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10 Likelihood, probability, and confidence

In their preamble to this chapter, the authors tell us that

There are two radically di↵erent approaches to associating a proba-
bility with a range of parameter values, reflecting a deep philosophi-
cal division amongst mathematicians and scientists about the nature
of probability. We shall start with the more orthodox view within
biomedical science.

A dictionary that JH consulted gave 7 definitions of ‘orthodox’. The last two
explained the use of the ‘(initial capital letter) of pertaining to, or designating
the Eastern Church, esp. the Greek Orthodox Church; or ‘of, pertaining to, or
characteristic of Orthodox Jews or Orthodox Judaism.’ The other five were:

i. of, pertaining to, or conforming to the approved form of any doctrine,
philosophy, ideology, etc.

ii. of, pertaining to, or conforming to beliefs, attitudes, or modes of conduct
that are generally approved.

iii. customary or conventional, as a means or method; established.

iv. sound or correct in opinion or doctrine, esp. theological or religious
doctrine.

v. conforming to the Christian faith as represented in the creeds of the early
church.

Clayton & Hills completed their book in 1993. Since then, propelled by greater
computer power, and by people like Clayton’s Cambridge colleague David
Spiegelhalter,1 the Bayesian ‘approach’ to ‘associating a probability with a
range of parameter values’ has become more common; it has not yet reached
the status of ‘customary or conventional, as a means or method; established.’

We should not take Clayton and Hills’ use of the word ‘more orthodox’ to
describe the frequentist approach to mean that the Bayesian approach ‘does
not conform to the approved form of analysis’ or is in some sense ‘wrong.’

1A link to one of Spiegelhalter’s books is given in the top right corner of the BIOS602
website.

10.1 Coverage probability and confidence intervals

The key point about the frequentist confidence interval is – as they state at
the very end of the first paragraph (top line of p90) – that the probability is
associated with the method of choosing (constructing) the range and not with
the realized interval per se. Our ‘confidence’ derives from the fact that 95%
(if we construct ‘95%’ intervals) of intervals so constructed trap (contain) the
true value of the parameter: it is as if we buy a product from a producer,
95% of whose products in the past ‘have worked correctly’ and 95% of whose
products in the future ‘will work correctly.’ Or, we choose a surgeon based
on his ‘successful in 95% of cases’ track record [the one di↵erence is that if we
choose this surgeon, we will usually get to know quite soon after the operation
whether it was successful or not (i.e., the truth becomes evident) whereas with
a specific confidence interval we may never get to know if it contained the true
value of not: one situation where we do is at election times, when the election
results can be compared with pre-election confidence intervals from polls. JH
has often suggested that in addition to their other claims,

polling companies that use sample-surveys should add the following one...

Clayton and Hills warn about misusing the probability: many statisticians
misuse the terminology as well.

The idea of coverage probability has allowed us to attach a frequen-
tist probability, such as 0.90, to a range of parameter values, but we

cannot say that the probability of the true value lying within

the stated range is 0.90, because the stated range either does

or does not include the ttue value. To avoid having to say pre-
cisely what is meant every time the probability for a range is reported,
statisticians take refuge in an alternative word and professed
themselves 90% confident that the true value lies in the reported in-
terval. Not surprisingly the distinction between probability

and confidence is rarely appreciated by scientists.
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One reason the two can be mixed up is that the two statements A and B

Prob[ µ� 1.96�/
p
n < ȳ < µ+ 1.96�/

p
n ] = 95% (A)

i.e.,

Prob[ ȳ ‘falls’ in the interval µ� 1.96�/
p
n to µ+ 1.96�/

p
n ] = 95% (A0)

and
Prob[ ȳ � 1.96�/

p
n < µ < ȳ + 1.96�/

p
n ] = 95% (B)

i.e.,

Prob[ µ ‘falls’ in the interval ȳ � 1.96�/
p
n to ȳ + 1.96�/

p
n ] = 95% (B0)

seem to be mathematically equivalent; after all, if we are xx% confident that
Montreal is less than 4000 Km from Vancouver, then we should also be xx%
confident that Vancouver is less than 4000 Km from Montreal!

But (at least in the frequentist approach) versions A and B not logically
equivalent: ȳ and µ do not have the same status, whereas the two cities in the
distance statement do. In version A, the focus, i.e., the subject of the sentence,
is ȳ, and the statement is concerned with the probabilistic behaviour of the
data (ȳ). In version B, the focus, i.e., the subject of the sentence, is µ, and
the statement gives the impression that it is concerned with the probabilistic
behaviour of (or uncertainty concerning) the parameter of interest (µ). But
in a frequentist approach, the parameter is regarded as a fixed but unknown
quantity, and so it is di�cult to think of it as ‘falling’ at di↵erent locations.
For example, say we are concerned with the value of the physical parameter c
[the speed of light]. Whereas we can think of measurements (estimates) of c
as falling on both sides of c, we cannot do the reverse and think of c as moving
[falling] around in the literature... it is the (data-based) estimates that move
or fall around the target: the target (the speed of light) itself does not move.

Work in the early years of this century: The reference to the early
years of this century at the top of page 94

The only likelihood for which the relationship between the supported
range and the 90% confidence interval holds exactly is Gaussian like-
lihood, and even here we have made the assumption that the param-
eter � is known. In the early years of this century it was shown
that the practice of estimating the standard deviation using the data
and thereafter pretending that this estimate is the true value, leads
to intervals with approximately the correct coverage probability, pro-
viding N is large enough (more than 15).

is to the 1908 work of Student (Gosset).

