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BIOS601: Notes, Clayton&Hills. Ch 5: Rates. v. 2022.10.14.

5 Rates

5.1 The probability rate (hazard rate)

JH is not sure why the authors used the term probability rate, when the term
hazard rate

1, or short-term incidence density, or even just rate, or instanta-

neous rate, would have done. The only virtue JH sees for this term is that
– unlike the term hazard rate – it is somewhat explanatory : the term does
indeed convey, and help you remember, the idea that it is the probability
per unit time. JH has seen many people struggle to remember and accu-
rately reproduce the definition of the hazard rate. The one item that is not
conveyed directly by any of these terms is the conditional nature of the prob-
ability: it has as its denominator the person time (‘experience’) lived by those
who reached the “t” that marks the beginning of the small interval/band in
question.

Another way to think of it is as the limit, as the width of the time
band is shrunk to zero, of the incidence density (ID).

It is important to note that the hazard rate (or ‘incidence density’ or
‘probability rate’) has an inverse-time dimension . See Table 1 in the
‘Incidence to Risk’ teaching article.

Since every realistic and epidemiologically interesting time interval has a non-
zero width, and since in any case we usually use the hazard rate as a smooth
function of time, the idea of it as an instantaneous rate is merely a mathe-
matical nicety. Indeed, we would immediately multiply this rate into some
amount of person time PT (which we can depict as a rectangle with height P
persons and width T time units) to get an expected number of events, or for
the individual, the conditional probability.2 The point is that if we were to

1The Website http://www.jeff560.tripod.com/h.html “Earliest Known Uses of Some
of the Words of Mathematics” tells us: HAZARD RATE came into use in statistics in the
1960s as a general term for what is called the force of mortality in demography and the
intensity function in extreme value theory. David (2001) finds “hazard rate” in R. E. Barlow;
A. W. Marshall & F. Proschan “Properties of Probability Distributions with Monotone
Hazard Rate,” Annals of Mathematical Statistics, 34, (1963), 375-389. A JSTOR search
found “death-hazard rate” in D. J. Davis “An Analysis of Some Failure Data,” Journal of
the American Statistical Association, 47, (1952), 113-150.

See also our article Cultural imagery and statistical models of the force of mortality:
Addison, Gompertz and Pearson giving some of the history of the hazard function and
the force of mortality. Further details can be found in this this presentation we gave on the
topic.

2Freedman, in his very good orientational article, Survival Analysis: A Primer in the
American Statistician in May 2008, puts it well: “

::::::::::::::::::::::::::::
The intuition behind the formula

is that
:::::
h(t)dt represents the

::::::::
conditional

::::::::
probability of failing in the [small] interval (t, t+dt),

given survival until time t.’

reverse the process from the expected number of events in a certain PT, the
ratio of no. of events to PT would remain the same as we shrunk the width of
this time slice, and the corresponding number of events. If it did not, it would
imply that the intensity is changing quickly over time, and that a single aver-
age intensity (or the corresponding conditional probability) is misleading. See
Figure 1 and Table 1 in the teaching article on going from incidence function
to cumulative incidence (a.k.a. ‘risk’) and back – JH divides the time on each
side of a specific t into slices a year, a month, a week and a day wide, and yet
the incidence density does not change.

In fact, the force of human mortality is – after a certain age – a monotonically
increasing function of attained age (note the conditioning on attained age) but
practically speaking, the values of the hazard function at age 32.564 and at
32.565 (or indeed over the age range 32 to 33) are similar enough that we
can quite closely approximate this monotonically increasing hazard function
(force of mortality) in this age band as a constant, and over a larger age range
as piecewise constant within each 1-year age band. If we were concerned with
the shape of the hazard function after an attained age or 104, we might want
to make the time bands narrower, since the hazard function is ‘moving fast’
at that age. And at age 32, we might want to make them a bit wider than 1
year: see the value of the q function in the 1-year Canadian lifetables, where
q is the conditional failure probability for age bands 1 year wide (h=1 in the
terminology of section 5.3).

For males and females separately, the 22 [conditional] probabilities of dying
within the (1, 4 or 5 year) age intervals are shown in Table 3.9 on p. 83
of this Institut de la statistique du Quebec report based on data from 2016-
2018. They can be found in the qx column [ x: age; qx : given survival to
birthday x, probability of dying between birthday x and birthday x+a, where
a = 1, 4 et 5.]

“The probability rate refers to an individual subject. This is counterintuitive

to many epidemiologists.”

This is also counterintuitive to JH, who doesn’t understand where these au-
thors are coming from on this. An incidence density is certainly not about
an individual person3. How are we to think of a failure rate of 8 ruptures
per 10000-pipe-kilometer-years of operating pipeline of a water distribution
system?

3There is, to some epidemiologists, a di↵erence between the value for the collective,
and the value for the individual. British medical statistician William Farr (1807-1883)
and McGill epidemiologist Olli Miettinen (1936-) both take what we now think of as the
‘cumulative incidence’ proportion to refer to an empirical or theoretical value for a collective,
whereas when an individual uses that value as his/her own probability, it should be called
a risk.

