).

If lazy, or don’t care about principles /accuracy, or if y is large, can solve

y = µLOWER + z × y1/2 ; y = µUPPER − z × y1/2

to give
µLOWER,UPPER = y ∓ z × y1/2.

“Large-n”: How Large is large?: The same rule of thumb: when expected
no. of events, µ = E[Y ] > 5. or the same JH rule: when the tables don’t go as
high as your value of y. It works well if the distribution is not ‘crowded’ into the
left corner (cf. Figure 3), i.e., if, with the symmetric Gaussian approximation,
the lower tail of the distribution does not spill over the 0 boundary.

The above model is used if one fits a generalized linear model, with Poisson
error but IDENTITY link. Example with y = 4:

e.g. In SAS:

PROC GENMOD; model y = / dist = POISSON link = IDENTITY WALFCI;

e.g. In Stata

input y

1 * glm doesn’t like file with 1 ‘observation’

3 *so ........... split across 2 ‘observations’

end

glm y , family (poisson) link (identity)

e.g. In R: y=4; summary(glm(y ∼ 1,family=poisson (link=identity) ))

2.2.2 Based on log Y ' N(log[µ], σ̂ = {1/µ̂}1/2)

• Derivation:

Use the “Delta Method” to derive the approximate variance for the ran-
dom variable log Y , assuming that Prob[Y = 0] is negligible.

Var[log Y ] ≈ Var[Y ]× {(d log Y/dY )|Y=µY
}2 = µ× (1/µY )2 = 1/µY .

We will make a lot of use of this result, especially for the variance
of the log of a rate, and for the variance of the log of a rate ratio (i.e.,
the variance of the difference of two log rates).

(Empirical) rate ratio(rr) or id10 ratio (idr): λ̂2 ÷ λ̂2 = y2
PT2
÷ y1

PT1

V ar[log(rr)] = V ar[log y2 − log y1]

= V ar[log y2] + V ar[log y1]

= 1/µ2 + 1/µ1.

= 2÷ { Harmonic Mean of µ2 and µ1}
10incidence density

4
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• CI:

CI: exp[log(y)∓ z × (1/y)1/2].

e.g., ...

In SAS: MODEL y = / dist = POISSON link = LOG WALFCI;

In Stata: glm y , family (poisson) link (log)

In R: summary(glm(y ∼ 1,family=poisson(link=log) ))

3 Applications, and Notes

3.1 How large a count so that margin of error < 15%?

An estimate of WBC concentration can be made by manually counting enough
fields (n) until say a total of y = 200 cells have been observed. This is not
quite a Poisson distribution since y = 200 is fixed ahead of time and n is
the random variable – but the variability in the estimate 200/n is close to
Poisson-based, so as a first approximation we will treat the y as the variable
and the denominator n as fixed. The estimate has margins of error (ME) of
13% and 15% – since [as one can derive from trial and error] a total count of
200 (marked by ↑ below) could be a high reading from a concentration which
produces a µ of 173 (for the same n), or a low reading from a concentration
which produces an average of µ = 230, i.e.

y per n: 160..170..180..190..200..210..220..230..240...

.................µL............↑..............µU.......

...................200 = 173 + 1.96× {173}1/2..............

...................200 = 230− 1.96× {230}1/2..............

3.2 Leukemia Rate Triples near Nuke Plant: Study

OTTAWA (CP)11 - Children born near a nuclear power station on Lake Huron
have 3.5 times the normal rate of leukemia, according to figures made public
yesterday. The study conducted for the Atomic Energy Control Board, found
the higher rate among children born near the Bruce generating station at
Douglas Point. But the scientist who headed the research team cautioned
that the sample size was so small that that actual result could be much lower
- or nearly four times higher.

11Montreal Gazette, Friday May 12, 1989.

Dr. Aileen Clarke said that while the Douglas Point results showed 3.5 cases
of leukemia where one would have been normal12, a larger sample size could
place the true figure somewhere in the range from 0.4 cases to 12.6 cases.13

Clarke will do a second study to look at leukemia rates among children aged
five to 14. The first study was on children under age 5. Clarke was asked
whether parents should worry about the possibility that childhood leukemia
rates could be over 12 times higher than normal around Douglas point. ”My
personal opinion is, not at this time,” she said. She suggested that parents
worried by the results should put them in context with other causes of death
in children.

“Accidents are by far and away the chief cause of death in children, and what
we’re talking about is a very much smaller risk than that of death due to
accidents,” she said.

The results were detailed in a report on a year-long study into leukemia rates
among children born within a 25-kilometre radius of five Ontario nuclear facil-
ities. The study was ordered after British scientists reported leukemia rates
among children born near nuclear processing plants were nine times higher
than was normal. The Ontario study was based on 795 children who died of
leukemia between 1950 and 1986 and 951 children who were diagnosed with
cancer between 1964 and 1985.

It showed a lower-than-normal rate among children born near the Chalk River
research station and only slightly higher than expected rates at Elliot Lake
and Port Hope, uranium mining and conversion facilities.

At the Pickering generating station, the ratio was slightly higher still, at 1.4
- meaning there were 1.4 cases for every expected case. But the confidence
interval - the range of reliability - for that figure set the possible range between
0.8 cases and 2.2 cases.14

Comment: It is interesting that it is the more extreme, but much less precise, SIR of 3.5,

based on O = 2, E = 0.57 that made the headline, while the less extreme, but much more

precise, SIR of 1.4, based on O = 18, E = 12.8, was relegated to the last paragraph.

12SIR = 3.5 = No.Observed/No.Expected. It is not O = 3.5, E = 1, since one cannot
observe a fractional number of cases): SIR = 3.5; she simply scaled the O and the E so
that E (reference “rate”) is 1

13CI = (CI derived from O)/Expected = 0.4 to 12.6 (a 31-fold range). O is an integer.
By trial and error, starting with O=1, and “trying all the CI’s on for size” until one gets
a 31-fold range, one comes to O = 2. (CI 0.242 to 7.22, range 31 fold). Dividing 2 by 3.5
gives an E of 0.57. Check: 95% CI for SIR (0.242 to 7.22) / 0.57 = 0.4 to 12.6.

14SIR = 1.4 = O/E;CI = (CI derived from O)/E has 0.8 to 2.2. This 2./0.8= 2.75-fold
uncertainty comes from uncertainty generated by O. Examine range of 95% CI associated
with each possible value of O, until come to 10.67 to 28.45 when O = 18. Divide 18 by 1.4
to get E = 12.8. Check 95% CI 10.67 to 28.45)/12.8 = 0.8 to 2.2.

5
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3.3 Self-reported Percutaneous Injuries in Interns

Table 1. Rates of Percutaneous Injuries by Residency Program.15

No. of No. of Rate (95% CI*)
Type of Intern- Percutaneous per
Residency Months Injuries Intern-Month
All 17003 498 0.0293 (0.0268-0.0318)
Internal medicine 3995 57 0.0143 (0.0106-0.0179)
Surgery 1730 124 0.0717 (0.0595-0.0838)
Family medicine 2008 51 0.0254 (0.0185-0.0323)
Emergency medicine 1007 40 0.0397 (0.0277-0.0518)
Pediatrics 2159 24 0.0111 (0.0067-0.0155)
Psychiatry 658 1 0.0015 (0.0000-0.0045)
Pathology 283 15 0.0530 (0.0269-0.0791)
Obstetrics/gynecology 964 94 0.0975 (0.0788-0.1160)
Other specialties 4199 92 0.0219 (0.0175-0.0263)

*Method not specified, but {498∓ 4981/2} ÷ 17003 = {0.0267, 0.0318}.

3.4 Cell Occupancy, Lotto 6/49, the Extremal Quotient,
and Geographical Variation in Surgery Rates

What do these have in common? The answer may be easier to understand
after seeing a few runs of the Excel Macro for visits to cells (in Resources).

3.5 Note: How is it that one can form a CI for µ from a
single observation y? [Model-based CIs]

If we had a single realization y of a N(µ, σY ) random variable, we could not,
from this single y, estimate both µ and σY : one would have to rely on outside
information concerning σY . However, the Poisson(µ) distribution is different
in that σY = µ1/2, so we can calculate a “model-based” SE (or SE’s if use a
first principles CI) from this relationship between the mean and the variance.

Another way to understand why a SE is possible without going ”outside”
is to take advantage of the “divisibility” of a Poisson denominator, and its
corresponding numerator.

We can split up the overall sample or slice of experience into (n) small enough
sub samples so that the subcount yi in each sub sample will be either a 0 or

15Ayas NT, et al. JAMA. 2006;296:1055-1062

a 1 The (unit) variance of the observed sub counts should be p(1− p) where
p is the proportion of sub counts that are 1. Thus the estimated variance of
the total count y =

∑
i yi should be n times the unit variance, or n×p(1−p).

But if p is small, so that 1−p is near unity, then the variance of the sub count
is approximately n× p, which is simply the observed overall count y. i.e. the
variance of a Poisson variable is equal to its mean. see more under Resources.

The sum of independent Poisson r.v.’s with different expectations is still a
random variable with a Poisson distribution. The same is not true of a sum
of independent Bernoulli (or Binomial) r.v.’s with different expectations.

If you were told that Y1 ∼ Bernoulli(π1 = 0.1) and Y2 ∼ Bernoulli(π2 = 0.7),
you would not argue that the distribution of Y = Y1 + Y2 is Binomial(n =
2, π = 0.4). You can check that yes, E(Y ) = 0.8, but that P0 = 0.27, P1 =
0.66, P2 = 0.07, much more concentrated than the Binomial(2,0.4) probabili-
ties P0 = 0.36, P1 = 0.48, P2 = 0.16.

BUT, what if you were told that Y1 ∼ Poisson(µ1 = 0.1) and Y2 ∼
Poisson(µ2 = 0.7). Would you argue that the distribution of Y = Y1 + Y2 is
Poisson(µ = 0.8)? You can check that in fact it is.

In epidemiology, prevalence and other proportion-type statistics have denom-
inators made up of (indivisible) individuals; the person is the statistical atom.
However, when dealing with incidence density statistics, the denominators are
made up of an infinite number of person-moments.

3.6 CI for Rate or Incidence Density parameter, ID (λ)

So far, we have focused on inference regarding µ, the expected number of
events in the amount of experience actually studied. However, for comparison
purposes, the frequency is more often expressed as a rate, or intensity. e.g.,
we convert y = 211 deaths from lung cancer in 232978 women-years (WY)
in the age-group 55-60 in Quebec in 2002 into a rate or incidence density of
211/(232,978WY) = 0.00091/WY or 91 per 100,000WY. This makes it easier
to compare the rate with the rate in the same age group in 1971, namely 33
lung cancer deaths in 131200WY, or 0.00025/WY = 25 per 100,000WY.

The statistic, the empirical rate or empirical incidence density, is

rate = id = ˆID = λ̂ = y/PT.

where y is the observed number of events and PT is the amount of Population-
Time in which these events were observed. We think of id or ˆID or λ̂ as a
point estimate of the (theoretical) Incidence Density parameter, ID or λ.