10.2 Subjective probability

At a minimum, this topic should be given an entire chapter, not just a section.
A very good comprehensive book on this subject is

Bayesian Data Analysis, Second Edition by Andrew Gelman, John
B. Carlin, Hal S. Stern and Donald B. Rubin (Chapman & Hall/CRC
Texts in Statistical Science).

It provides a full theoretical treatment of the subject, as well as a wide variety
of examples. A practical application of the topic to one specific area can be
found in the equally good

Bayesian Approaches to Clinical Trials and Health-Care Evaluation
by David J. Spiegelhalter, Keith R. Abrams and Jonathan P. Myles
(Wiley 2004; link on top right corner of BIOS602 website).

Even though its applications are limited, this book also deals with the broader
and practical issues in the Bayesian approach, and covers several aspects, such
as the elicitation of priors, that apply beyond Health-Care Evaluation.

One of its many attractive features is that it uses the ‘normal-prior, normal-
likelihood’ approximations for just about all of the applications, whether they
involved measured levels of blood pressure or cholesterol or blood pressure, or
proportions or event rates, or ratios or di↵erences of these; thereby, it reflects
the reality that in many applications, we have enough data so that these
approximations are reasonable. Where other texts might treat proportions,
rates and means in separate chapters, this text treats them all in one. In so
doing, it reinforces the point that the focus of the Bayesian approach is on the
parameter of interest, and not on the data per se. After all, whereas Bernoulli,
Binomial and Poisson data are recorded on discrete scales (0, 1, 2, ...), their
parameters (⇡,�, and, if necessary, their transforms), are all recorded on a
continuous scale.

In addition, its first author is one of the most eloquent proponents of the
Bayesian approach, and was a driving force behind the WinBugs project.
Since 2007, he has been the Winton Professor of the Public Understand-
ing of Risk, in recognition of his important and high-profile contributions to
Public Policy in Britain. To get an idea of the breadth of his work, visit
http://www.statslab.cam.ac.uk/Dept/People/Spiegelhalter/davids.html .
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10.2.1 Why not start with ‘Objective’ probabilities? Bayes Rule
works with both objective and subjective probabilities

Spiegelhalter et al. explain the subjective interpretation in the second half of
page 50 of their book:

The vital point of the subjective interpretation is that Your proba-
bility for an event is a property of Your relationship to that event,
and not an objective property of the event itself. This is why, pedan-
tically speaking, one should always refer to probabilities for events
rather than probabilities of events, and the conditioning context H
used in Section 2.1.1 includes the observer and all their background
knowledge and assumptions.

The Bayesian approach relies on a fundamental mathematical formula or rule
derived from universally-agreed-upon mathematical axioms. ‘Priors’ are not
necessarily subjective: as we will illustrate in our first several example, they
can be objective. JH argues that teachers who begin their introduction to
Bayesian analysis by asking students to ’assume’ certain priors but o↵er no
documented basis for these may weaken their case for the Bayesian approach,
and risk turning o↵ their audience. That is why, below, even though the two
examples (a specific person’s cholesterol level, and a specific person’s age) have
the same mathematical structure, he begins with the one where the source for
the prior is more objective.

10.2.2 Let’s start with a parameter concerning an individual

Likewise, it should be easier to engage students and other clients with an
application where the inference concerns a parameter related to a single in-
dividual, rather than a group. That is why, below, even though two possible
applications (a specific person’s mean level, and a specific a specific popula-
tion’s mean level) have the same mathematical structure, we begin with the
one where the target parameter concerns the individual.

10.2.3 The parameter scale: categorical / interval

Just as most books do, Chapter 2 of C&H and in Chapters 2 of Spiegelhalter
et al. first illustrate Bayes rule using applications involving a parameter that
can take on only 2 (or just a few) possible values (e.g., genetic carrier or
not) When such examples also involve binary or categorical data, they allow
the entire two-dimension grid of (possibilities for prior) ⇥ (possibilities for

new data) to be displayed, the probabilities conditional on a specific new-
data value to be calculated, collected together and re-scaled, and thus the
posterior probabilities to be derived. When we move up to a parameter that
takes values on a numerical (‘continuous’) scale, the display becomes more
complicated, and unless we are willing to represent the parameter range using
bins, we have to resort to integration to perform the rescaling.

It is interesting to trace Spiegelhalter et al.’s transition from the use of ob-
jective to subjective priors, from parameters involving the individual to ones
involving a population, and from categorical to continuous parameter scales.

It is interesting to trace Spiegelhalter et al.’s transition.

10.2.4 Often, the motivations for using a Bayesian approach are
more practical than ideological

Whereas much ink has been spilled on arguments as to why individual stud-
ies should not incorporate outside information but rather should focus on
what new information they add to the literature, the main purposes of many
Bayesian analysis are merely to

i. take advantage of a very flexible and computationally-tractable tool for
model-fitting,

ii. be able to communicate directly, in probabilistic terms, about a range
of parameter values, something that is not possible with the frequentist
approach.

Most such analyses have not used strong priors; instead, the posterior distri-
butions are largely determined by the new data, and not by the prior.
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The following are examples of parameter/data combinations where the
subject of the inference is an individual:

Para. Example New Data Example

Qual. Haemophilia carrier Qual. Son a↵ected?
.. Innocence (crime) .. Blood type

.. Cystic Fibrosis Quant. Salt in sweat

.. HIV Status .. Optical density

Quant. Income Level Qual. Postal Code
.. Cholesterol Level .. Parental History, Age Group

.. Cholesterol Level Quant. Chol. Measurement

.. Age .. Anthropometry

You might wish to further refine or expand on the above tabulation, by dis-
tinguishing between the basis for and objective vs. subjective nature of the
‘prior’ distribution of the parameter [it might be based on a mix of both ob-
jective and subjective data; and you might likewise be able to expand the
table to show examples of objectively- vs. subjectively-established new data.]