1

http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/SurvivalAnalysis/IncidenceFunctionToRisk2018.pdf
http://www.jeff560.tripod.com/h.html
http://www.medicine.mcgill.ca/epidemiology/hanley/Reprints/Turner-Hanley-JRSS-A.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/Reprints/Turner-Hanley-JRSS-A.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/Reprints/talk-SSM-nov2010.pdf
http://www.epi.mcgill.ca/hanley/c681/survival_analysis/primerSurvivalAnalysisFreedman.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/SurvivalAnalysis/IncidenceFunctionToRisk2018.pdf
https://www150.statcan.gc.ca/n1/en/catalogue/84-537-X
https://www.stat.gouv.qc.ca/statistiques/population-demographie/bilan2019.pdf


BIOS601: Notes, Clayton&Hills. Ch 5: Rates. v. 2022.10.14.

The authors however do well to ask us to distinguish between the definition of
the parameter, and an estimate (or estimator) of the value of this parameter
in a particular context (e.g. the rupture rate when the temperature is in the
vicinity of -20C.

Mathematically, then, here are a few definitions of what they call the proba-
bility rate, or simply the instantaneous rate, at time t. Since it is a parameter,
we will, as they do, give it the Greek letter lambda, �. With P the number
of persons at risk at t, or more realistically, the average number of persons at
risk over the entire interval (t, t+ �t),

�(t) = lim
�t!0

Expected no. of events

P ⇥ �t

One can re-write this as

�(t) = lim
�t!0

Expected no. of events

P
÷ �t

so that the Expected no. of events/Person looks somewhat like a probabil-
ity. This probability, when divided by �t becomes the (conditional) failure
probability per unit time that Clayton and Hill use as their definition.

One will also see in survival analysis textbooks the definition of �(t) or h(t)
as

h(t) = �(t) = f(t)/S(t),

where S(t) is the ‘survival’ function, i.e., 1 � F (t), and f(t) the probability
density function, of the ‘time to event’ random variable. This is no di↵erent
from the definition above, since we can write it as

h(t) = �(t) =
f(t)�t

S(t)
÷ �t.

S(t) is the proportion of persons who are at risk (event-free) at time t, and
f(t)�t is the (unconditional) fraction of events that occur within the interval

(t, t+ �t), so f(t)�t
S(t) is itself a (conditional) fraction of a fraction.

Moreover, we can rewrite the definition as

h(t)dt = �(t)dt =
�S

0(t)dt

S(t)

and integrate both sides over the interval (0, T ) to get

Z T

o
h(t)dt =

Z T

o
�(t)dt =

Z T

o

�S
0(t)

S(t)
= � logS(T ).

Then, exponentiating both sides, we get the fundamental relationship be-

tween the incidence density function (alias hazard function (h(t), or
the maybe more familiar term ‘failure rate function’, �(t)) and the

complement of cumulative incidence (CI)
4 , namely

1� CI0!T = S(T ) = exp

"
�

Z T

o
h(t)dt

#
= exp

"
�
Z T

o
�(t)dt

#
.

Notice also the (welcomed) use throughout the book of � as an event rate ,
and NOT – as some books use it – as the expected number of events,
i.e. as the mean parameter of a Poisson distribution. JH has tried to be

consistent in using the Greek letter µ for the expected number of

events, since after all it is the mean or expected value of the random variable,
and since it is important to keep the distinction between the numerator and
denominator of an event rate parameter.

5.2 Estimating
::::
the probability rate parameter

Notice the use of the word the, i.e., that the parameter value is assumed
constant in the follow-up period of interest.

5.3 The likelihood for a rate parameter

You might find it strange that the authors don’t go directly to the repre-
sentation of the observed rate as an observed Poisson numerator divided by
a known PT denominator. I think they did this to emphasize the idea of
subdividing the PT into person-clicks.

It is interesting that, in 1907, Gosset (of Student-t fame) derived the Poisson
distribution ‘from scratch’ using this same conceptual subdivision of a plate
(or field in a microscope) into a large number of small squares, small enough
that only one yeast cell would fit in it (C&H in section 4.4 write of time bands

4Ways to ‘see’ this relationship in heuristic terms are described in part II of the draft
teaching article. JH has been searching a long time for who might have been the first to
derive this relationship: as JH notes in the article, Chiang says that the equation

has been known to students of the lifetable for more than two hundred years.
Unfortunately, it has not received much attention from investigators in statistics,
although various forms of this equation have appeared in diverse areas of research.

As of October 2012, JH believes that Chiang was probably referring to a paper by Daniel
Bernoulli published in 1766, where he calculates the gain in life expectancy after elimination
of this cause of death (smallpox). His solution to that more complex problem involves the
solution of the same di↵erential equation we discuss above. See website for more details.
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so narrow that “each failure occupies a band by itself”).5 If the mean number
of cells per plate was µ and the area of the plate was A, or N = A/a small
squares of area a each, then the probability ⇡ that a small square contains a
square is ⇡ = µ/N . The probability that the total area A will contain y yeast
cells is then

Pr(y occupied cells) = N
Cy ⇡

y(1� ⇡)N�y
.