6
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To calculate a CI for the ID parameter, we treat the PT denominator as a con-
stant, and the numerator, y, as a Poisson random variable, with expectation
E[y] = µ = λ× PT , so that

λ = µ÷ PT,

λ̂ = µ̂÷ PT = y ÷ PT,

CI for λ = {CI for µ} ÷ PT.

The y = 211 leads to a (large-sample, SE-based)

95% CI for µ : 211∓ 1.96× 2111/2 ⇒ 211∓ 28.5⇒ {182.5, 239.5}

95% CI for λ : {182.5, 239.5} ÷ 232, 978WY⇒ {78.3,102} per 100, 000WY

Whereas it matters little which method – exact or approximate – to use for the
95% CI from the 2002 data, the number of deaths in 1971 is a much smaller
y = 33. Thus we will use the exact first principles CI for µ. The available
tables stop at y = 30, so we will use the Excel spreadsheet, in the Resources,
with a count of 33. It yields lower and upper limits of 22.7 and 46.3. Thus,
to accompany the point estimate of 25 per 100,000WY, we have

95% CI for λ : {22.7, 46.3} ÷ 131, 200WY⇒ {17.3,35.3} per 100, 000WY

4 Test of H0 : µ = µ0, i.e. λ = λ0.

Evidence: P-Value = Prob[y or more extreme | H0], with ‘more extreme’
determined by whether Halt is 1-sided or 2-sided.

For formal test, at level α, compare this P-value with α.

Examples:

1. Cancers at Douglas Point:

Denote by {CY1, CY2, . . . } the numbers of Douglas Point child-years of
experience in the various age categories that were pooled over. Denote
by {λOnt1 , λOnt2 , . . . } the age-specific leukemia incidence rates during the
period studied. If the underlying incidence rates in Douglas Point were
the same as those in the rest of Ontario, the Expected total number of
cases of leukemia for Douglas Point would be

E = µ0 =
∑
ages

CY1 × λOnti = 0.57.

The actual total number of cases of leukemia Observed in Douglas Point
was

O = y =
∑
ages

Oi = 2.

So, (age-) Standardized Incidence Ratio (SIR) = O/E = 2/0.57 = 3.5.

Q: Is the y = 2 cases of leukemia observed in the Douglas Point experience
statistically significantly higher than the E = 0.57 cases “expected” for
this many child-years of observation if in fact the rates in Douglas Point
and the rest of Ontario were the same? Or, is the y = 2 observed in this
community compatible with H0 : y ∼ Poisson(µ = 0.57)?

A: Since, under H0, the age-specific numbers of leukemias {y1 = O1, y2 =
O2, . . . } in Douglas Point can be regared as independent Poisson random
variables, their sum y can be regarded as a single Poisson random variable
with µ = 0.57. Thus we can calculate P = Prob[Y ≥ y | µ = 0.57] =
P [2] + P [3] + . . . , i.e.

Puppertail = 1−{P [0] +P [1]} = 1−{ exp[−0.57]× (1 + 0.57/1!)} = 0.11.

At the Pickering generating station, the Observed number was 18, ver-
sus an Expected of 12.8, for an SIR of 1.4. These larger numbers give
us a chance to compare the uppertail P-values obtained by the exact
method, i..e. P =

∑
y≥18 PoissonProb[y | µ0 = 12.8] with those obtained

from various approximations to the Poisson(µ0 = 12.8) distribution:-

• Exactly P = Poisson Prob[18|12.8] + P [19|12.8] + · · · = 0.099

• No (dis)-continuity correction: P = Prob[Z ≥ 18−12.8
12.81/2

] = 0.073

• No (dis)-continuity correction: P = 1
2Prob[χ2 ≥ (18−12.8)2

12.8 ] = 0.073

• No correction: 16 P = Prob[Z ≥ log(18/12.8)/{1/12.8}1/2] = 0.111

• No correction: 17 P = Prob[Z ≥ (181/2 − 12.81/2)/0.5] = 0.092

• With the correction: P = Prob[Z ≥ |18−12.8|−0.5
12.81/2

] = 0.094

• With the correction: P = 1
2Prob[Z ≥ (|18−12.8|−0.5)2

12.8 ] = 0.094

16Using log y ' N(log µ, σ = (1/µ)1/2).
17Using y1/2 ' N(µ1/2, σ = 1/2).
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2. “Cluster of Events” Story in Montreal Gazette in May 198918

Double Trouble in Moose Jaw School
(caption to a photograph showing 6 sets of twins)

Every morning, teachers at Prince Arthur school in Moose Jaw,
Saskatchewan see double – and its not because of what they
were up to the night before. Six pairs of identical twins attend
the school, which has an enrollment of 375. Identical births
occur once in 270 births.

What is the probability P of having 6 or more sets of twins in a school
of size n = 375, when the twinning probability is π = 1/270?

This can be obtained with the Binomial(n, π) distribution; because n
is large and π is small, the distribution can be approximated by the
Poisson(µ) distribution, where µ = n× π = 1.3.

P = P [Y ≥ 6] = 1− P [Y ≤ 5],

i.e., as

1−exp[−1.3]×{1+1.3/1!+1.32/2!+1.33/3!+1.34/4!+1.35/5!} = 0.0022.

Thus, the probability is low that this particular school would have six
or more sets. BUT, on average, in 1000 schools of this size, there will be
2.2 with this many or more. Thus, if we scan over a large number of such
schools, finding some school somewhere with this extreme a number is
not difficult. If the newswires scanned a large number of schools in 2007,
there is a good chance the Montreal Gazette could re-use the headline –
but they would have to change “Moose Jaw” to “Town X”, with “X” to
be filled in.

Moral: The Law of Large Numbers at play here is the same as the one in
the video display terminals and miscarriages” story. Natural “clusters” do
occur by chance alone, and distinguishing ones caused simply by chance
from ones caused by some environmental or other such factor is not an
easy task.

3. (Large-sample) Example: Where does the O = 78 cases of cancer in the
“Sour Gas” community of Alberta fall relative to E = 85.9 “expected”
for “non-sour-gas” communities with the same person years of experience
and at Alberta cancer rates?

18See Hanley JA “Jumping to coincidences: defying odds in the realm of the preposter-
ous”. the American Statistician, 1992, 46(3) 197-202. – under Resources

5 Modelling Incidence Densities, or Rates,
(λ’s) via regression

Figure 5 is a simple mathematical reversal of the fundamental epidemiologic
definition of an empirical rate or incidence density (id)

rate = id = number of cases
amount of population-time that generated these cases ,

i.e.,

number of cases = rate× amount of population-time.

There is a corresponding equation for the expected number of cases, in terms
of the theoretical rate, λ:

E[number of cases] = theoretical rate × amount of population-time.

This simple re-statement has two important implications (i) in epidemi-
ology, we are students of rates and (ii) Generalized Linear Models
(GLMs) allow us to fit equations of this very type . Even though we
put the numbers of cases on the left hand side of the regression equation,
these GLMs allow us to express the theoretical rates (the focus of our investi-
gations) as functions of the determinants of interest (e.g. age, smoking, diet,
calendar time, treatment, ... etc) while treating the amounts of population
time as constants that are of no intrinsic interest. In the lung cancer mortality
dataset, we could have a (no. deaths, PT) ‘data point’ for every ‘covariate
pattern’ or x-vector.

The two most common theoretical rate models are the additive and multi-
plicative forms:-

rate [x] = β0 + β1x & rate [x] = exp(β0 + β1x).

More later...

6 Planning: Sample Size for CIs and Tests

6.1 Precision

Even though it is tempting to specify the ‘sample size’ in terms of the Amount
of Experience that needs to be studied to achieve this precision, ultimately
the precision is governed by the number of events. So it is safer to specify
sample size in these terms.

8
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Figure 5: Depiction of empirical lung cancer mortality rate in age-group 55-60
in Quebec in 2002 as the slope of the line joining the point (Y = 0 cases, PT =
0WY ) and the point (Y = 33, PT = 121300WY ). Also shown are the Poisson
Distributions, with µUPPER = 46.3 and µLOWER = 22.7 respectively, such
that Prob[Y ≥ 33 | µ = 22.7 = Prob[Y ≤ 33 | µ = 46.3 = 0.025.

POWER OF (1-sample) Poisson-based test of Ε_null versus Ε_alt
jh 2006.03.18

 supply Ε_null, alpha level, Ε_alt

n 20 Rate
Ε_null 4.5 Ratio
Ε_alt 13.5 3.00

2-sided alpha 0.050
POWER

y <- # Events in the amount of Experience studied 0.865
   ↓ critical region

↓ y Prob( y | 
E_null =4.5)

Prob( ≥ y | 
E_null =4.5)

Prob( y | E_alt = 
13.5)

Prob(≥ y | 
E_alt = 13.5)

0 0.0111 1.0000 0.0000
1 0.0500 0.9889 0.0000
2 0.1125 0.9389 -0.0001
3 0.1687 0.8264 -0.0006
4 0.1898 0.6577 -0.0019
5 0.1708 0.4679 -0.0051
6 0.1281 0.2971 -0.0115
7 0.0824 0.1689 -0.0222
8 0.0463 0.0866 -0.0375
9 0.0232 0.0403 -0.0563

* 10 0.0104 0.0171 -0.0760 0.865
* 11 0.0043 0.0067 -0.0932
* 12 0.0016 0.0024 -0.1049
* 13 0.0006 0.0008 -0.1089
* 14 0.0002 0.0003 -0.1050
* 15 0.0001 0.0001 -0.0945
* 16 0.0000 0.0000 -0.0798
* 17 0.0000 0.0000 -0.0633
* 18 0.0000 0.0000 -0.0475
* 19 0.0000 0.0000 -0.0337
* 20 0.0000 0.0000 -0.0228
* 21 0.0000 0.0000 -0.0146
* 22 0.0000 0.0000 -0.0090
* 23 0.0000 0.0000 -0.0053
* 24 0.0000 0.0000 -0.0030
* 25 0.0000 0.0000 -0.0016
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Figure 6: Using exact Poisson Probabilities [see ‘Power for test of E = Enull
vs E = Ealt: Excel worksheet’ under Resources]

6.2 Amount of experience required to achieve a specified
Coefficient of Variation (CV) for an estimated rate

See the example of the number of cells needed to count: approx. 200 so that
have a margin or error of 15%.

6.3 Power – to detect Rate Ratio RR = Ealt/E0

Exactly, using a spreadsheet or R:

Approximately, using a Gaussian approximations to Poisson(µ = E0) and
Poisson(µ = Ealt = RR× E0): solve

Zα/2 × {E0}1/2 + Zβ × {Ealt}1/2 = Ealt − E0.