10.2.5 Inference re a parameter concerning an individual

• Target: state/trait, qualitative; New data: qualitative

Most clinical epidemiology textbooks and courses describe the use of Bayes
Rule to make inferences concerning the updating of an individual’s probability
of (Spiegelhalter would say for) all-or-none phenomenon [such as a genetic
trait or current disease state (diagnosis context) or future disease state (prog-
nosis context)]2 using new data of a qualitative nature and so (other than
mentionning in passing the classic haemophilia carrier example, opposite)

2Spiegelhalter et al., §3.2, call it “Bayes Theorem for two hypotheses.”

M&M Ch 6  Introduction to Inference ... OVERVIEW

Introduction to Inference* Bayes Theorem : Haemophilia
Brother has haemophilia => Probability (WOMAN is Carrier) = 0.5
New Data:  Her Son is Normal (NL) .
Update: Prob[Woman is Carrier, given her son is NL] = ??

Inference is about Parameters (Populations) or general
mechanisms -- or future observations. It is not about
data (samples) per se, although it uses data from
samples. Might think of inference as statements about a
universe most of which one did not observe.

0.5 0.5

CARRIERNOT CARRIER

WOMAN

Son

0.0
0.5

NL H

Son

Products  of PRIOR  and LIKELIHOOD

PRIOR   [ prior to knowing status of her son ]

LIKELIHOOD

0.25

0.67
0.33

WOMAN

CARRIERNOT CARRIER

WOMAN

POSTERIOR   Given that Son is NL

0.5

observed data
NL H

1.0
0.5

1.

2.

3.

 [  Prob son is NL | ]PRIOR

Probs. 
Scaled to 
add to 1

0.5 x 1.0 
0.5 x 0.5 

Two main schools or approaches:

Bayesian [ not even mentioned by M&M ]
• Makes direct statements about parameters

and   future observations

• Uses  previous impressions plus new data to update impressions
about parameter(s)

e.g.
Everyday life
Medical tests:  Pre- and post-test impressions

Frequentist

• Makes statements about observed data (or statistics from data)
(used indirectly [but often incorrectly] to assess evidence against
certain values of parameter)

• Does not use  previous impressions or data outside of current
study (meta-analysis is changing this)
e.g.
• Statistical Quality Control procedures [for Decisions]
• Sample survey organizations:  Confidence intervals
• Statistical Tests of Hypotheses

Unlike Bayesian inference, there is no quantified pre-test or pre-
data  "impression"; the ultimate statements are about data,
conditional on an assumed null or other hypothesis.

Thus, an explanation of a  p-value must start with the conditional
"IF the parameter is ... the probability that the data would ..."

Book "Statistical Inference" by Michael W. Oakes is an excellent
introduction to this topic and the limitations of frequentist inference.

page 1

we
will not repeat these examples in detail here. Worked examples can be found
in C&H Chapter 2 and in JH’s accompany notes, or in example 3.1 of Spiegel-
halter et al.
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Another interesting example is the case of screening [during pregnancy] for
fetal aneuploidy. It started in the mid 1960s, using maternal age as the
screening test. The major risk factor for Down Syndrome is maternal age.
One of the sources for age-specific prevalences is the table above, taken from
the article Chromosomal Abnormality Rates at Amniocentesis and in Live-
Born Infants by Hook EB in JAMA 249:2034-2038, 1983.

Table 1.—Regression-Derived Estimated Rates per 1,000 of Cytogenetic
Abnormalities by Maternal Age at Time of Amniocentesis

Maternal
Age, yr 47,-1-21 * 47.+18 47,+13t 47.XXX 47.XXY

Other
Clinically
Significant

Abnormalities!
All

Abnormalities?
33»
34"
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

2.4
3.1
4.0
5.2
6.7
8.7
11.2
14.5
18.7
24.1
31.1
40.1
51.8
66.8
86.2
111.2
143.5

0.6
0.8
1.0
1.3
1.6
2.1
2.6
3.3
4.2
5.2
6.6
8.4
10.6
13.3
16.9
21.3
26.9

0.4
0.4
0.5
0.6
0.6
0.7
0.9
1.0
1.1
1.3
1.5
1.8
2.0
2.4
2.7
3.1
3.6

0.4
0.5
0.6
0.7
0.8
1.0
1.2
1.4
1.7
2.0
2.4
2.9
3.4
4.1
4.9
5.9
7.0

0.4
0.5
0.6
0.8
1.0
1.2
1.5
1.9
2.4
3.0
3.8
4.7
5.9
7.4
9.3
11.7
14.6

1.1
1.2
1.3
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.2
2.3
2.4
2.6
2.7
2.9

4.6-5.4
5.8-6.5
7.4-8.0
9.5-9.9
12.1-12.2
15.4-15.2
19.6-19.0
25.0-23.8
31.9-29.9
40.7-37.6
51.9-47.5
66.1-60.0
84.3-76.0
107.5-96.5
137.1-122.6
174.8-155.9
222.9-198.6

•A value of 0.08 per 1,000 should be added to this figure to allow for structural rearrangements
associated with Down's syndrome.
tA value of 0.06 per 1,000 should be added to this figure to adjust for structural rearrangements

associated with Patau's syndrome.
t Includes structural rearrangements associated with Patau's and Down's syndromes.
§The first value of the range given is derived from an regression equation analysis on all abnormalities; the

second by adding values for all abnormalities. Including abnormalities of more questionable significance
would result in addition of about 2.7 per 1,000 at the lower ages (around 35 years) and about 2.1 per 1,000
at the older ages to the second values given in the range.