Gosset used Stirling’s approximation, and the definition of e
x = exp[x]

as a limit, to go from this binomial probability to the Poisson probability
exp[�µ] µy

/y!

See the webpages devoted to Gosset’s and Rutherford, Geiger and Bateman’s
groundbreaking articles – in 1907 and 1910 respectively – on ‘counting
statistics.’ See also the derivation by Erlang, described in our History Article
which introduces these 21st century re-enactments of some of the ‘counting
statistics’ work of Student and Rutherford.

If we worked with µ directly, then (ignoring the factorial, which doesn’t involve
this parameter), the likelihood based on an observed count of D is

exp[�µ] µD
.

Substituting µ = �Y , where Y is C&H’s notation for amount of person-Years
(what we call the denominator) gives

exp[��Y ] (�Y )D,

or, ignoring items that do not involve �, as

exp[��Y ] (�)D,

so that the log-likelihood is indeed

��Y +D log (�),

It is interesting to go back to the derivation (section 81, pp. 205-206) by
Poisson in his 1837 book Probabilité des jugements en matière criminelle et
en matière civile, précédées des règles générales du calcul des probabilitiés
(Paris, France: Bachelier, 1837). You can read the original via the Wikipedia
link http://en.wikipedia.org/wiki/Poisson_distribution. Poisson also starts with the
binomial, and goes to “le cas où l’une des deux chances p et q est très
petite .”

5This very readable 1907 article is available in the Gosset website.

5.3.1 Example: Likelihood for the (rate) parameter of exponen-

tially distributed random variable, with interval censoring.

The Uganda and Kenya ‘circumcision in the prevention of HIV’ studies are
examples of interval-censored (as well as the usual right-censored) data, since
one cannot know exactly when a person became HIV+, only that it occurred
in the interval between the last negative test and the first positive one.

Before setting up the likelihood for such data, let us consider a simple statis-
tical model for the data, and let us focus for now on the control group. We

will assume that the sero-conversion rate � is constant over the 2 years, i.e.,
that �(t) = � over that interval. Up until now, we treated the number of
events in the ‘aggregated-across-subjects’ person time as a Poisson random
variable. Another way to look at this is to consider the inter-event times,

(or the
:::::::::::
time-to-event times) and their distribution. We know from earlier in

BIOS601 that if the event rate is �, and there is always one unit at risk,
then the inter-event times have an exponential distribution with mean 1/�.
Thus, we can say that the ‘time-to-event’ for each subject is a realization of
an

::::::::::
exponential

:::::::
random

::::::::
variable with mean or expected value 1/�. If we call

this r.v. ‘T ’, then
T ⇠ exp(µT = 1/�),

ST (t) = exp[��t],

FT (t) = 1� ST (t) = 1� exp[��t],

fT (t) = F
0
T (t) = � exp[��t] = (1/µT ) exp[�(1/µT )t].

In the
::::::
control

::::
arm in the Uganda trial (see link above), 2319 initially HIV-

men were tested at the 6-month, or 0.5-year follow-up, and 19 of them were
found to be HIV+, and the remaining 2300 were found to be HIV-.

The likelihood, based just on this first follow-up test is therefore (proportional
to) the probability (as a function of the seroconversion rate �) of observing
this pattern of results. First we write it as a product of 2319 probabilities:

Likelihood =
i=2319Y

i=1

Pr[obs0d outcome for subject i] =
i=19Y

i=1

Pri

i=2319Y

i=20

Pri

With T denoting the r.v. ‘time to HIV+’, each Pri in the second product is
of the form Pr[T > 0.5 | �] = exp[�0.5�], while each Pri in the first product
is of the form Pr[T < 0.5 | �] = 1� exp[�0.5�]. The likelihood based on this
first test can thus be simplified to

L1st test = exp[�2300⇥ 0.5�] ⇥ (1� exp[�0.5�])19
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In fact, for computation purposes, it is better to write the
:::
sum of the 2319

individual
:::
log-likelihood contributions:

LogL1st test = �2300⇥ 0.5� + 19⇥ log(1� exp[�0.5�]).

Some 2229 of those HIV- at 6-months were tested at the 12-month, or 1-year
follow-up, and 14 of them were found to be HIV+, and the remaining 2215
were found to be HIV-. Thus the likelihood based on this second test can thus
be simplified to

L2nd test = exp[�2215⇥ 0.5�] ⇥ (1� exp[�0.5�])14

or
LogL2nd test = �2215⇥ 0.5� + 14⇥ log(1� exp[�0.5�])

Notice that with this exponential distribution, the fact that these 2229 had
got throught the first interval HIV-free has nothing to do with their (now
conditional) probabilities for the next 6 months. Technically, we call this
the “memoryless” property of the exponential distribution.6 Thus, Pr[T >

t | T > tgiven = Pr[T > t� tgiven], and so, whereas we would normally have
to use the conditional probability {F (1.0)� F (0.6)}/S(0.5), here we can use
the unconditional probability of escaping infection for 6 months. In e↵ect, we
can ‘reset the clock to zero at T=0.5,’ and imagine it was just like back at
T = 0.