9
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(1- 2 ) Confidence limits for the expectation [i.e. the 'mean' parameter] of a Poisson random variable
E.g. if observe 6 events in a certain amount of experience, then 95% CI for the µ count for this same amount of experience is (2.20, 13.06)

1−2α 0.998 0.99 0.98 1−2α 0.95 0.9 0.8

α 0.001 0.005 0.01 α 0.025 0.05 0.1

count Lower Upper Lower Upper Lower Upper count Lower Upper Lower Upper Lower Upper

0 0.00 6.91 0.00 5.30 0.00 4.61 0 0.00 3.69 0.00 3.00 0.00 2.30
1 0.00 9.23 0.01 7.43 0.01 6.64 1 0.03 5.57 0.05 4.74 0.11 3.89
2 0.05 11.23 0.10 9.27 0.15 8.41 2 0.24 7.22 0.36 6.30 0.53 5.32
3 0.19 13.06 0.34 10.98 0.44 10.05 3 0.62 8.77 0.82 7.75 1.10 6.68
4 0.43 14.79 0.67 12.59 0.82 11.60 4 1.09 10.24 1.37 9.15 1.74 7.99

5 0.74 16.45 1.08 14.15 1.28 13.11 5 1.62 11.67 1.97 10.51 2.43 9.27
6 1.11 18.06 1.54 15.66 1.79 14.57 6 2.20 13.06 2.61 11.84 3.15 10.53
7 1.52 19.63 2.04 17.13 2.33 16.00 7 2.81 14.42 3.29 13.15 3.89 11.77
8 1.97 21.16 2.57 18.58 2.91 17.40 8 3.45 15.76 3.98 14.43 4.66 12.99
9 2.45 22.66 3.13 20.00 3.51 18.78 9 4.12 17.08 4.70 15.71 5.43 14.21

10 2.96 24.13 3.72 21.40 4.13 20.14 10 4.80 18.39 5.43 16.96 6.22 15.41
11 3.49 25.59 4.32 22.78 4.77 21.49 11 5.49 19.68 6.17 18.21 7.02 16.60
12 4.04 27.03 4.94 24.14 5.43 22.82 12 6.20 20.96 6.92 19.44 7.83 17.78
13 4.61 28.45 5.58 25.50 6.10 24.14 13 6.92 22.23 7.69 20.67 8.65 18.96
14 5.20 29.85 6.23 26.84 6.78 25.45 14 7.65 23.49 8.46 21.89 9.47 20.13
15 5.79 31.24 6.89 28.16 7.48 26.74 15 8.40 24.74 9.25 23.10 10.30 21.29
16 6.41 32.62 7.57 29.48 8.18 28.03 16 9.15 25.98 10.04 24.30 11.14 22.45
17 7.03 33.99 8.25 30.79 8.89 29.31 17 9.90 27.22 10.83 25.50 11.98 23.61
18 7.66 35.35 8.94 32.09 9.62 30.58 18 10.67 28.45 11.63 26.69 12.82 24.76
19 8.31 36.70 9.64 33.38 10.35 31.85 19 11.44 29.67 12.44 27.88 13.67 25.90
20 8.96 38.04 10.35 34.67 11.08 33.10 20 12.22 30.89 13.25 29.06 14.53 27.05
21 9.62 39.37 11.07 35.95 11.83 34.35 21 13.00 32.10 14.07 30.24 15.38 28.18
22 10.29 40.70 11.79 37.22 12.57 35.60 22 13.79 33.31 14.89 31.41 16.24 29.32
23 10.96 42.02 12.52 38.48 13.33 36.84 23 14.58 34.51 15.72 32.59 17.11 30.45
24 11.65 43.33 13.26 39.74 14.09 38.08 24 15.38 35.71 16.55 33.75 17.97 31.58
25 12.34 44.64 14.00 41.00 14.85 39.31 25 16.18 36.90 17.38 34.92 18.84 32.71
26 13.03 45.94 14.74 42.25 15.62 40.53 26 16.98 38.10 18.22 36.08 19.72 33.84
27 13.73 47.23 15.49 43.50 16.40 41.76 27 17.79 39.28 19.06 37.23 20.59 34.96
28 14.44 48.52 16.25 44.74 17.17 42.98 28 18.61 40.47 19.90 38.39 21.47 36.08
29 15.15 49.80 17.00 45.98 17.96 44.19 29 19.42 41.65 20.75 39.54 22.35 37.20
30 15.87 51.08 17.77 47.21 18.74 45.40 30 20.24 42.83 21.59 40.69 23.23 38.32

• Computed from (exact) Poisson tail areas i.e. Prob(COUNT >= count | µLower) = Prob(<= count | µUpper) = α.  See also the spreadsheet "Exact confidence
limits on a Poisson parameter" on 626 website • Limits in above Table computed using exact relationship b/w Poisson and Chi-square tail areas (later).

page  20

Figure 7: (Exact) Confidence limits for the expectation [i.e. the µ parameter]
of a Poisson random variable. Example: if observe 6 events in a certain
amount of experience, then 95% CI for the mean count for this same amount
of experience is (2.20, 13.06)
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POISSON, Siméon Denis 1781-1840

from...
http://www.york.ac.uk/depts/maths/histstat/people/sources.htm

See also...

http://www.encyclopedia.com/topic/Simeon Denis Poisson.aspx

http://en.wikipedia.org/wiki/Poisson distribution

0 Exercises

0.1 (m-s) Working with logs of counts and logs of rates

In order to have a sampling distribution that is closer to Gaussian – sample
counts, and ratios of them tend to have nasty sampling distributions –we
often transform from the (0,∞) scale for a count y and its expectation, µ, to
the (−∞,∞) log[y] and log[µ] scale.

Thus, we do all our inference (SE calculations, CI’s, tests) on the log
scale, then transform back to the count or rate (or if comparative, rate ratio)
scale.

1. Suppose Y ∼ Poisson(µ) with associated rate estimate λ̂ = Y/PT 19.

Derive the variances for the random variables log[Y ] and log[λ̂]. Ignore

the possibility of obtaining µ̂ = 0 i.e., λ̂ = 0/PT = 0.

2. What is the variance for the log of a rate ratio, i.e., log[λ̂2 ÷ λ̂1] ?

0.2 (m-s) The Poisson Family as a ‘Closed under Addi-
tion’ Family

Show that if Y1 ∼ Poisson(µ1) and Y2 ∼ Poisson(µ2) are independent ran-
dom variables, then Y = Y1 + Y2 ∼ Poisson(µ1 + µ2).

0.3 (m-s) Link between Poisson and Exponential Distri-
butions

Show that if the random times T1, T2, . . . between successive events can be
regarded as i.i.d observations from an exponential distribution with mean µT ,
then the number Y of events in a fixed time-window of length W has a Poisson
Distribution with mean or expectation µY = W × λ = W × (1/µT ).

0.4 (m-s) Link between tail areas of Poisson and χ2 Dis-
tributions

In section 5 of Fisher 1935, he states that ‘it will be noticed’ (from section 4)
that, when its number of degrees n is even, the probability of the variate 1

2χ
2

19PT = amount of Population Time

11
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exceeding any specified value µ is

e−µ{1 + µ+ µ2/2! + · · ·+ µ(n−2)/2/[(n− 2)/2]!}.

From this, with Y ∼ Poisson[µ], and n = 2y, derive a way to obtain Prob[Y ≥
y | µ] from the cdf function of the χ2 Distribution. From this, derive a way
to obtain, from a single Poisson count y, the exact lower α/2 and upper α/2
limits for the mean of the Poisson Distribution it arose from. The article in
Accromαth illustrates this link, using a diagram we adapted from the tire-
ruptures example.

0.5 (m-s) The Fisher information that a Poisson random
variable carries about its expectation and about the
log of this expectation

(Wikipedia) “The Fisher information is the amount of information that an
observable random variable Y carries about an unknown parameter θ upon
which the likelihood function of θ, L(µ) = f(Y ; θ), depends.” The Fisher
Information is defined as

I(θ) = E

{[
d

dθ
ln f(Y ; θ)

]2∣∣∣∣
θ

}
.

As per Casella and Berger, 2nd Ed. p338, in an exponential family we also
have that

E

{[
d

dθ
ln f(Y ; θ)

]2∣∣∣∣
θ

}
= −E

{
d2

dθ2
ln f(Y ; θ)

∣∣∣∣
θ

}
.

1. Calculate the Fisher Information about the parameter µ in the case of
the random variable Y ∼ Poisson(µ), with

L(µ) = f(Y ;µ) = exp[−µ]× µY /Y !

2. Calculate the Fisher Information about the parameter θ = log(µ).

0.6 (m-s) The Poisson distribution as an approximation
to the binomial distribution

Stigler, in The American Statistician, February 2013 (see Resources), writes

“The Poisson distribution is often introduced as an approximation
to the binomial distribution, an approximation that improves in ac-
curacy as n, the number of binomial trials, increases, while np, the
expected value, does not:

e−np(np)k

k!
∼=
(
n

k

)
pk(1− p)n−k

The presentation is usually accompanied by a proof that invokes
some version of the approximation (1 − 1/n)−n ∼= e = 2.71828 . . . .
Poisson’s own derivation proceeded in much the same manner
(Poisson 1837, p. 206; Stigler 1982a), as did a bestselling text-
book published in 1936 by Hyman Levy and Leonard Roth.
Those authors were, respectively, professor of Mathematics and
assistant lecturer in Mathematics at Imperial College London. Fig-
ure 1 reproduces the relevant passage from Levy and Roth (1936).

Figure 1. Part of page 80 of Levy and Roth (1936), showing the
approximation and the footnote.

1968. Neither man seems to have left a comment on this small
matter.

3. LESSONS LEARNED

Aside from reinforcing the fact that it pays to read carefully
and to check footnotes, what can be learned from this? For one
thing, it alerts us to the fact that the Poisson may not be a very
close approximation to the binomial unless n is huge. For small
n, the approximation is only qualitatively accurate (Table 2).
This might be obvious from the fact that the binomial is sup-
ported by but n + 1 values, while the support of the Poisson
extends to all nonnegative integers. Over the years, a number of
scholars have concocted improvements to the Poisson approxi-
mation (e.g., Gebhardt 1969; Morice and Thionet 1969; see also
LeCam 1960). None of these improvements seem to have been
adopted, probably because for practical work the approximation
from the Poisson is usually adequate despite the error, and the

Table 1. Illustrations of the different rates of convergence for two
approximations of e

n (1 − 1
n )−n

∑n
0 1/k!