Values extrapolated from regression equation derived for ages 35 to 39 years.

Table 2.—Parameters (and SE) of Regression Equations for Cytogenetic
Abnormalities Diagnosed Prenatally (ln[y]=bx+c) at Amniocentesis'

Defect No.
47,+21
47.+ 18
47,+ 13
XXX
XXY
All others
All above
Possibly clinically
significant

316
72
23
32
42

(29)*
(315)*

(48)*

+0.255(0.019)
+0.234(0.040)
+0.145(0.075)
+0.178(0.062)
+0.226(0.0525)
+0.059(0.079)
+0.243(0.020)

-0.003(0.066)

-14.425(0.749)
-15.068(1.594)
-12.717(2.950)
-13.682(2.459)
-15.305(2.105)
-8.750(3.028)
-13.410(0.775)

-5.888(2.502)
'Slope,
tlntercept.
*See text.

age at birth, after adjustment for
expected spontaneous fetal death.

COMMENT
Before discussing the trends in the

rates themselves, it is worthwhile to
review the precision of the derived
rates. First, there is some intrinsic
variability in the regression-derived
rates in the amniocentesis data.
Unpublished analysis, however, indi¬
cates an excellent fit of the regression
lines to the observed data for the two
largest groups analyzed—those for
47.+21 alone and the rate for all

abnormalities considered together.
Second, there is a sampling fluctua¬
tion in the fetal selection coefficients
that have been used to adjust the
regression-derived rates. Imprecision
in the survival coefficients, however,
may be readily adjusted for by using
the 95% confidence limits given in
Table 3. For example, for 47.+21, the
upper 95% (adjusted) confidence lim¬
it of the selection coefficient is .81/
.97=.84, and the lower limit is .58/
.97=.60. These are respectively .84/
.72=1.17-fold and .60/.72=0.83-fold
the adjusted coefficient of .70/.97=.72

itself. Multiplication of the rates giv¬
en in Table 4 by 0.83 and 1.17 thus
provides a range in the rates that
adjusts for the sampling fluctuation in
the fetal selection coefficient. At age
40 years, for example, the estimated
rate of 9.4 per 1,000 has a range of 7.8
per 1,000 to 11.0 per 1,000.
With regard to rates of all geno¬

types associated with Down's syn¬
drome, to adjust for structural rear¬
rangements such as Robertsonian
translocations, a small amount-
about 0.06 per 1,000 for live-born
infants and 0.08 per 1,000 at amnio¬
centesis—should be added to rates
given at each age for 47.+21. (These
values are derived from previous
data.14) These defects have little if any
association with maternal age, and so
make little proportional contribution
in the age ranges 33 to 49 years
considered herein.
The derived rates for Down's syn¬

drome genotype are particularly note¬
worthy, because they suggest that an
apparent increase in the maternal
age-specific rates of the Down's syn¬
drome in live-born infants of older
mothers reported earlier" was either
a statistical artifact or else has since
subsided, in view of the lower rates
found herein. The assumption of such
a temporal increase was made in
estimating upper limits of the range
of rates of Down's syndrome in a

previous publication,' but it appears
that this precaution was unnecessari¬
ly conservative in view of these
results.
The consequent derived rates for

live-born infants with Down's syn¬
drome genotype are close to those
estimated in data for live-born
infants collected some years ago,
using completely different methods of
analysis. For example, in a New York
State study using birth certificate
data from 1963 to 1974, the estimated
live-birth rates at ages 35, 40, and 45
years were 2.7, 9.2, and 30.8 per
1,000,10 and in Sweden, 1968 to 1970,
the rates were respectively 2.5, 9.6,
and 36.6 per 1,000.13 In this study
(allowing for structural rearrange¬
ments), the rates at these ages are

respectively 2.7, 9.5, and 33.7 per
1,000, practically identical.
With regard to trisomy 18, the

rates are also similar to those esti¬
mated in live-born infants based on
data collected some years ago.16 Ear-

 at McGill University Libraries on February 23, 2010 www.jama.comDownloaded from 

New developments in maternal serum and ultrasound screening have made it
possible to o↵er all pregnant patients a non-invasive screening test to assess
their risk of having a fetus with Down syndrome or trisomy 18 to deter-
mine whether invasive prenatal diagnostic tests are necessary. The articles by
Taipale P, Hiilesmaa V, Salonen R, Ylstalo P. Increased nuchal translucency
as a marker for fetal chromosomal defects. New Engl J Med. 1997;337:1654-

8. and by Wapner et al. First-Trimester Screening for Trisomies 21 and
18. N Engl J Med 2003;349:1405-13. (ABSTRACT only) describe how these
age-specific probabilities can be updated by data from imaging and
blood tests.

• Target: state/trait, qualitative; New data: quantitative

Fewer clinical epidemiology textbooks describe the use of Bayes Rule to make
inferences concerning the updating of an individual’s probability of (Spiegel-
halter would say for) all-or-none phenomenon [such as a genetic trait or cur-
rent disease state (diagnosis context) or future disease state (prognosis con-
text)] using new data of a quantitative nature. Two texts that do so in some
detail are Clinical Epidemiology: How to Do Clinical Practice Research by R.
Brian Haynes, David L Sackett, Gordon H Guyatt, and Peter Tugwell. and
Clinical Epidemiology: The Essentials by Robert H Fletcher and Suzanne W
Fletcher.