Some 980 of those HIV- at 12-months were tested at the 24-month, or 2-year
follow-up, and 12 of them were found to be HIV+, and the remaining 968
were found to be HIV-. The likelihood based on this third test can thus be
simplified to

L3rd test = exp[�968⇥ 1.0�] ⇥ (1� exp[�1.0�])12

or
LogL3rd test = �968⇥ 1.0�] + 12⇥ log(1� exp[�1.0�])

6In industrial life-testing, this property is referred to as the ‘used is the same as new’
property. In failure time distributions where the failure is a function of age or duration of
use (e.g. a computer or hard disk), the hazard is — maybe after a certain run-in period – an
increasing function of its age or accumulated hours of work, and so the testers say ‘older is
worse (less ‘reliable’) than newer;’ initially, before those units doomed to early failure have
been weeded out, it may be that ‘newer is worse than older.’ Sadly, most human hazards,
other than being struck by a meteor, are from internal sources to do with our own bodies,
and so while the hazard function or force of mortality decreases until about age 8 – see
Canada lifetables – it is monotonically increasing thereafter.

Thus the likelihood based on all three tests is

Lall 3 tests = L1st test ⇥ L2nd test ⇥ L3rd test,

i.e.

L = exp[�(2300⇥ 0.5 + 2215⇥ 0.5 + 968⇥ 1.0)�]

⇥

(1� exp[�0.5�])19 ⇥ (1� exp[�0.5�])14 ⇥ (1� exp[�1.0�])12

or

LogL = �(2300⇥ 0.5 + 2215⇥ 0.5 + 968⇥ 1.0)�

+

(19 + 14)⇥ log(1� exp[�0.5�]) + 12⇥ log(1� exp[�1.0�]).

Supplementary Exercise 5.1

1. Maximize LogL (numerically) with respect to �.

2. You have (at least) 2 ways to calculate a confidence interval for � : one
is to use as the SE for �̂ the square root of the reciprocal of the negative
of the curvature of the log-likelihood function at � = �̂; the other is to
estimate and work in the log � scale, and to then back-convert the CI
to the � scale. Either way, because optimize does not provide it, you
may prefer to use a fake parameter in optim in order to obtain the cur-
vature of the LogL function at the � value where it achieves its maximum.

Give an argument why working in the log � scale will give a more appro-
priate CI, and a counter-argument why – in this particular application –
staying in the � scale is quite acceptable.

Then settle the argument by doing both and comparing results.

3. What would happen to L or logL, to the ease of estimation, and to �̂, if
subjects were tested more frequently, e.g. every month, every week, every
day? PhD students should try to give a more mathematical argument,
based on how close L and the MLE based on the intervals in the study
are to the corresponding ones one would get from the more-precisely
time-bracketed sero-conversions.

4
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4. Superimpose the smooth cumulative incidence [also called the ‘risk’]
curve, CI(t), derived from the exponential model for the ‘time to HIV
infection’ (or, equivalently, the constant-over-time infection rate model)
on the step-function curve in the article. If you were a co-author, which
of the two curves would you would suggest be presented?

Supplementary Exercise 5.2

Refer to the ‘Nature article entitled ‘The Rate of de novo mutations and the
importance of father’s age to disease risk’ and to the data on the 78 trios.

1. Assume that the de novo mutation rate (�) is independent of (constant
over) a man’s age (life),

Mutation Rate at⇤ age a = �, 8a,

and that the mutations found in his children are all transmitted from
him, and that none are inherited from the children’s mother.

[⇤ A propos ‘at’ age a: since a man is exactly age a (e.g., a = 23.4567 . . . )
for just a moment, It might be better to think of �⇥ �a as the expected
number of mutations that occur in the time interval {a��a/2, a+�a/2}.
Note that � has units ‘mutations per father-year’ if we express the father’s
age at the child’s conception in years, e.g., 27.8 years]

(Being careful to distinguish the a 2 [0, A] from the A that represents the
father’s Age when his child is conceived) Use the rate estimator you
derived from the ‘2 data-points and a (Poisson) model’ exercise earlier in
the term to estimate the mutation rate (�) from the data on the 78 trios.
Note: this empirical rate ends up involving grade 6 arithmetic, using the

‘su�cient’ statistics, but be sure to specify the
::::::::::::::
dimension/units of the

fitted rate.

2. Obtain the parameter estimate of this (assumed constant over one’s age)
� from a ‘canned’ regression program that uses the individual-subject
data. Hint: the article describing the mathematical-statistics behind this

‘ML estimate based on iteratively re-weighted least squares’ was published

by Nelder and Wedderburn in 1972. When you fit the model, you have

a choice of doing so in the scale of interest (�) or in the (default) log �
scale. It is of educational interest to fit this simple model in both scales,

and to ‘get ahead of the curve’ for the Math523 course.

3. Derive ML estimators for the two parameters �0 and � in the age-
dependent mutation rate models:

Mutation Rate ‘at’ age a = �0 + � ⇥ a, (additive rate model)

and

Mutation Rate ‘at’ age a = �0 ⇥ exp[� ⇥ a], (multiplicative model).

For the additive model, check that applying your estimator directly to
the data (i.e., by coding the formulae in R) yields the same parameter
estimates as you would get from a ‘canned’ regression routine.