1 1.0000000000 2.0000000000
2 4.0000000000 2.5000000000
3 3.3750000000 2.6666666667
4 3.1604938272 2.7083333333
5 3.0517578125 2.7166666667
6 2.9859840000 2.7180555556
7 2.9418974337 2.7182539683
8 2.9102853680 2.7182787698
9 2.8865075782 2.7182815256
10 2.8679719908 2.7182818011
11 2.8531167061 2.7182818262
12 2.8409443766 2.7182818283
100 2.7319990264
791 2.7200020786
792 2.7199999041
1000 2.7196422164
10000 2.7184177550
e 2.7182818285

Table 2. Two examples of the fit of the Binomial and the Poisson
distributions. Left: Binomial with n = 10 trials and p = .1; Poisson
with mean 1.0. Of the nonzero probabilities, only the 1st, 3rd, and the
5th are accurate to the 1st significant digit, and none are accurate in
later digits. Right: Binomial with n = 20 trials and p = .05; Poisson
with mean 1.0. Here, the fit is slightly improved, but not as measured
by 1st significant digits

k Binomial Poisson k Binomial Poisson

0 0.34867844 0.36787944 0 0.35848592 0.36787944
1 0.38742049 0.36787944 1 0.37735360 0.36787944
2 0.19371024 0.18393972 2 0.18867680 0.18393972
3 0.05739563 0.06131324 3 0.05958215 0.06131324
4 0.01116026 0.01532831 4 0.01332759 0.01532831
5 0.00148803 0.00306566 5 0.00224465 0.00306566
6 0.00013778 0.00051094 6 0.00029535 0.00051094
7 0.00000875 0.00007299 7 0.00003109 0.00007299
8 0.00000036 0.00000912 8 0.00000266 0.00000912
9 0.00000001 0.00000101 9 0.00000019 0.00000101

10 0.00000000 0.00000010 10 0.00000001 0.00000010
11 0.00000000 0.00000001 11 0.00000000 0.00000001
12 0.00000000 0.00000000 12 0.00000000 0.00000000

Poisson distribution is too beautiful a mathematical object to
permit tampering for less than compelling reasons.

4. A FINAL NOTE

The curious accuracy of the Levy and Roth footnote was
noticed by my father no later than 1943–1945, when he was
working on war-related problems with the Statistical Research
Group at Columbia University. At the time he circulated a note
to friends, including a statement that Levy and Roth could have
made a stronger claim: “In future editions they may point out that
if n = 2 the thirteenth decimal place is not affected.” One of those
receiving the note, Churchill Eisenhart, sent an edited version
of the note to a technical journal where it was published (Stigler
1945). However, Churchill removed the suggestion about n =
2 and the 13th place because he feared some readers might not
see the tongue-in-cheek and take it seriously—some jokes can
have unintended harmful consequences.

[Received November 6, 2012. Revised November 27, 2012.]
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page from Levy and Roth and asking them, as a homework exercise,
to answer a simple question: Is the footnote correct? ”

1. BIOS601 Exercise : Answer Stigler’s question.
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0.7 CI’s for the incidence of percutaneous injuries in the
various types of residencies

The NEJM authors did not say how they got the CIs for the Rates per Intern-
Month, shown in Table 1 on page 6. The CI for the overall rate closely matches
the large-sample one that JH has in his Notes. Apply the exact method to
obtain CI’s for the 3 ‘P’s’, Pediatrics, Psychiatry and Pathology, where the
observed numerators are all under 30. [Table on p. 10 may help]

0.8 Comparison of various CI’s for the expectation, µ of
a Poisson random variable, on the basis of a single
count y

Fill in the blanks in the table below, and compare the accuracy of different
approximations to the exact 95% CI for µ, based on a count of y.

Observe y = 3* 6 15 33** 78*** 100
Exact CI: ? ? ? ? ? ?
Approximation
Wilson-Hilferty ? ? ? ? ? ?
1st principles, y ? ? ? ? ? ?
1st principles, y1/2 ? ? ? ? ? ?
SE-based, y ? ? ? ? ? ?
SE-based, log(y) ? ? ? ? ? ?

* Rothman 2002 p134: 3 cases in 2500 PY. ** No. of lung cancer deaths
in women aged 55-60 in Quebec in 1971. ***Total number of cancers in
concerned area in Alberta SourGas study.

0.9 Power Calculations

A researcher wishes to compare the numbers of new cases of a particular
disease in the ‘PT’ Population-Time units exposed to a potentially noxious
agent with the E0 = µ0 = 15.6 that would be expected in this amount of Pop-
ulation Time if rates (already observed) in a LARGE unexposed experience
prevailed. The researcher will use a 1-sided test with α = 0.05 to test H0 :
µin this amount of exposed PT = 15.6 vs. Halt : µin this amount of exposed PT > 15.6.

The amount of PT is fixed. Thus there is no point in the researcher
calculating what amount of PT would be required so that, if µexposed =
(say) 2 × µun−exposed, there would be an 80% chance of obtaining a statisti-
cally significant elevation (i.e., an experience large enough to have 80% power

to ‘detect’ a doubling of the incidence rate). Instead, the researcher decided
to calculate the power, with the given fixed amount of PT that can be studied,
to ‘detect’ a doubling or a tripling of the incidence rate.

Perform this power calculation. You may find it easier (and more transparent)
to work with the exact Poisson probabilities (e.g. in a spreadsheet or in R).

0.10 Perfect Results ?

The following excerpt is from the Vaccine Arm of Table 3 of an Article in the
NEJM in 200220. We will look at the comparison with the Placebo arm when
we get to comparative studies.

Efficacy Analyses of a Human Papillomavirus Type 16 L1 Virus-like-particle
Vaccine.

End point HPV-16 VACCINE GROUP

Efficacy Type of No. of Cases Woman-Yr Rate per 100
Analysis HPV-16 Women Of At Woman-Yr

Infection Infection Risk At Risk

(1)* P. 768 0 1084.0 0
(2)** P. 800 0 1128.0 0
(3)* P. or T. 768 6 1084.0 0.6

(1) Primary per-protocol

(2) Including women with general protocol violations

(3) Secondary per-protocol

P = Persistent; T=transient

*The per-protocol population included women who received the full regimen
of study vaccine and who were seronegative for HPV-16 and negative for
HPV-16 DNA on day 0 and negative for HPV-16 DNA at month 7 and in
any biopsy specimens obtained between day 0 and month 7; who did not
engage in sexual intercourse within 48 hours before the day 0 or month 7
visit; who did not receive any nonstudy vaccine within specified time limits
relative to vaccination; who did not receive courses of certain oral or parenteral
immunosuppressive agents, immune globulin, or blood products; who were not
enrolled in another study of an investigational agent; and who had a month

20The New England Journal of Medicine Vol 347 Nov 21, 2002, p1645 A Controlled trail
of a Human Papillomavirus Type 16 Vaccine. Laura A. Koutsky et al., for The Proof of
Principle Study Investigators.
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7 visit within the range considered acceptable for determining the month 7
HPV-16 status.

**The population includes women who received the full regimen of study vac-
cine and who were seronegative for HPV-16 and negative for HPV-16 DNA on
day 0 and negative for HPV-16 DNA at month 7 and in any biopsy specimens
obtained between day 0 and month 7.

Questions

1. In their Statistical Methods, the authors state: “The study employed a
fixed-number-of-events design. At least 31 cases of persistent HPV-16
infection were required for the study to show a statistically significant re-
duction in the primary end point (assuming that the true vaccine efficacy
was at least 75 percent with a power of at least 90 percent). Accounting
for dropouts and women who were HPV-16-positive at enrollment and as-
suming an event rate of approximately 2 percent per year, we estimated
that approximately 2350 women had to be enrolled to yield at least 31
cases of HPV-16 infection. Although the study will continue until all
women complete four years of follow-up, the primary analysis was initi-
ated on August 31, 2001, as soon as at least 31 cases were known to have
occurred. Thus, the primary analysis includes all safety and efficacy data
from visits that occurred on or before that date.”

Why did the authors use a ‘fixed-number-of-events’ rather than ‘fixed
number of subjects for a fixed amount of time’ design?

2. Calculate 95% 2-sided CIs to accompany the 3 point estimates of infection
rate.

0.11 With luck, will the Royal Mint have enough coins?

Refer to the story “Babies who share royal birthday will coin it” 21 and to
the average of 1,983 births a day.

1. (From the information in the article) what is the probability that the
Mint will have enough, if they mint 2,013 coins? State any assumptions
made.

2. How many should they mint to be 99.99% sure of having enough?

3. The average number of births per day varies slightly by season, and sub-
stantially by day of the week – JH could not find day-of-week data for
the UK22, but did find 2010 data from the USA.23 Rework questions 1
and 2 using a worst case scenario, and assuming the same day-of-week
patterns seen in the USA apply in England and Wales [scale row 1 of
the CDC table for the USA down to match the size of UK ]

4. For shorthand purposes, refer to the probability of having enough coins
as the ‘non-exceedance’ probability.24 How close is the mean of the 7 non-
exceedance probabilities to the non-exceedance probability calculated at
the mean no. of births per day? How close is the median non-exceedance
probability? What if we switched focus to the exceedance probability
rather than the non-exceedance probability?

5. (Again, under your worst case scenario) how many pink and blue pouches
would you recommend they have ready?

21Seems that ‘to coin it’ means means ‘to profit’
22

http://www.statistics.gov.uk/hub/population/births-and-fertility/live-births-and-stillbirths

23http://www.cdc.gov/nchs/data access/Vitalstatsonline.htm
24A New Zealand webpage entitled What does Annual Exceedance Probability or AEP

mean? says ‘This term is generally referred to in rules that regulate discharges of con-
taminants including stormwater, wastewater, greywater. It can also be referred to in rules
that regulate the use of land that may result in a discharge including offal pits, storage
facilities for animal effluent, stockpiling organic matter (including composting) and storage
of hazardous substances.
The Annual Exceedance Probability is the chance or probability of a natural hazard event
(usually a rainfall or flooding event) occurring annually and is usually expressed as a per-
centage. Bigger rainfall events occur (are exceeded) less often and will therefore have a
lesser annual probability.
Example 1: 2% exceedance probability rainfall event: A 2% Annual Exceedance Probability
rainfall event has a 2% chance of occurring in a year, so once in every 50 years.
Example 2: 20% exceedance probability rainfall event: A 20% Annual Exceedance Proba-
bility rainfall event has a 20% chance of occurring in a year, so once in every 5 years.