The ‘new data’ in the example in Fletcher and Fletcher is xxx; The new data
in the example in Sackett et al. is xxx. Rather than the more classical form
based on updating the probability of the disease state [DS] of concern using
the observed value (y) of the new information-item Y , both use the odds of
that state in the updating formula,

PostOdds = PriorOdds ⇥ LikelihoodRatio[y],

since it is simpler to remember than the more classical (algebraicly equivalent)
form based on probabilities:

PostProb[DS|y] = PriorProb[DS]⇥ P [y | DS]

PriorProb[DS]⇥ P [y|DS] + PriorProb[DS]⇥ P [y|DS]
.

It also separates more cleanly the two items of information, the initial
PriorOdds[DS] or PriorProb[DS] concerning the individual in question, and
the LikelihoodRatio[y] = P [y|DS] / P [y|DS] involving the quality of the new
information.

In reality, all quantitative measurements are recorded with some degree of
rounding. If the ‘bin’ associated with Y “=” y is y � 0.5�y to y + 0.5�y, and
if f [y|DS] is the probability density, then P [y|DS] ⇡ f(y|DS] ⇥ �y and the
�y cancels out in LikelihoodRatio[y] = f(y|DS]/f(y|DS].

The Excel spreadsheet (under Resources) has an example of using the fetal
heart rate to address the probability that the baby is male or female (some
might be tempted to say predict if the baby is male or female, but the baby
is already either male of female, so it’s a matter of post diction rather than
pre diction.)
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• Target: level, quantitative;3 New data: qualitative

Since you can think of a qualitative variable as a special case of a qualitative
one (it might just have the values 0 and 1), we will not work through a
specific case. Below, we will work with an example where the target is a
person’s age, estimated visually, and the new information is number of years
since the person obtained a PhD. If instead, the new information was the fact
that the person is a grandparent, the updated probabilities associated with
each age involve the prevalence of grandparents as a function of age.

The similarity of the calculations involved with new data items whether they
are recorded on qualitative and quantitative scales emphasizes the fact that
the complexity in a Bayesian analysis is the amount of calculation required:
we need to calculate the scaling factor to be applied to the the Prior(✓) ⇥
P (observed new data | ✓) products so that they become posterior probabilities
and thus sum or integrate to 1. To do so, we sum the products over the
possible ✓ values (or categories, or bins) of the prior. Unlike with frequentist
p-values (tail areas), there is no summation over other (unobserved) values of
the random variable Y that provides the new information; rather, only the
observed value y of Y is considered; other ‘might have been’ Y values are not.

• Target: level, quantitative; New data: quantitative

Spiegelhalter’s example: blood pressure

Spiegelhalter et al. illustrate this with Example 3.4 SBP (“Bayesian analysis
for normal data”): Suppose we are interested in the long-term systolic blood
pressure (SBP) in mmHg of a particular 60-year-old female. We take two
independent readings 6 weeks apart, and their mean is 130. We know that
SBP is measured with a standard deviation � = 5. What should we estimate
her SBP to be?

They then go on to give the frequentist (‘standard’ ) 95% confidence interval,
of 123.1 to 136.9, centered on the measured value of 130. But, they continue...

However, we may have considerable additional information about
SBPs which we can express as a prior distribution. Suppose that
a survey in the same population revealed that females aged 60 had
a mean long-term SBP of 120 with standard deviation 10. This
population distribution can be considered as a prior distribution for
the specific individual, and is shown in Figure 3.3(a):

The posterior distribution, computed from the combination of the 130 mea-
sured on the woman, and the prior, is centered on 128.9 and the 95% interval

3Spiegelhalter et al., in §3.5, “the most important section in this book”, refer to this as
“Bayes Theorem for general quantities.”

is 122.4 to 135.4.

“This posterior distribution reveals some shrinkage towards the pop-
ulation mean, and a small increase in precision from not using the
data alone.

Intuitively, we can say that the woman has somewhat higher
measure- ments than we would expect for someone her age, and
hence we slightly adjust our estimate to allow for the possibility that
her two measures happened by chance to be on the high side. As
additional measures are made, this possibility becomes less plausible
and the prior knowledge will be systematically downgraded.”

It’s a pity that these authors did not give an actual source for this prior, or
be a bit more realistic about “a same population of females aged 60 with a
mean long-term SBP of 120”. This must be a somewhat selected, healthier-
than-average population, since we might find such a mean of 120 in 25-year
old women; in the general population of 60-year old women, it is higher than
that.

Irwig’s example: cholesterol

One set of authors who did go into some detail about a similar situation are
Irwig et al. in a very nice medically-useful – and didactic article – in JAMA
in 1991.4 It concerns cholesterol, and begins with a single measurement on
one person, before dealing with an average of several measurements on the
same person. It also gives separate charts for persons of di↵erent ages, and
deals not just with point and interval estimates, but also derives probability
statements for the possibility that the person’s true cholesterol is above some
threshold that should trigger intervention. The appendix is a nice tutorial for
combining information.