For the multiplicative model, you may stop when you have written down
the log-likelihood – i.e., unless you wish to, you don’t have to carry out
the actual fitting.

5.4 Cum. survival probability as fn. of rate parameter

We saw this in BIOS601 as S(T ) = exp[�
R T
0 h(t)dt], or cumulative incidence

as CI0!T = 1� S(T ) = 1� exp[�
R T
0 h(t)dt].

We also came up with a ‘heuristic’ (“a usually speculative formulation serving
as a guide in the investigation or solution of a problem”) whereby the integralR T
0 h(t)dt can be seen as the expected number of events, µ, if there was

always one unit (person) at risk for the period 0 to T . Thus if an event
(failure) occurred at any point in this interval, the failed unit is immediately
replaced by another of the same profile: e.g., if h(t) referred to computers,
we would replace a computer that failed at time t1 by another of the same
age, and if this failed before T , at time t2 say, we would in turn replace it
by another of age t2, and so on until we got to T . So by the end, we would
have observed the 1-unit system for a total of T units of time, and we might
have observed 0, 1, 2, . . . failures (and had to make this many replacements),
in order to have the system in continuous operation for this duration. The
expected number of failures in that period would be the integral of (the area
under) the h(t) curve. We saw in first term that the Poisson distribution has
the ‘closed under addition’ property; in this application, we can think of the
total number of events in (0, T ) as (the limit of) a sum of more and more
Poisson random variables, representing the numbers of events in smaller and
smaller intervals (t, t + dt), with expected numbers of events h(t)dt. In the
limit, this sum of small expectations is nothing more than the overall expected
number of events,

µ =

Z T

0
h(t)dt

The observed sum is thus the realization of a single Poisson random vari-

able with mean µ, and so the probability that the initial unit will ‘survive’

5
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the entire interval is just the probability that there will be no event in the
entire period, i.e.,

S(T ) = Pr(Poisson.RV [µ] = 0) = exp[�µ] = exp[�integral of h(t)].

The other concept that is reinforced by this heuristic, and the computer ex-
ample, is that the computer-days are interchangeable. Imagine we had a large
bank of computers all of the same vintage: we could imagine having a di↵erent
one of these computers be the one that ran the system (was ‘on duty’) for the
day, and we could even draw lots for which computer is the one on duty at any
time. Assuming that the ‘on duty’ computer didn’t age any faster than the
ones that were ‘o↵ duty’ that day, we can now see that the probability that a
specific computer would fail before time T is the same as the probability that
a sequence of computer-days – or computer-hours, or computer-minutes (each
one contributed by a possibly di↵erent computer) would contain at least one
failure. This interchangeability of (impersonal, indistinguishable, unnamed)
units of the same age, i.e., with the same h(t), is central to the concept of
‘person-clicks’ that C&H use.. it is not the particular person that matters to
the contribution, but the person’s profile – his/her h(t) value.

If the rate is a constant over the period (0, T ), so that the integral is µ =
� ⇥ T = �T, then we get the simple expression for the (cumulative) survival
probability given at the top of page 46, namely S(T ) = exp[��T ].

This section also discusses the simple approximation to exp[�µ] when µ is
small, namely 1 � µ. In this situation, the cumulative risk (in fact, the word
cumulative is redundant!) can thus be approximated by

Risk = Cumulative Incidence ⇡ 1� µ = 1� �T [µ small].

Whether or not the integral µ is small, if � is constant over (0, T ), then –
apart from random variations –

log{S(t)} = log{exp[��t]} = ��t,

so that

the plot of � log{S(t)} versus t should be linear in t, with slope �.

5.5 Rates that vary with time

JH’s comments in section 5.4 discussed both piecewise-linear (and in the limit
a) general smooth form(s) for h(t) or �(t), and so there is little to add for this

section, other than to make one remark about their use of the term “cumu-

lative failure rate.” JH finds this term too close to “cumulative incidence”,
which is a proportion. C&H’s “cumulative failure rate” is in fact the integral
we discussed above, and so has as its dimension or units the expected number
of events in the period (0, T ) if one unit were always operating, i.e., ‘at risk.’
He would prefer that you use the more common term “integrated hazard”
often denoted by an upper case letter,

H(T ) =

Z T

0
h(t)dt or ⇤(T ) =

Z T

0
�(t)dt.

C&H tell us that “it follows that the relationship

log[S(t)] = �Cum. failure rate { log[S(t)] = �H(t) in our notation }

still holds when the rate varies from one band to the next... and will be used
to calculate S(t).” We have already used the exponentiated version of this
to calculate S(t). But this relationship in the log scale is also used to check
whether an assumed form or model for h(t) fits with the observed data: it
is more di�cult to judge fit on the S scale, where S(t) is likely to be quite
curvilinear, than on the H scale, where H(t) may have a simpler form, such
as piecewise linear.

Supplementary Exercise 5.3

1. For the control arm of the the Uganda circumcision-HIV trial, assume a
di↵erent � for each of the 3 intervals, and estimate each one separately.
Do the data provide evidence against the assumption of a common �?
Answer by maximizing LogL under the larger (3 possibly di↵erent �s)
and smaller ( all three �s are the same) models, and computing the
likelihood ratio.