14



Course BIOS601: intensity rates:- models / inference / planning v. 2017.09.19

DayOfWeek Total January February March April May June July August September October November December

Total 3999386 323249 301994 338613 325028 328273 334535 345199 349747 350745 336809 326220 338974

Sunday 369704 34516 27851 27331 27326 34675 28456 29104 36658 30460 36798 28536 27993

Monday 606424 45873 45899 57699 46839 54815 47351 44502 61073 45406 47795 60967 48205

Tuesday 666686 50373 49751 62979 50302 51071 63178 51325 65572 53189 51056 65209 52681

Wednesday 656694 49042 49277 62067 49237 50024 63541 52202 51530 67103 49698 49109 63864

Thursday 649636 49448 49230 48981 61017 49637 50787 64681 51511 67279 49963 45162 61940

Friday 633899 55630 48382 48155 59075 48472 48887 62232 49800 52728 61238 45280 54020

Saturday 416343 38367 31604 31401 31232 39579 32335 41153 33603 34580 40261 31957 30271

2013-09-11 8:43 PMBeyond 20/20 WDS - Table view - ME_ROUT by DOB_WK (2010 Birth Data - State Detail)

Page 1 of 1http://205.207.175.93/Vitalstats/TableViewer/tableView.aspx?ReportId=59678

CDC Home | NCHS Home | Contact NCHS | NVSS Home | VitalStats Home | Privacy Policy | Accessibility

Tables Table Chart  
  

 ME_ROUT by DOB_WK (2010 Birth Data - State Detail) 

Other:  

    DOB_WK  Total Sunday Monday Tuesday Wednesday Thursday Friday Saturday

    ME_ROUT           

Total 3,999,386 369,704 606,424 666,686 656,694 649,636 633,899 416,343

Vaginal-Spontaneous 1,931,624 203,437 280,188 310,516 309,225 306,652 295,023 226,583

Vaginal-Forceps 20,868 2,069 3,055 3,456 3,506 3,352 3,056 2,374

Vaginal-Vacuum 89,879 9,114 12,669 14,962 14,761 14,358 13,566 10,449

Cesarean 995,945 67,410 163,540 176,929 170,666 168,245 170,456 78,699

Not stated 17,568 1,574 2,682 3,022 2,964 2,793 2,730 1,803

Not on certificate 943,502 86,100 144,290 157,801 155,572 154,236 149,068 96,435
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0.12 2 (indep.) Poisson r.v.’s → 1 Binomial distribution

Suppose we wish to compare 2 event-rates, λ1 in ‘exposed’ (1) person time
and λ0 in ‘unexposed’ (0) person time. Denote the (to-be-observed) numbers
of events in Y1 and Y0 person-years by D1 and D0 respectively.25

Then
D1 ∼ Poisson(µ1) and D0 ∼ Poisson(µ0),

where
µ1 = λ1 × Y1 and µ0 = λ0 × Y0.

Show that by conditioning on (fixing) the sum D = D1 + D0, we obtain a
binomial random variable:

(D1 | D) ∼ Binomial
(
D, π =

µ1

µ1 + µ0
=

λ1Y1
λ0Y0 + λ1Y1

=
θY1

Y0 + θY1

)
,

where θ is the Rate Ratio λ1/λ0,

and that

Ω =
π

1− π
=
E[D1]

E[D0]
=
Y1
Y0
× λ1
λ0
.

0.13 Cancer screening trials: sample size/data-analysis

[new in 2017, and a prelude to the visit of Steven Skates (UK Ovarian Cancer
Screening Trial) on Oct 3 ]

The following sections are taken from ‘Biometric design of the Mayo Lung
Project for early detection and localization of bronchogenic carcinoma.’ Tay-
lor WF, Fontana RS. Cancer. 1972 Nov;30(5):1344-7.

ABSTRACT

Several important aspects of the Mayo Lung Project demand evaluation.
These are: 1. Acceptance. Will people accept such a screening program?
2. Case finding. Does the screen pick out the people most likely to have or
develop bronchogenic carcinoma? 3. Effectiveness. If an early case of bron-
chogenic carcinoma is found, will prompt treatment extend life beyond the

25Clayton and Hills used the letter D, since it is short for numbers of ‘deaths’; not all of
the events in epidemiology are terminal, or unwanted.

time at which death from this disease would have occurred if treatment had
been delayed? Direct measurement of effectiveness is not possible, and indi-
rect methods must be used. A group of patients, all of whom are considered
suitable for the screening program, are being divided randomly into two sub-
groups, one to be screened and the other to be kept as an unscreened control.
Mortality in the two groups is to be compared for 5 years, and hopefully for
10 years. We also consider here sample size requirements and reports on some
of the characteristics of the first 500 patients.

DESIGN OF PROJECT

Subjects and methods: In the course of usual procedure at the Mayo Clinic,
we identify each male patient who is 45 years of age or older and who smokes
:it least one pack of cigarettes a day. As part of the routine health exam-
ination of such patients, a standard 14 by 17-inch posterior-anterior chest
roentgenogram is made and studied and a pooled 3-day “deep cough” sputum
specimen is examined cytologically. We have the patients answer a Lung-
Health Questionnaire as part of this project. All men found free from clinical
evidence of lung cancer and free from other serious diseases (to the degree
that life expectancy is estimated as at least 5 years) are included in this
study. These patients are assigned at random to one of two groups.

1. One group, designated controls, receives care and advice of the standard
which is current practice at Mayo Clinic. This includes the recommendation
of the Clinic’s Division of Thoracic Diseases that a chest roentgenogram and a
sputum cytology test be obtained at least once a year and that the patient stop
smoking. However, these men will be told nothing of the screening program.
Rather, they will be examined and will receive care at their own request as
if no screening program existed. A routine follow-up communication will be
made with each man at least once a year for at least 10 years to determine
survival status. If a man dies, his death certificate will be obtained and the
circumstances of his death will be determined from his local doctor.

2. The other group, called participants, will be treated initially just as the first
group, but these men will also be urged to participate in the intensive bron-
chogenic carcinoma screening project.26 Men who refuse will not be dropped;
they will be followed as closely as possible through correspondence and will
be included when comparisons are made with the first group.

Analysis: If the work is carefully clone and if adequate time is allotted for
the project, a moderate difference in observed lung cancer mortality can be
deemed significant statistically and can be attributed to some aspect and

26“We decided to use a 4-month screening interval because previous studies suggested
that longer intervals were too long. We thought a 4-month interval would be acceptable to
our patients and achievable by our technical personnel.”
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effect of the screening procedure. (We may not know which aspect, but at
least we will have established that screening and early treatment have some
effect, and we will have incentive to pursue the matter further. Such aspects
as how intensive the screening should be or how costs can be reduced are
perhaps better delayed until the question of gross effectiveness is answered.)

Notice that we will not merely compare survival time of early-discovered and
late-discovered cases. There is an unknown bias in favor of early-discovered
cases, even if no treatment is employed. Notice also that we do not rely on
volunteers for one group and let the comparison group consist of nonvolun-
teers. Instead, we divide the group of eligible people at random into two
groups, offer the screening to one of them, and then compare the two groups
in their entirety. Finally, it should be noted that we do not plan to make a
comparison of the incidence of cancer or the survival of cancer patients among
the unscreened controls with that of the participants, because to get such de-
tailed information we would have to communicate with the control patients
and thus lose part of the difference between control and screened patients.
The screened group may have a higher observed incidence because we observe
them more closely. We want the two groups to be observed with different
intensity-within the bounds of currently acceptable medical practice-because
this is what the study is all about.

A word about eligibility: An early benefit from this work results from the
first screening. The cases of lung cancer found then will be interesting in
themselves and will be worked up thoroughly. The initial screening should also
eliminate from further study patients who for other reasons are considered to
have an unusually short expectation of life. This, of course, will be somewhat
subjective, but decisions will be made as consistently as possible, in accord
with written guidelines.

Sample size and time required : We have considered sample size in relation
to comparison of mortality from bronchogenic carcinoma in the two designated
groups. Suppose we admit N men into each group. After 5 years there will
have occurred T1 and T2 man-years of exposure in each group, and D1 and D2

deaths. If T1
∼= T2, as is likely, we merely must determine whether the control

deaths D1, exceed significantly the screened deaths D2. It is reasonable
to consider the D1 and D2 deaths as independent binomial trials.
Let p denote the probability that, given a death occurs, it occurs in the
controls. Let H0 be the hypothesis p = 1/2, and let H1 be the alternative of
interest, p = 2/3. (This corresponds to reducing the lung cancer death rate in
the screened group to half that in the controls.) We want the following two
conditions to be met,

P(reject H0 in favor of H1|H0 true) = α = 0.05

P(reject H0 in favor of H1|H1 true) = β = 0.95.

We reject H0 in favor of H1 whenever

[ ( D1

D1 +D2
− 1

2

)/√1

4

1

D1 +D2

]
≥ 1.645.

The probability that this occurs under H0 is about 0.05. The probability
under H1 is about 0.95 if D1 + D2 = 90.

Now the question is: how how many men must we examine for how long to get
about 90 deaths from bronchogenic carcinoma? (The following information is
in the nature of a first attempt to estimate this quantity.) Suppose we wish to
get an answer in 5 years, and assume from published data and some educated
guessing that 5 deaths per 1,000 man-years will occur among the controls and
2.5 deaths per 1,000 man-years among the participants in the close surveil-
lance. We expect to have 60 deaths among the controls and 30 among the
participants if we observe 12,000 man-years in each. These estimates, based
on averages, do not take into account chance variation. If we wish to be 95%
sure of obtaining 60 and 30 deaths, respectively, we need to observe 12,000
man-years in each group. We think we can obtain such numbers from our
present case load but not without difficulty. Initial plans calling for a total of
6,000 men (3,000 in each group) may have to be modified and will be as soon
as deemed essential. We anticipate some losses; there may well be men who
refuse to continue under screening These are not to be entirely lost; their cases
will be followed anyway by mail. But it does dilute the difference between the
qroups and makes the true effects of screening more difficult to detect. The
surveillance effort will have to be vigorous and encouraging.

Will 5 years be long enough, even with the numbers of subjects proposed?
Perhaps not; but regardless of the early outcome and regardless of whether
the actual screening goes on beyond 5 years, these men should continue to be
traced for at least a total of 10 years. In our opinion, important information
about survival following early treatment will require more than 5 years’ study.
This opinion is based on possible recurrence of the initial cancer, as well as
concern over development of an entirely new primary cancer, particularly in
individuals with squamous cell carcinoma.

— — —

Questions - 2017

1. re-write the sentence “It is reasonable to consider the D1 and D2 deaths
as independent binomial trials.”
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2. With D = 90 and (the null) p = 0.5, use the pbinom function to calculate
dcritical1 , the smallest d1 such that Prob[D1 ≥ d1] < α. [see Note27]

3. (Staying with D = 90) use the non-null p = 2/3 in the pbinom function
to calculate Prob[D1 ≥ dcritical1 ] and check the value against the ‘about
95%’ [power] given by Taylor and Fontana.

JH finds that rough diagrams are a big help in setting up power calcula-
tions like these.

4. Comment on their use of the letter β to denote this probability.

5. Taylor and Fontana did not have easy access to binomial calculations, so
they used a Normal approximation to the binomial. i.e,

(D1|D) ∼ N [ µ = D × p, Var = D × p× (1− p) ].

(Staying with D = 90) use this approximation to repeat the above cal-
culations for p = 1/2 and p = 2/3.

6. In the above H1 the alternative of interest, p = 2/3, corresponded to
reducing the lung cancer death rate in the screened group to half that in
the controls, i.e. (using their ‘1’ to denote to denote the controls, and ‘2’
to denote the participants) to a situation where λ2 = 0.5× λ1.
But what if this alternative is too optimistic? Consider four more
modest scenarios: H2 : λ2 = 0.6× λ1; H3 : λ2 = 0.7× λ1; H4 : λ2 = 0.8×
λ1; and H5 : λ2 = 0.9 × λ1, i.e., reductions of 40%, 30%, 20%, and 10%
respectively. First, convert these 4 scenarios to the corresponding 4 non-
null values of p and (staying with D = 90), calculate Prob[D1 ≥ dcritical1 ],
i.e., the statistical power, for each of these.28

7. As you will have found, the power against H4 (a 20% reduction) is low
when D is just 90. By trial and error, or directly, calculate the D one
would need to have 80% power (rather than their 95%) but against just
a 20% reduction.