Their Abstract begins:

An individual’s blood cholesterol measurement may di↵er from the
true level because of short-term biological and technical measure-
ment variability. Using data on the within-individual and popula-
tion variance of serum cholesterol, we addressed the following clinical
concerns: Given a cholesterol measurement, what is the individual’s
likely true level? The confidence interval for the true level is wide
and asymmetrical around extreme measurements because of regres-
sion to the mean. Of particular concern is the misclassification of

4“Estimating an Individual’s True Cholesterol Level and Response to Intervention” by
Les Irwig, Paul Glasziou, Andrew Wilson, Petra Macaskill JAMA. 1991;266:1678-1685

6



BIOS601: Notes, C&H. Ch 10(Likelihood, probability, and confidence); 11 (Null Hypotheses and p-values). version 2012.10.28.

people with a screening measurement below 5.2 mmol/L who may
be advised that their cholesterol level is ”desirable” when their true
level warrants further action.

The first half of the paper, which deals with two related topics, (a) Estimating
the True Cholesterol Level, and (b) assesing the Probability of Misclassifica-
tion shows the primary elements, and these notes will focus on the highlights.
[after these, extensive excerpts will be included]

The results for (a) and (b) were presented as 2 Figures. The first gave the
(posterior) credible interval for a person’s true cholesterol level based on either
1, or an average of 3, measurements, using on the horizontal axis the measured
value, and on the vertical one the point and 95% credible interval. Using a
graph (rather than a formula) allows the clinician to use it for all possible
‘what if’s.

Below, we will illustrate it using one specific example, a person whose mea-
sured value was 7.15.

The second uses the (posterior) credible interval to calculate the probability
that someone with a specific measured value has a true level that is above a
certain threshold level used in treatment guidelines.

Thus, the key tool is the posterior distribution itself, and so we give the
statistical basis for this.

Reasons to take a Bayesian approach

The reason this problem arises in the first place is because of short term bio-
logical variability in the quantity of interest in the person in question. If we
were measuring a person’s height, we could do so carefully at just one time-
point:5 it would not be di↵erent a week or month from now; it remains quite
stable over several years. The same is not the case for a person’s cholesterol
level: even if we measured it very carefully at one time, it would be genuinely
di↵erent a week or month later, even in the absence of any intervention of
lifestyle change. (The same applies, more strikingly, for other blood levels
such as C-reactive protein (CRP), which is a marker of inflammation).

Given this, and that any single measurement, or any average of a finite number
of determinations, is imprecise.

So what’s new? don’t we meet this issue all the time in statistics?

The point of Irwig’s article is that we should not rely solely on the estimate
based on the person’s measurements, but rather should combine it with an

5it does vary slightly over the day, but, be keep it simple, we could speak of one’s height
at mid-day

estimate based on outside information.

Under Resources for Bayes, the BIOS602 website has a nice example,
“Bayesian integration in sensorimotor learning”, which illustrates how as hu-
mans, we automatically combine estimates of di↵erent precisions into one
more precise estimate, and do so using the same mathematical laws that are
used in the Bayesian approach!

The same reasoning is at work when a physician repeats a measurement that
seems extreme. In so doing, (s)he is not relying only on the point or interval
estimate provided by the measurement itself: rather (s)he is also using knowl-
edge of how this measurement behaves in other similar persons! And what we
know about others, even if collectively, can help us with an individual.

Where to start?

So, we proceed in the same temporal sequence a physician does in a specific
person of a given age and sex: we first use the estimate based just on the
age and sex information; we them combine this the value obtained in a single
measurement of this person. To make it concrete, we take the case where the
measured cholesterol level was 7.15 mmol/L.

The best place to start is with the broader information: the distribution of
true cholesterol levels for the entire population (conceptual or actual) from
which the person is consider (conceptually) a randomly selected individual.

After all, as soon as we know a person’s age and sex (and any other factors
that determine the centre and spread of this distribution) we have some idea
of where the specific individual’s level is.

The key components, and a caveat about notation

We have to distinguish two distributions, and be quite careful and clear about
notation:

• Each person has (even if we cannot determine it precisely) a ‘true’ level
(see full Irwig article). The distribution of the true levels of all of the
persons in this population can be thought of as the distribution of a
random variable T . Denote the mean of this population of true levels by
µT

pop

and variance by �2
T
pop

.

Clearly, both because we cannot study each person in the population,
and because for the sample of individuals we can study, we cannot mea-
sure each sampled person often enough to ‘know’ their true values, we
cannot directly observe this distribution or estimate the values of its 2
parameters. However, we can get at them indirectly, using ‘another’ dis-
tribution...
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• There is also the distribution of values one can observe by measuring each
person (or a sample of them) once (or some twice, or some even more
often).

In this situation, for a specific person, whose true value is T , we don’t
‘see’ T itself. Rather, because we measure the person once, on a random
day, we get to observe the amalgam T+✏. The ✏ reflects the possible fluc-
tuations around T , caused partly genuine short-term biologic variations
and partly by by any measurement ‘errors’ (technical). . These fluctua-
tions are often referred to as the ‘within-’ or ‘intra-’individual variation,
and – even though it is not all ‘error’, their variance is often denoted by
the subscript e, as in �2

e (JH prefers �2
w, with w standing for ‘within’

persons; likewise, he prefers �2
b , with w standing for ‘between’ persons.)

With the assumption that each ✏ is independent of each T , the observable
variance, across the persons, in their measured values (1 per person) will
be �2

T
pop

+ �2
e or �2

b + �2
w

Some refer to this (wider) variance as the ‘total’ variance, and write it as

�2
total = �2

T
pop

+ �2
e

or, as Irwig do, for short as

�2
total = �2

pop + �2
e .

From this formulation, it becomes clear that if one has an estimate of
�2
total, and if one has an estimate of �2

e , one can subtract them and ob-
tain an estimate of �2

pop, or what JH denotes by �2
T
pop

. �2
total can be

estimated directly as the observed variance of the values obtained by
measuring a sample of persons once, and �2

e can be estimated, also di-
rectly, by measuring a sample of persons more than once, and pooling
the person-specific estimates of the within-person variation. [This can
also be done within a single study, using classical anova to estimate the
separate components of variance; such analyses can also handle the case
where some persons are measured once, some twice, some more often.]