2. Even if you do not find evidence against a ‘constant-over-time-bands �’
model, nevertheless calculate and plot the (piecewise-smooth) cumulative
incidence curve, CI(t), derived from the ‘3-�’ model, superimposing it on
the CI(t) curve fitted under the simpler ‘1-�’ model.
Hint : Make sure that the 3 segments ‘join up’ properly. If you have
each of the 3 �̂’s in units of seroconversions per man-year, then maybe
form a hazard vector of say 200 values, say h = c( rep(c�1/100,50),

rep(c�2/100,50), rep(c�3/100,100)), use the cumsum function to get
d⇤(t) = cumsum( c(0,h)) and plot CI = 1- exp(-d⇤(t)) vs. t =
seq(0.01, 2.0, 0.01).

6
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5.6 Rates varying continuously in time: Kaplan-Meier
(K-M) and Nelson-Aalen (N-A) estimators

“The assumption that the rate parameter is constant over broad bands of time,

but changes abruptly from one band to the next, is widely used, but an alterna-

tive model, useful when exact times of failure and censoring are known, is to
allow the rate parameter to vary from click to click. In Chapter 4 this

kind of model led to the Kaplan-Meier estimate of the survival curve; when

using rates it leads to the estimate known as the Aalen-Nelson estimate.”

This is a very nice way of putting it. First, it says that the Kaplan-Meier curve
is a limiting case of a probability-based lifetable, with the time bands made
narrower and narrower. In the limit (and the Kaplan-Meier table is some-
times referred to as the ‘product-limit’ table) one need only be concerned
with products of continuation probabilities from the event-containing inter-
vals. It also explains why the Kaplan-Meier curve is called ‘non-parametric’:
by making the bands narrower and narrower, the curve follows the

data exactly.

The Kaplan-Meier estimate can be seen as a product of empirical continu-
ation probabilities, each one governed by the binomial model. We formally

acknowledge this when we use Greenwood’s formula for the SE of dS(t).

The Nelson-Aalen estimate can be seen as a product of model-based continu-
ation probabilities, with each estimated probability calculated from the theo-
retical relation between the (in this case shortterm incidence or) hazard rate

and cumulative incidence, viz. St!t+dt = 1�CIt!t+dt = exp[�
R t+dt
t h(u)du

If an interval t, t+ dt) involves n persons at risk, and d events (deaths), then
the person time is ndt and so the estimate of the incidence is d

n⇥dt . each one
governed by the binomial model. If d is zero, then the estimate of the incidence
is zero. Thus, the empirical hazard function is a ‘square-wave’ function,

dh(t) =
(
0 if (t, t+ dt) contains d = 0 events,

d
n⇥dt if (t, t+ dt) contains d > 0 events.

Thus,

\h(t)dt =
(
0 if (t, t+ dt) contains d = 0 events,
d
n if (t, t+ dt) contains d > 0 events.

Thus Z T

0

dh(t)dt =
X d

n
,

with the summation over those event-containing narrow bands where
t < T . The persons at risk in these event-containing bands are

called risksets.

The EPIB634 site has R code that divides the JUPITER follow-up time into
1-year, then 1-month, then 1-week, then 1-day bands. The resulting h(t)
function becomes more and more erratic, but in doing so – just like the K-M
curve – it conforms exactly to the data.

Just as the K-M curve is based on a product of binomial -based probability
estimates, the N-A curve can be seen as an integral (the limit of a sum) of
Poison-based rate (hazard) estimates: provided that each n is large, the ‘d’
that forms the numerator of the empirical elemental area can be seen as a
realization of a Poisson random variable. Its estimated variance can therefore
be estimated as d, and the variance of d

n as d
n2 . Thus,

dV ar

 Z T

0

dh(t)dt
�
=

X d

n2
.

For the numerators in this variance expression, some textbooks use binomial-
based variances of n⇥ d

n ⇥ n�d
n instead of the Poisson-based variances of d. If

each n�d is large, as it is in the JUPITER study, then the di↵erence between
the two formulations is miniscule.

Most software packages plot the N-A curve as a step-function, just as they
do the K-M curve. The conf. intervals are first calculated for the estimated
integral, and then for dS(t).

Supplementary Exercise 5.4

1. Calculate the Nelson-Aalen and Kaplan-Meier curves, and the SE’s, for
the each arm of the JUPITER trial – or, if you prefer, each arm of Kenya
trial of adult circumcision to reduce the rate of acquisition of HIV.

5.7 ‘Lifetime’ (and Portion-of-Lifetime) Risks

Supplementary Exercise 5.5

A bios601 seminar a few years ago addressed the risk of appendici-
tis in twins. It drew on the self-reported (in a 1980 survey) ex-
perience of Australian twins. The original paper can be found at

7
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http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1683858/ and the data and
documentation at http://genepi.qimr.edu.au/staff/davidD/Appendix/.

1. Using the supplied R code, or otherwise, and using the appendectomy
data from all respondents, calculate the age-specific hazard rates, i.e.,
the incidence density as a function of age. Use all respondents.