Convert this required D to a required number of man-years, using a
mortality rate of 3 per 1,000 man-years in the controls.29

27Note the values of pbinom(3,4,.5) and pbinom(3,4,.5,lower.tail=FALSE)
28Use exact binomials, or normal approximations, as you wish.
29This rate of 3/1,000 MY was calculated ‘after-the-fact’ in 1986, after 115 lung cancer

deaths had been observed in 4,600 men followed for an average of just over 8 years. As you
will have seen above, the rate used for planning purposes was 5 per 1,000 man-years.

AFTERMATH 1981, 1986, 2000 || CT screening: 2006, 2011

Some Results of Screening for Early Lung Cancer 

WILLIAM F. TAYLOR, PHD, ROBERT S. FONTANA, MD, MARY ANN UHLENHOPP, BA, AND CHARLES S. DAVIS, MS 

Screening for lung cancer is somewhat controversial in that very few evaluations of the screening 
process have been made, and even fewer have involved the use of concomitant, unscreened controls. 
This report of the Mayo Lung Project provides evaluation of a randomly selected 4500 clinic patients, 
offered screening for lung cancer at four-month intervals for six years. Another 4500 randomly selected 
controls not offered screening were merely observed. Good screening is defined, the Mayo project 
is evaluated, and puzzling results are presented and discussed. 

From the screened group, 98 new cases of lung cancer have been detected, 67 by study screening 
and 31 by spontaneous reporting of symptoms (15) or by x-ray examinations (16) done in other than 
study circumstances. From the controls, 64 new lung cancer cases have been detected, 43 by symptoms 
and 21 by other methods. Lung cancer mortality is 39 for study patients and 41 for controls. There 
is thus no evidence at this time that early case finding has decreased mortality from lung cancer. 

Cancer 47:1114-1120, 1981. 

N 19703 THE THORACIC DIVISION of the Mayo Clinic I recommended that patients thought to be at high risk 
of lung cancer do three things: 1) stop smoking, 2) each 
year have a chest roentgenogram, and 3) each year have 
a sputum cytology examination. Specifically, this rec- 
ommendation was directed to men over 45 who were 
heavy smokers. 

In 1970 this advice was believed to be the best avail- 
able medical wisdom, because the two tests were the 
only ones proved capable of detecting presymptomatic, 
potentially curable lung cancer. The recommendation 
was made with full realization that it was based on un- 
proven assumptions about either the possibility or the 
efficacy of detection of early stage lung cancer. It was 
strictly empiric and pragmatic. It remains so today, and 
the recommendation remains in effect today. 

Also in 1970, after many months of discussion, a 
group of Mayo investigators proposed to develop and 
evaluate a long-term lung cancer screening program 
for high-risk men.2’4 The proposal was accepted by 
the National Cancer Institute, and late in 1971 the Mayo 
Lung Project (MLP) began screening. 

This interim report reviews the status of the MLP 
at the end of 1979. It looks back at the 1970 proposal 

Presented at the American Cancer Society National Conference 
on Cancer Prevention and Detection, Chicago, Illinois, April 
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17-19, 1980. 

Minnesota. 

Institutes of Health. 

and asks whether the original objectives have been met. 
It also looks at the potential of lung cancer screening 
for reducing mortality in the future. 

Met hods 

The goal of the MLP has been to determine if lung 
cancer mortality could be significantly reduced in high- 
risk Mayo outpatients if chest roentgenograms and spu- 
tum tests were obtained often enough. Tests have been 
obtained every four months, which is more often than in 
any previous lung cancer screening program. The four- 
month interval was also about as often as even health- 
conscious Mayo patients would tolerate.2 Men in the 
comparison (control) group of the MLP were given the 
standard Mayo recommendation of annual chest roent- 
genography and sputum cytology. All patients in the 
MLP have been advised to stop smoking. 

The design of the MLP is as follows: Non-volunteer 
Mayo outpatients in the high-risk group of men over 45 
years of age who were chronic excessive cigarette smok- 
ers without known lung cancer received chest roent- 
genograms and cytology tests of three-day “pooled” 
collections of sputum. If either test proved positive 
for lung cancer on this initial screening, the patient 
became a “prevalence” case. (These prevalence cases 
are not studied here. Cases considered in this paper 
are “incidence” cases occurring after the result of the 
initial screening of the patient was found negative.) 

Those who had negative initial screens and who met 
certain other criteria for continued screening were sub- 
sequently studied in two randomized groups. In the 
study (or screened) group the patients were asked to 

0008-543X/81/0301/1114 $0.85 0 American Cancer Society 
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JH is puzzled by the sentence ‘Lung cancer mortality is 39 for study patients and

41 for controls.’ in the above summary. The 39 and 41 do not agree with the

numbers (42 and 50) given elsewhere in the text and in the various Figures.
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Figure 4B. Very few low stage small cell cancers were 
found. For reasons that are not apparent, some high 
stage small cell cases were found even earlier in con- 
trol patients than in screened ones, although this tended 
to even out as time went by. Five low stage cases were 
found by screening, only one in the controls. The im- 
pression is that screening by chest roentgenography 
and sputum cytology every four months does not pick 
up cases of small cell cancer earlier than those appear- 
ing among controls. Moreover, those cases detected by 
the screen are generally of high stage. 
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FIG. 5.  Cumulative number of Mayo Lung Project patients dying 
from lung cancer by time from entry into the study until death-con- 
trol and screened patients. A. All patients dying of lung cancer. B.  
Small cell patients. C. Large cell patients. D. Squamous patients. E. 
Adenocarcinoma patients. 

At the other end of the spectrum (Fig. 4C), five cases 
of squamous cancer were detected by screening before 
the first control case appeared. Squamous cancer showed 
a large excess of low stage cancers in the group screened 
every four months. These are the reasons for this. First, 
squamous cancer has the most favorable prognosis of 
any cell type of lung cancer. Second, the early favor- 
able roentgenographically negative, cytologically posi- 
tive “occult” lung cancer is almost always squamous. 
These facts explain part of the excess in Figure 1 .  In 
addition, there have been fewer high stage squamous 
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FIG. 7. Lung cancer death rates by time in study-control and 
screened patients. 

In Figures SB-SE, the various cell types of lung 
cancer are examined. Again, there were considerable 
differences. Small cell and large cell had one or two 
more lung cancer deaths in the screened group than in 
the control group, whereas among those with squamous 
and adenocarcinoma, there were quite a few more lung 
cancer deaths among the controls. 

The most pessimistic picture of the benefits of screen- 
ing appears when patients with small cell and large cell 
undifferentiated cancer are grouped together as in 
Figure 6A. Here, there is no evidence of any benefit 
from screening. The difference is three lung cancer 
deaths in the wrong direction-not favoring screening. 

We get the most optimistic picture when squamous 
and adenocarcinoma patients are combined, as in Figure 
6B. This Figure appears to show a strong benefit from 
screening. There were fewer deaths from lung cancer 
in the screened group compared with the controls. 
However, the difference between the two curves is 
not statistically significant. 

Discussion 

At this writing, lung cancer screening is not 
uniformly encouraging with respect to the reduction of 
mortality from lung cancer. However, there are some 
reasons for restrained optimism. First of all, at  the time 

of this report (December 3 1, 1979), there are 32 more 
cases of lung cancer in the screened group than among 
the controls, and almost all of the difference is due to an 
excess number of low stage cases in the screened group. 
Probably, there are several cases of lung cancer among 
the controls that have not yet been discovered. 
These cases may surface in the next few years. Some 
should have progressed to high stage cancer by then, 
and mortality should result. The potential for this is 
demonstrated in Figure 4A with the small but 
pertinent observed excess of high stage controls after 
about 60 months in the study. 

A second hopeful observation has to do with the 
actual lung cancer death rates for controls and 
screened patients, as shown in Figure 7. Attention is 
directed particularly to the rates for those patients who 
have been in the study four years or more. 
The death rate from lung cancer for the controls 
exceeds that of the screened group by a considerable 
amount, although this is not yet statistically significant 
either. However, this trend has been observed for the 
last three years, and the difference is growing. 

We believe that lung cancer screening appears 
promising for squamous cancers and for adeno- 
carcinomas but not for small or large cell un- 
differentiated tumors. Our recommendation now is to 
continue observation well into the follow-up phase 
(at least three to five more years). We suggest that no 
lung cancer screening projects be established for the 
general population of older male smokers at this time. 
But, we also suggest that we do not now know enough 
about this matter to make definitive statements. 
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[From Discussion] ‘A second hopeful observation has to do with the actual
lung cancer death rates for controls and screened patients, as shown in Figure
7. Attention is directed particularly to the rates for those patients who have
been in the study four years or more. The death rate from lung cancer for
the controls exceeds that of the screened group by a considerable amount,
although this is not yet statistically significant either. However, this trend
has been observed for the last three years, and the difference is growing.

We believe that lung cancer screening appears promising for squamous cancers
and for adeno-carcinomas but not for small or large cell un-differentiated
tumors. Our recommendation now is to continue observation well into the
follow-up phase (at least three to five more years). We suggest that no lung
cancer screening projects be established for the general population of older
male smokers at this time. But, we also suggest that we do not now know
enough about this matter to make definitive statements.

Lung Cancer Screening: The Mayo Program [1986]

Robert S. Fontana, MD; David R. Sanderson, MD; Lewis B. Woolner, MD;
William F. Taylor, PhD; W. Eugene Miller, MD; and John R. Muhm, MD

Journal of Occupational Medicine/Volume 28 No. 8/August 1986

(Summary) The National Cancer Institute has sponsored three randomized
controlled trials of screening for early lung cancer in large, high-risk popu-
lations to determine whether (1) lung cancer detection can be improved by
adding sputum cytological screening every 4 months to chest roentgenography
done either yearly or every 4 months; and (2) lung cancer mortality can be
significantly reduced by this type of screening program, followed by appropri-
ate treatment. Results of the three trials suggest that (1) sputum cytology
alone detects 15% to 20% of lung cancers, almost all of which are squamous
cancers with a favorable prognosis; and (2) chest roentgenography may be a
more effective test for early-stage lung cancer than previous reports have sug-
gested. Nevertheless, results of the randomized trial conducted at the Mayo
Clinic showed that offering both procedures to high-risk outpatients every 4
months conferred no mortality advantage over standard medical practice that
included recommended annual testing.

(From results section) In the MLP randomized trial, the death rates from
all causes (per 1,000 person-years) were high: 24.8% in the screened every 4
months and 24.6% in the control group. The major competing death risk was
ischemic cardiovascular disease.

There were 122 lung cancer deaths in the group screened every 4 months and
115 in the control group. Seven deaths in the group screened every 4 months
and six deaths in the control group were attributed to surgery for lung cancer.
These were treated as lung cancer deaths.

The death rate from lung cancer was 3.2/1,000 person-years in the group
screened every 4 months and 3.0 among the control subjects. Like the cu-
mulative numbers of unresectable cancers, the cumulative numbers of lung
cancer deaths in the two groups were comparable, both during and after the
period of active screening.