Non-statisticians do not always appreciate these distinctions, and some-
times are fuzzy about what ‘between’-variance refers to. The most com-
mon mistake is to treat the observed variance of the values obtained by
measuring a sample of persons once as if it were an estimate of �2

pop or
�2
T
pop

. Yes, it looks like one is examining the variation between individuals
(since one has 1 measurement for each of several persons) but in fact only
some portion of that variation is caused by the fact that each person’s T
is di↵erent from another person’s T : it also reflects the fact that one mea-
surement of a specific person’s T is di↵erent from another measurement

of that same person’s T . A good way to appreciate these distinctions
is to examine the full version of the classic anova table, which shows
not just the observed ‘between’ mean square and the observed ‘within’
mean square – in e↵ect the calculated statistics – but also the expected
‘between’ mean square and the expected ‘within’ mean square, The lat-
ter are theoretical, not data-based, and are functions of the (unknown,
and unknowable) parameters. When Irwig et al. write of “the observed
variance of the population using a single measurement”, and give it the
notation �2

o , they are referring to what we above call �2
total.

Information needed in order to ‘merge’ two estimates

If the distributions of T and ✏ are reasonably Gaussian, needed are values for

• µT
pop

and �2
T
pop

, or µpop and �2
p for short

• �2
e

• y, the measurement on the person

In the case of cholesterol, the distributions of T across individuals of the same
age band, and of the possible measurements on a single individual about that
person’s T , are reasonably Gaussian, but since the population mean is higher
in higher age age bands, and since individuals in these older populations tend
to have higher T s, it is not surprising that �2

T
pop

and �2
e are also higher in

these higher age bands and at higher T ’s. Irwig et al. avoided having to deal
with this heteroskedasticity by using the distributions of log cholesterol levels
throughout, and converting back to the levels themselves at the very end.

So, for the presentation below, the various quantities (T , ✓, µ, the various �’s
and y) are, unless otherwise noted, to the levels on the log scale.

Irwig et al. were able to locate several surveys that have accurately established
values for �2

pop or �2
T
pop

.

e.g., for the younger one, band “A”, they established the following values:

• µp = 1.63;6 �p =
p
0.03347 = 0.183

• �e =
p
0.00589 = 0.077.7

6They never say this explicitly; instead they say that the mean level (in the ‘un-logged’
scale) is 5.2; since the mean of a lognormal distribution is exp[µ

logs

+ �

2
logs

/2], one can

back-calculate that, in the log scale, µ = 1.63 [it is also the median]. Since exp[1.63] = 5.1,
the distribution of ‘un-logged’ levels must itself be quite close to Gaussian.

70.077/1.63 ⇡ 0.05,, implying a within-person coe�cient of variation (CV) of 5% in the
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The ‘math’ of merging

In the text, the authors simply state that

The best estimate of an individual’s true cholesterol level can be
shown to be a combination of these two signals [estimates], giving
more weight to the signal [estimate] with least noise, ie, weighting
by the inverse of the variances. This weighted average provides an
estimate of the regression to the mean8 for an individual.

Before quoting from their more technical Appendix, JH has, for simplification,
omitted the subscript i, used ✓ instead of “µi” to refer to the true (log)level
of the person in question, and used y instead of x for the single measurement
of the (log)level for that person. With these, The Appendix begins...

Suppose the “true” values in the population have a mean µp and
variance �2

p, and suppose the within-individual variance is �2
e . [ ... ]

If we take a single screening measurement, y, with measurement vari-
ance �2

e , the best estimate of that “true” value, ✓, for that individual
is obtained by combining the two noisy sources of information, the
population and the measurement(s), with weightings equal to the
inverse of their variances. The estimate of ✓ would be:

✓̂ =

1
�2
p

⇥ µp +
1
�2
e

⇥ y

1
�2
p

+ 1
�2
e

=
�2
e ⇥ µp + �2

p ⇥ y

�2
p + �2

e

The variance of this estimate is

�2
✓̂
=

�2
e ⇥ �2

p

�2
e + �2

p

JH prefers to work with the precisions, ⌧p = 1/�2
p and ⌧e = 1/�2

e rather than
variances, and so that the weights can be written directly in terms of these

Wp =
⌧p

⌧p + ⌧e
;We =

⌧p
⌧p + ⌧e

log scale. At the centre of the distribution of unlogged levels, it
Irwig et al’s “within-individual variance of 0.00589 was derived from reanalysis of the

Lipid Research Clinics Prevalence data, in which repeated measurements were available for
almost 5000 individuals. “This corresponds to a [within-individual] about 8% for cholesterol.
and 5% for log cholesterol.”

8JH likes to distinguish between ‘regression to the mean’, which he thinks of as de-
scribing the behaviour of a new measurement in someone with an extreme (higher/lower
than average, the person’s own average, or the average of the population (s)he belongs to)
value. He thinks of shrinkage as a statistician-delevoped technique for making a combined
estimate that brings the estimate based on the person’s data closer to the estimate based
on the population.

and the precision of ✓̂ written simply as

⌧✓̂ = ⌧e + ⌧p.

0.183
[ 29.88 ]

Parameter of Interest: θ = A Specific Person's True log[Cholesterol Level]

Distrn.: True log[Level]s in all such persons

[ Vertical axis such that a.u.c. = 1 ]

Before observing y, this distribution

serves as P r iorP rob ( θ )

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 θ

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

yObserved log[level] for person in question

Y

Prob( y | θ ) for selected values of θ  ...