2. What is (i) the average age (a) of the respondents at the time of the
survey? (ii) the average (and IQR) age and calendar year at/in which
the appendectomies were performed? Using the age-specific (hazard)
rates to calculate the cumulative incidence of appendectomy to ages 25,
30, 35 and 40, and to age a. Compute the observed overall proportion in
the dataset who have had an appendectomy, and comment on how well
it agrees with the 5 fitted values.

3. Repeat the cumulative incidence estimation in 2., but with a suitably
smoothed hazard function.

4. Repeat the cumulative incidence estimation in 2., but using the Kaplan-
Meier estimator.

5. Refer to the Norwegian article “Incidence of Acute Nonperforated and
Perforated Appendicitis: Age-specific and Sex-specific Analysis” by
Körner et al. in World J. Surg. 21, 313-317, 1997. Use the data in Table
1 to calculate the (sex-specific) cumulative incidence of laparatomy for
suspected appendicitis to ages 25, 30, 35 and 40. State any assumptions
you make. Compare the estimates with the ones based on the Australian
data.

6. Quickly examine the articles, provided under Resources, from other places
and times – and in some instances using slightly di↵erent ‘events’. Make
a few quick back-of-the-envelope calculations of the risks (lifetime, and
to ages 25, 30, 35 and 40) they imply. Then comment on where the
Australian-derived estimates fit in relation to all of the other estimates,
and whether the discrepancy can easily be explained in terms of di↵er-
ences in ‘event-definition’ or di↵erent ‘persons, or places or times’.

Supplementary Exercise 5.6

The following questions were prompted by the October 17, 2015
50th reunion of JH’s high school class. Approximately 90 of us entered sec-
ondary school at age 13 in 1960 and completed our secondary education in
1965.

Part of the reunion was a Mass, and a tree-planting ceremony to remember
the 13 members of the class who had died.

Before attending, JH had wondered if 13 was unusually low or high, and so he
consulted the relevant lifetables for Irish males.7 JH recognized of course that
those of us whose parents were well enough o↵ to send us to that boarding
school were already above the average Irish standard of living, and that we
ourselves were subsequently privileged. Only about1/3 or so of our Irish
birth-cohorts (most classmates were born born in 1947, but we had some a
year older or a year younger than us) got a secondary school education. And
during our lifetimes, we all much higher-earning jobs than the ‘average’ Irish
male.8

During his sermon at the reunion Mass, (now-retired) Archbishop Cli↵ord
spoke about our cohort, and his experiences as the Dean of Discipline. He
also spoke about what happens when one retires, and what we have to look
forward to. From other things he said he must have been born in 1939 or
1940 – he was 65 in 2004, but retired just a few years ago. He told us that
back at a reunion in 2004, he too had been wondering about what lies ahead
(interestingly he did not mention how many of his class were already dead by
that time). I leave you read the rest of what he said:

[Oct 2015] I am seven years older than you, as I said earlier. When
I was 65 my class were celebrating 40 years of Priesthood and I
was asked to address them. I rang the Central Statistics O�ce to
enquire what the prospects were on average for men of 65

in 2004. Unknown to me, the CSO was now in Cork and a very
good humoured lady answered me. “You are looking for your life
expectancy, Archbishop. I will look up the table for you. You have
13.35 years to go”. There was a long pause and she guessed that I
was doing the arithmetic. ÒThat will bring you to April 2018. But,
cheer up, it might not be that long at all!Ó

I rang them again the other day [2015] and another good lady told
me that people aged 68 years have 14.5 years of life expectancy.
I often noticed as I supervised study that your class spent almost half
their study time on Honours Maths, so I am sure one or two of you

7The lifetables from 1950 to 2009 can be found at the bottom of the Resources for ‘C&H
Ch05 [Rates: N-A estimate]’

8At the reunion, I stressed to some of my classmates that many averages are ‘stupid
averages’: I told them the joke about having one arm in the refrigerator and one arm in
the oven, and ‘on average’ being OK. I also told them the version a urology resident told in
my EPID607 class in one summer school: the ‘average’ person has 1 ovary and 1 testicle!

8
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went on to become statisticians! By the way, I am down to single

figures myself at 9.1. Who knows? Man proposes, God disposes.
And we must not forget Churchill’s remark that there were three
kinds of lies, lies, damn lies and statistics.

1. Using the 1950-2009 lifetable information, try to verify the answer Arch-
bishop Cli↵ord got when he enquired what the prospects were on average
for men of 65 in 2004. You may not find the 13.35 years where you ex-
pected it. Why is this? When the number he was looking for did get to
be calculated, why was it higher than 13.35?

2. When he called again in 2015, in which rows did the ‘good lady’ get the
number 14.5 years for men aged 68 in 2015, and the 9.1 years for himself?

3. If we subtract the ensuing 11 (2015-2014) years between the two enquiries
from the 13.3 years, we only get 2.35 years. Give three reasons why 11.35
- 11 << 9.1.

4. The lifetable data only go to 2009, and so – unless men were born on or
before 1941 – they cannot be used to project 18 year old men all the way
for the full 50 years to age 68. For JH’s class, born in 1947, they can be
used to take them to age 62 in 2009.