Comments

The results of the MLP randomized controlled trial do not justify recom-
mending large-scale programs of radiological or cytological screening for lung
cancer. Such programs are usually initiated by those who conduct them and
should benefit the participants by reducing lung cancer mortality.’ The MLP
trial did not demonstrate this sort of benefit.

Neither do the results of the MLP mean that testing high-risk patients for

19



Course BIOS601: intensity rates:- models / inference / planning v. 2017.09.19

lung cancer by chest x-ray film or sputum cytology is not useful, as some have
claimed.’ All who participated in the MLP trial received an initial (prevalence)
radiological and cytological screening. The randomized trial simply shows that
offering the two procedures every 4 months to high-risk Mayo outpatients
who have had one negative screening confers no morality [sic]30 advantage
over routine Mayo Clinic practice with a recommendation of annual testing.
The randomized, controlled trials conducted at the Johns Hopkins Medical
Institutions and at the Memorial Sloan-Kettering Cancer Center offered all
participants annual chest roentgenograms. In addition, half of the men in each
of these trials were randomly allocated to a group offered sputum cytology
every 4 months. Results from both trials indicate that in the populations
screened by x-ray film only, as well as in the populations screened by x-ray film
and cytology, the proportion of early-stage, resectable lung cancers and the
lung cancer survivorship have been substantially better than those observed in
previously reported lung cancer screening programs. However, like the MLP,
no significant difference in lung cancer mortality has been observed between
the two populations in either the Hopkins or the Memorial trial.’

It should be emphasized that when the NCI randomized controlled trials com-
menced, it was generally accepted that yearly chest roentgenograms would not
reduce lung cancer mortality. It was also believed that a large proportion of
lung cancers would be detected cytologically, and the trials were designed with
this in mind. Yet in all three screening programs, the great majority of lung
cancers have been detected radiologically. Furthermore, sizable numbers were
detected by nonstudy chest x-ray films in the control group of the MLP and
by annual chest x-ray films in the control populations of the other two trials.
It would be of interest to know what might have happened in these cases if
chest roentgenograms had not been available to the control subjects.

The randomized controlled trial is ideal for assessing new procedures such as
mammography, or new application of procedures such as screening popula-
tions at high risk of lung cancer by sputum cytology. Unfortunately, once a
procedure has become an established part of medical practice, as the chest
roentgenogram has (more than 80 million are taken year in the United States),
it may become necessary to resort to other, less precise methods of evaluation,
such as case-control studies.

Summary

Three large, long-term randomized controlled trials of screening for early-
stage lung cancer by periodic chest x-ray film and sputum cytology have been
conducted under the auspices of the National Cancer Institute. Cytological
screening alone has detected only a small proportion of the lung cancers in

30https://en.wikipedia.org/wiki/Sic

these programs, although cytologically detected lung cancers tend to have
a very favorable prognosis. Modern chest roentgenography appears to be a
better method of detecting early-stage, resectable lung cancer than previous
stud- ies have indicated.

Everyone who participated in the Mayo Clinic randomized trial had a satisfac-
tory and negative initial (prevalence) radiological and cytological screening.
The study group was then offered re-screening every 4 months, while the con-
trol group was offered standard medical care and advised to have annual chest
radiography and sputum cytology.

The Mayo trial has shown significantly increased lung cancer detection, re-
sectability, and survivorship in the study group compared with that of the
control groups. Yet the death rates from lung cancer and from all causes have
been almost identical in the two groups.

2000

Lung Cancer Mortality in the Mayo Lung Project: Impact of Extended Follow-
up Pamela M. Marcus, Erik J. Bergstralh, Richard M. Fagerstrom, David E.
Williams, Robert Fontana, William F. Taylor, Philip C. Prorok. [JNCI]

Background: The Mayo Lung Project (MLP) was a randomized, controlled
clinical trial of lung cancer screening that was conducted in 9211 male smokers
between 1971 and 1983. The intervention arm was offered chest x-ray and
sputum cytology every 4 months for 6 years; the usual-care arm was advised
at trial entry to receive the same tests annually. No lung cancer mortality
benefit was evident at the end of the study. We have extended follow-up
through 1996.

Methods: A National Death Index-PLUS search was used to assign vital
status and date and cause of death for 6523 participants with unknown infor-
mation. The median survival for lung cancer patients diagnosed before July
1, 1983, was calculated by use of Kaplan-Meier estimates. Survival curves
were compared with the log-rank test.

Results: The median follow- up time was 20.5 years. Lung cancer mortality
was 4.4 (95% confidence interval [CI] = 3.9-4.9) deaths per 1000 person-years
in the intervention arm and 3.9 (95% CI = 3.5-4.4) in the usual-care arm (two-
sided P for difference = .09). For participants diagnosed with lung cancer
before July 1, 1983, survival was better in the intervention arm (two-sided P
= .0039). The median survival for patients with resected early-stage disease
was 16.0 years in the intervention arm versus 5.0 years in the usual-care arm.

Conclusions: Extended follow-up of MLP participants did not reveal a lung
cancer mortality reduction for the intervention arm. Similar mortality but
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better survival for individuals in the intervention arm indicates that some
lesions with limited clinical relevance may have been identified in the inter-
vention arm. [J Natl Cancer Inst 2000;92:1308-16]

Mortality

Our NDI search and our matching algorithm identified 396
lung cancer deaths, bringing the lung cancer death totals to 337
among participants in the intervention arm (76 760.7 person-
years) and 303 among participants in the usual-care arm
(76 772.4 person-years) as of December 31, 1996 (Fig. 1; Table
2). The median follow-up time was 20.5 years. The lung cancer

mortality rate was 4.4 deaths per 1000 person-years (95% CI !
3.9–4.9) in the intervention arm and 3.9 deaths per 1000 person-
years (95% CI ! 3.5–4.4) in the usual-care arm; the two rates
were not statistically significantly different (P ! .09; 95% CI
for the observed 13% increase in lung cancer mortality in the
intervention arm: −5% to 30%). All-cause mortality and mor-
talities from other cancers, COPD, IHD, and respiratory ailments
other than COPD and lung cancer also did not differ by study
arm (Table 2).

The finding of similar lung cancer mortalities in both study
arms remained after adjustment for four established lung cancer
risk factors (age, smoking [measured as pack-years smoked],
exposure to non-tobacco lung carcinogens, and history of pul-
monary illness) (unadjusted hazard ratio [HR] ! 1.1 [95% CI !
1.0–1.3]; adjusted HR ! 1.1 [95% CI ! 1.0–1.3]). Further-
more, when assessed individually, neither age (HR ! 1.0 for
<55 years, HR ! 1.1 for 55–64 years, and HR ! 1.6 for !65
years), amount smoked (HRs ! 1.1 for <50 pack-years, 50–99
pack-years, and !100 pack-years), exposure to non-tobacco
lung carcinogens (HRs ! 1.1 for both never and ever), nor
history of other pulmonary illness (HR ! 1.2 for never and HR
! 1.0 for ever) acted as effect modifiers.

Of 933 participants noted in the Mayo Clinic registration
system to have died after July 1, 1983 (with no available cause
of death), our algorithm correctly identified 91%. Of these, 89%
had exact agreement on date of death and 98% had agreement
within 30 days.

Table 2. Mortality in the Mayo Lung Project, as of December 31, 1996

Cause of death*

Deaths, No. (%)
Mortality rate (95% confidence interval)

per 1000 person-years

Intervention arm
(n ! 4607)

Usual-care arm
(n ! 4585)

Intervention arm
(76 760.7 person-years)

Usual-care arm
(76 772.4 person-years)

Lung cancer 337 (7) 303 (7) 4.4 (3.9–4.9) 3.9 (3.5–4.4)

Causes other than lung cancer 2148 (47) 2133 (47) 28.0 (26.8–29.2) 27.8 (26.6–29.0)
Cancers other than lung cancer 403 (9) 391 (9) 5.3 (4.8–5.8) 5.1 (4.6–5.6)
Chronic obstructive pulmonary disease 156 (3) 149 (3) 2.0 (1.7–2.4) 1.9 (1.6–2.3)
Ischemic heart disease 816 (18) 816 (18) 10.6 (9.9–11.4) 10.6 (9.9–11.4)
Other respiratory causes 60 (1) 44 (1) 0.8 (0.6–1.0) 0.6 (0.4–0.8)
Other 712 (15) 733 (16) 9.3 (8.6–10.0) 9.5 (8.9–10.3)

All causes 2493 (54) 2445 (53) 32.5 (31.2–33.8) 31.8 (30.6–33.1)

*Seventeen participants (eight in the intervention arm and nine in the usual-care arm) had unknown causes of death.

Fig. 1. Cumulative lung cancer deaths by
study arm. Sample size was 4607 in the in-
tervention arm (solid line) and 4585 in the
usual-care arm (dashed line). Numbers in
parentheses are the numbers of lung cancer
deaths as of December 31, 1996. The Na-
tional Death Index was used, as described in
the text, to follow-up Mayo Lung Project
participants for whom vital status on Decem-
ber 31, 1996, was unknown.

Table 1. Assignment of vital status for Mayo Lung Project participants

Intervention
arm,

No. (%)

Usual-care
arm,

No. (%)
Total,

No. (%)

Total participants 4618 4593 9211
Vital status already known

Dead as of around July 1,
1983

994 (22) 983 (21) 1977 (21)

Alive on December 31,
1996

372 (8) 320 (7) 692 (8)

Records sent to National
Death Index

Returned with no match* 796 (17) 794 (17) 1590 (17)
Returned, false match* 946 (20) 1026 (22) 1972 (21)
Returned, true match† 1499 (32) 1462 (32) 2961 (32)

Refusals 11 (0) 8 (0) 19 (0)

Total participants,
without refusals

4607 4585 9192

*Assumed to be alive.
†Assumed to be dead.
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LOW-DOSE CT SCREENING
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Background
The outcome among patients with clinical stage I cancer that is detected on annual 
screening using spiral computed tomography (CT) is unknown.

Methods
In a large collaborative study, we screened 31,567 asymptomatic persons at risk for 
lung cancer using low-dose CT from 1993 through 2005, and from 1994 through 
2005, 27,456 repeated screenings were performed 7 to 18 months after the previ-
ous screening. We estimated the 10-year lung-cancer–specific survival rate among 
participants with clinical stage I lung cancer that was detected on CT screening and 
diagnosed by biopsy, regardless of the type of treatment received, and among those 
who underwent surgical resection of clinical stage I cancer within 1 month. A pathol-
ogy panel reviewed the surgical specimens obtained from participants who under-
went resection.

Results
Screening resulted in a diagnosis of lung cancer in 484 participants. Of these par-
ticipants, 412 (85%) had clinical stage I lung cancer, and the estimated 10-year sur-
vival rate was 88% in this subgroup (95% confidence interval [CI], 84 to 91). Among 
the 302 participants with clinical stage I cancer who underwent surgical resection 
within 1 month after diagnosis, the survival rate was 92% (95% CI, 88 to 95). The 
8 participants with clinical stage I cancer who did not receive treatment died within 
5 years after diagnosis.