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

Selected portion of Likelihood function, L( θ ), based on observed data, y

[ same (arbitrary) scale for vertical axis ]

Entire Likelihood function, L( θ ):

[ vertical axis scaled so a.u.c. = 1 ]

0.077

[ 169.78 ]

θ
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

PostP rob ( θ | y ) 

 = S.F. x Prob( y | θ ) x P r iorP rob ( θ ) = S.F. x L( θ )  x  P r iorP rob ( θ )

[ S.F. = Scaling Factor, chosen so a.u.c. = 1 ]

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

0.071

[ 199.66 ]

θ

Adapted from Irwig et al, JAMA 1991
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Supplementary Exercise 10.1

Refer to the article “Road Trauma in Teenage Male Youth with Childhood
Disruptive Behavior Disorders: A Population Based Analysis” by Redelmeier
et al. in PLoS Medicine, November 2010, Volume 7, Issue 11, e1000369.

The following is an excerpt from the Abstract:

A history of disruptive behavior disorders was significantly more fre-
quent among trauma patients than controls (767 of 3,421 versus
664 of 3,812), equal to a one-third increase in the relative risk of
road trauma (odds ratio = 1.37, 95% confidence interval 1.22 – 1.54,
p<0.001). The risk was evident over a range of settings and after ad-
justment for measured confounders (odds ratio 1.38, 95% confidence
interval 1.21 – 1.56, p<0.001).

In the Methods, the authors state:

We excluded teenage girls from both groups to avoid Simpson’s para-
dox (a spurious association created by loading on a null-null position)
since this group has much lower rates of crash involvement.

In the Discussion, the authors state:

A third limitation that causes our study to underestimate the asso-
ciation of disruptive behavior disorders with road trauma is that the
data excluded girls [74]. To address this issue we retrieved the origi-
nal databases, replicated our methods in girls rather than boys, and
conducted a post hoc analysis. As anticipated, the results yielded a
smaller sample (n = 4,156) and about the same estimated risk (odds
ratio 1.31, 95% confidence interval 1.07 – 1.61, chi-square = 6.8, p
= 0.010). Hence, the association of disruptive behavioural disorders
with road trauma extended to both teenage boys and girls.

Questions:

i. <skip> Reproduce the (crude) odds ratio and CI reported in the abstract.

ii. The lower limit of the 95% CI was calculated as exp{ \logOR � 1.96 ⇥
SE[ \logOR]}. Use the (crude) odds ratio and CI reported in the abstract

to calculate \logOR and V \logOR
= {SE[ \logOR]}2 for boys.

iii. Repeat the back-calculation for \logOR and V \logOR
= {SE[ \logOR]}2 for

girls.

iv. We briefly discussed in class how one could merge(combine) the odds
ratios for boys and girls to get a single point estimate and associated
CI.9 Formally merge the results in 2 ways:

(a) Using the antilog of the weighted average of the logs of the gender-
specific odds ratios (also known as Woolf’s method) As part of this
exercise, prove that the linear combination Woolf uses is the linear
combination with the minimum variance.

(b) Using a likelihood-based approach to estimation of ✓ = logOR,
in which you represent each of the two items of data as normal-
based log likelihoods centered on ✓̂M and ✓̂M , then add the two log-
likelihoods. Hint: since each log-likelihood is a quadratic form in ✓,
and since their sum is again a a quadratic form in ✓, this amounts
to working out where the new log-likelihood is centered, and what
its curvature is. Show that its centre has the same form as the one
used by Woolf.

Supplementary Exercise 10.2

Suppose that a quantity of interest, ✓, has a (prior) distribution ✓ ⇠ N(µ1, �
2
1)

and that y is such that y|✓ ⇠ N(✓ �A, �2
2),where A is a known constant.

i. Derive the (posterior) distribution of ✓|y.

ii. Comment on the structure of the posterior mean E(✓|y); focus on the 2
cases �2

1 >> �2
2 and �2

1 << �2
2 .

iii. Comment on the influence of �2
1 and �2

2 on the posterior variance
V ar(✓|y); focus on the 2 cases �2

1 >> �2
2 and �2

1 << �2
2 .

iv. Suppose you form a probabilistic first impression of a person’s age based
only on seeing the person from a distance. Suppose that you later find
out that the person earned a PhD a certain number of years ago. This
fact, together with the known distribution of ages at which people obtain
a PhD, allows you to revise your initial impression.

Match up the words in this verbal description with the statistical ele-
ments/concepts above. Take µ1 = 62, �1 = 3, A = 30, and �2 = 4.

Would anything change if you obtained the 2 pieces of information in the
opposite order?

91: Combining the odds ratios to get 1 new odds ratio can yield a very di↵erent result
from combining the raw frequencies into one 2 ⇥ 2 table, and making one odds ratio from
this one table. 2: Assume the true OR is the same in boys and girls.
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11 Null Hypotheses and p-values

The following are examples where the subject is a collective:

Para. Example New Data Example
Qual. Haemophilia carrier Qual. Son a↵ected?
Qual. Innocence (crime) Qual. Blood type

Qual. Cystic Fibrosis Quant. Salt in sweat
Qual. HIV Status Quant. Optical density

Quant. Proportion Qual. Pooled sample (±)
Quant. Cholesterol Level Qual. Colour

Quant. Proportion Quant. Prop. in (sub-)sample
Quant. Age Quant. Biographical
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