Conclusions
Annual spiral CT screening can detect lung cancer that is curable.

Copyright © 2006 Massachusetts Medical Society. All rights reserved. 
Downloaded from www.nejm.org at MCGILL UNIVERSITY HEALTH SCIENCES LIB on October 27, 2006 . 
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stage I cancer, the distribution according to the 
type of cell is shown in Table 3. The median tu-
mor diameter was 13 mm at baseline and 9 mm 
on annual CT. The pathology-review panel con-
firmed the diagnosis of clinical stage I cancer in 
the specimens obtained from the 375 participants 

who underwent resection according to World 
Health Organization criteria of 2004.16 With re-
gard to spread or invasion (Table 4), the panel 
identified lymph-node metastases (hilar or ipsi-
lateral mediastinal) in 28 participants (7%) and 
more than one cancer, either in the same or in 
different lobes, in another 35 (9%). Among the re-
maining participants, each with a solitary cancer, 
the panel identified invasion of the pleura in 62 
(17%); bronchial, vascular, or lymphatic invasion 
or a combination in another 28 (7%); invasion of 
the basement membrane alone in 203 (54%), and 
no invasion in the remaining 19 (5%). (Because of 
rounding, percentages may not total 100.) Thus, 
of the 375 participants who underwent resection, 
347 had pathological stage I cancer, and their es-
timated 10-year survival rate was 94% (95% CI, 
91 to 97).

Discussion

In making decisions about instituting CT screen-
ing for lung cancer, a major consideration is the 
outcome of treating a cancer detected on screen-
ing. In our study, the estimated 10-year lung-can-
cer–specific survival rate among the 484 partici-
pants with disease diagnosed on CT, regardless 
of the stage at diagnosis or type of treatment (in-
cluding no treatment), was 80% (95% CI, 74 to 85) 
(Fig. 2). Among the 412 participants with clini-
cal stage I lung cancer — the only stage at which 
cure by surgery is highly likely — the estimated 
10-year survival rate was 88% (95% CI, 84 to 91), 
and among those with clinical stage I lung cancer 
who underwent surgical resection within 1 month 
after the diagnosis, the rate was 92% (95% CI, 88 
to 95). The diagnosis of lung cancer of one type 
or another was verified by a panel of five expert 
pulmonary pathologists. In our series, the opera-
tive mortality rate was low — 0.5% — and was less 
than the 1.0% reported with lobectomy in a large 
cooperative study.17

Sobue et al.18 reported a 5-year survival rate of 
100% in their series of 29 patients who underwent 
resection after pathological stage I cancer was 
detected on CT. Before CT screening, reports based 
on registries showed 10-year survival rates of 80% 
among 17 patients with pathological stage I lung 
cancer 20 mm or less in diameter19 and 93% among 
35 patients with pathological stage I cancer less 
than 10 mm in diameter.20 The National Cancer 
Institute’s Surveillance, Epidemiology, and End 

Table 3. Types of Cancer among 412 Participants with Clinical Stage I Lung 
Cancer Detected on Baseline or Annual CT Screening.

Type of Cancer

Diagnosed on Baseline 
Screening
(N = 348)

Diagnosed on 
Annual Screening

(N = 64)

no. of participants

Adenocarcinoma

Bronchioloalveolar subtype 20 1

Other subtypes 243 30

Squamous cell 45 14

Adenosquamous 3 0

Non–small-cell* 5 2

Neuroendocrine

Atypical carcinoid 2 1

Large cell 15 8

Small cell 9 7

Other 6 1

* If this cell type cannot be differentiated, the category is known as “not other-
wise specified.”
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Figure 2. Kaplan–Meier Survival Curves for 484 Participants with Lung 
Cancer and 302 Participants with Clinical Stage I Cancer Resected 
within 1 Month after Diagnosis.

The diagnoses were made on the basis of CT screening at baseline com-
bined with cycles of annual CT.

Copyright © 2006 Massachusetts Medical Society. All rights reserved. 
Downloaded from www.nejm.org at MCGILL UNIVERSITY HEALTH SCIENCES LIB on October 27, 2006 . 

The National Lung Screening Trial:

Overview and Study Design [Gatsonis et al. Radiology: Volume 258: Number
1, January 2011]

The National Lung Screening Trial (NLST) is a randomized multicenter study
comparing low-dose helical computed tomography (CT) with chest radiogra-
phy in the screening of older current and former heavy smokers for early
detection of lung cancer, which is the leading cause of cancer-related death
in the United States. Five-year survival rates approach 70% with surgical
resection of stage IA disease; however, more than 75% of individuals have
incurable locally advanced or metastatic disease, the latter having a 5-year
survival of less than 5%. It is plausible that treatment should be more ef-
fective and the likelihood of death decreased if asymptomatic lung cancer is
detected through screening early enough in its preclinical phase. For these
reasons, there is intense interest and intuitive appeal in lung cancer
screening with low-dose CT. The use of survival as the determinant of
screening effectiveness is, however, confounded by the well-described biases of
lead time, length, and overdiagnosis. Despite previous attempts, no test has
been shown to reduce lung cancer mortality, an endpoint that circumvents
screening biases and provides a definitive measure of benefit when assessed
in a randomized controlled trial that enables comparison of mortality rates
between screened individuals and a control group that does not undergo the
screening intervention of interest. The NLST is such a trial. The rationale
for and design of the NLST are presented.

Sample Size Considerations

Preliminary computations of the required sample size for the NLST were
made by using the approach of Taylor and Fontana, which is based on several
simplifying assumptions and does not account for the number of screenings.
The final computations were based on an elaboration of the approach of Hu
and Zelen, modified to allow for staggered entry of participants and analyses
based on calendar time instead of time on study. Parameters for the Hu-
Zelen model are listed in Appendix E8 (online) and were estimated by using
data from the Mayo Lung Project. With 25 000 participants enrolled
in each of years 1 and 2 of the trial, [i.e., 25,000 per arm, enrolled
over 2 years] statistical power of 90% for detecting a 21% reduction
in lung cancer mortality in the low-dose CT arm relative to the
chest radiographic arm may be achieved in an analysis conducted on events
occurring through August 2008. Because of lags in data availability and entry,
such an analysis would not occur until 2010. Therefore, we continued to collect
information on lung cancer cases and deaths occurring through December 2009
so that information would not have to be obtained retroactively if needed.
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Background
The aggressive and heterogeneous nature of lung cancer has thwarted efforts to 
reduce mortality from this cancer through the use of screening. The advent of low-
dose helical computed tomography (CT) altered the landscape of lung-cancer screen-
ing, with studies indicating that low-dose CT detects many tumors at early stages. 
The National Lung Screening Trial (NLST) was conducted to determine whether 
screening with low-dose CT could reduce mortality from lung cancer.

Methods
From August 2002 through April 2004, we enrolled 53,454 persons at high risk for 
lung cancer at 33 U.S. medical centers. Participants were randomly assigned to un-
dergo three annual screenings with either low-dose CT (26,722 participants) or sin-
gle-view posteroanterior chest radiography (26,732). Data were collected on cases of 
lung cancer and deaths from lung cancer that occurred through December 31, 2009.

Results
The rate of adherence to screening was more than 90%. The rate of positive screen-
ing tests was 24.2% with low-dose CT and 6.9% with radiography over all three 
rounds. A total of 96.4% of the positive screening results in the low-dose CT group 
and 94.5% in the radiography group were false positive results. The incidence of 
lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose 
CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in 
the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). 
There were 247 deaths from lung cancer per 100,000 person-years in the low-dose 
CT group and 309 deaths per 100,000 person-years in the radiography group, 
representing a relative reduction in mortality from lung cancer with low-dose CT 
screening of 20.0% (95% CI, 6.8 to 26.7; P = 0.004). The rate of death from any cause 
was reduced in the low-dose CT group, as compared with the radiography group, 
by 6.7% (95% CI, 1.2 to 13.6; P = 0.02).

Conclusions
Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded 
by the National Cancer Institute; National Lung Screening Trial ClinicalTrials.gov 
number, NCT00047385.)
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lung cancer. The decrease in the rate of death from 
any cause with the use of low-dose CT screening 
suggests that such screening is not, on the whole, 
deleterious.

A high rate of adherence to the screening, low 
rates of lung-cancer screening outside the NLST, 
and thorough ascertainment of lung cancers and 
deaths contributed to the success of the NLST. 
Moreover, because there was no mandated diag-
nostic evaluation algorithm, the follow-up of posi-
tive screening tests reflected the practice patterns 
at the participating medical centers. A multidis-
ciplinary team ensured that all aspects of the 
NLST were conducted rigorously.

There are several limitations of the NLST. First, 
as is possible in any clinical study, the findings 
may be affected by the “healthy-volunteer” effect, 
which can bias results such that they are more 
favorable than those that will be observed when 
the intervention is implemented in the commu-
nity.24 The role of this bias in our results cannot 
be ascertained at this time. Second, the scanners 
that are currently used are technologically more 
advanced than those that were used in the trial. 
This difference may mean that screening with 
today’s scanners will result in a larger reduction 
in the rate of death from lung cancer than was 
observed in the NLST; however, the ability to de-
tect more abnormalities may result only in higher 
rates of false positive results.25 Third, the NLST 
was conducted at a variety of medical institutions, 
many of which are recognized for their expertise 
in radiology and in the diagnosis and treatment 
of cancer. It is possible that community facilities 
will be less prepared to undertake screening pro-
grams and the medical care that must be asso-
ciated with them. For example, one of the most 
important factors determining the success of 
screening will be the mortality associated with 
surgical resection, which was much lower in the 
NLST than has been reported previously in the 
general U.S. population (1% vs. 4%).26 Finally, the 
reduction in the rate of death from lung cancer 
associated with an ongoing low-dose CT screen-
ing program was not estimated in the NLST and 
may be larger than the 20% reduction observed 
with only three rounds of screening.

Radiographic screening rather than community 
care (care that a participant usually receives) was 
chosen as the comparator in the NLST because 
radiographic screening, as compared with com-
munity care, was being evaluated in the PLCO 

trial at the time the NLST was designed.11 The 
designers of the NLST reasoned that if the PLCO 
trial were to show a reduction in lung-cancer mor-
tality with radiographic screening, a trial of low-
dose CT screening in which a community-care 
group was the control would be of less value, 
since the standard of care would have become 
screening with chest radiography. Nevertheless, 
the choice of radiography precludes a direct com-
parison of low-dose CT with community care. 
Analysis of the subgroup of PLCO participants 
who met the NLST criteria for age and smoking 
history indicated that radiography, as compared 
with community care, does not reduce mortality 
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Figure 1. Cumulative Numbers of Lung Cancers and of Deaths from Lung 
Cancer.

The number of lung cancers (Panel A) includes lung cancers that were di-
agnosed from the date of randomization through December 31, 2009. The 
number of deaths from lung cancer (Panel B) includes deaths that occurred 
from the date of randomization through January 15, 2009.
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