Use the lifetable information to calculate, separately for each of the birth

cohorts from 1941 to 1947, how many, out of say 90 Irish men who reached
18, would still be alive 50 years later, and how many would have already
died before their 50th reunion. Note that for JH’s cohort, unless you
extrapolate, you will only be able to follow them to their 44th reunion i.e.,
to age 62. So, state any assumptions you make in getting the calculation
up to the 50th, i.e, to age 68. Remember that the information you have is
from current (i.e., period, i.e., cross-sectional) death rates. Also, a Lexis
diagram can help with the orientation.

5. What percentage of Archbishop Cli↵ord’s class would you estimate to
have already died by now [2015]? Assume it that he was born in 1939.

Supplementary Exercise 5.7

Here is an email query JH received. It concerns his 2003 article, with 3
graduate students, How long did their hearts go on: A Titanic Study in the
Christmas Edition of the British Medical Journal9

9The articles in this edition are meant to be entertaining and whimsical,
but still based on real properly-collected data, analyzed correctly. This site
has links to the ones from 1995 to 2003. JH’s favourite article is the 2001

Dear Dr. Hanley

I enjoyed your 2003 article in BMJ on age of death of Titanic sur-
vivors. However, I’m a little perplexed by your survival curves. If
the overall average age of Titanic survivors was about 28 in 1912, as
in your graph, then the average age of death of half of that popu-
lation in 1952 was about 68, and 25% were still alive in 1972, when
they were 88.

This also means 25% of the adult population in the US and Sweden
born in 1884 was still alive at 88 years of age in 1972.

Are my calculations correct? This seems to put the age of death too
high for a population born in the 19th century.

Regards,

——— , Ph.D.

Professor,

Departments of Psychology and Molecular Pharmacology and Phys-
iology

1. Answer the professor.

2. Use his query to create a small exercise with a few very specific questions
that would help high school students to understand the issues brought
up by this letter. Provide model answers.

Supplementary Exercise 5.8

Refer to the
::::::
control

::::
arm data in Figure 2 of the report of the Kenya trial,

where men were tested at six timepoints post-randomization. Here are the
data:

# widths of the follow-up windows, in years
W = c(1, 2, 3, 6, 6, 6)/12
# numbers tested
n = c( 1380, 1368, 1350, 1302 , 1035, 740)
# numbers testing positive
n.pos = c(1, 3, 9, 18, 7, 9)

E↵ects of remote, retroactive intercessory prayer on outcomes in patients with bloodstream
infection: randomised controlled trial. It generated a very large volume of correspon-
dence. Another is Death Rates of Characters in Soap Operas on British Television in 1997.
A more recent one (2014, next column) addressed how far along in the movie sad events
occur to Disney characters.

http://www.bmj.com/content/349/bmj.g7184

9

http://www.medicine.mcgill.ca/epidemiology/hanley/Reprints/article_bmj_xmas_2003.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/c626/
http://www.medicine.mcgill.ca/epidemiology/hanley/Workshops/CircumcisionHIV_UgandaKenya.pdf
https://www.bmj.com/content/323/7327/1450
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/SurvivalAnalysis/SoapOperas.pdf
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1. Assume a constant-over-follow-up-time HIV acquisition rate �, expressed
as an expected number of infections per Man-Year. Use the same method
as in exercise 5.1 to set up the LogL function, and to mazimize it w.r.t.

�. Compute a SE for �̂ and for [log �.

2. Use your results from exercise 0.1 of the Notes on intensity rates to double

check the value for the SE of [log �.

3. Convert �̂ into a 2-year risk of acquiring HIV.

4. There is a not-very-well-known way to obtain �̂ML using just the glm
function in R. Show how to do so using the same complementary-log-log
link in a binomial regression model we applied to the Dilution Series data.
Show both your ‘algebra’ and your R code. Double check the �̂ thus fitted
against what you obtained in part 1, and check that the SE matches.

CARTOONS KILL: casualties in animated recreational theater in an ob-
jective observational new study of kids’ introduction to loss of life. BMJ’14.

[From Department of Epidemiology and Community Medicine, University of
Ottawa; School of Public Health, University of Alberta, Edmonton; Division of
Community Health and Humanities, Memorial University, St John’s, NFLD,
Division of Psychiatry, University College London, London, UK]

Abstract

Objectives To assess the risk of on-screen death of important characters in
children?s animated films versus dramatic films for adults.

Design Kaplan-Meier survival analysis with Cox regression comparing time
to first on-screen death.

Setting Authors’ television screens, with and without popcorn.

Participants Important characters in 45 top grossing children’s animated
films and a comparison group of 90 top grossing dramatic films for adults.

Main outcome measures Time to first on-screen death.

Results Important characters in children’s animated films were at an in-
creased risk of death compared with characters in dramatic films for adults
(hazard ratio 2.52, 95% confidence interval 1.30 to 4.90). Risk of on-screen
murder of important characters was higher in children’s animated films than
in comparison films (2.78, 1.02 to 7.58).

Conclusions Rather than being the innocuous form of entertainment they
are assumed to be, children’s animated films are rife with on-screen death and
murder.

Introduction

Recent research suggests that as visual media has become more pervasive in modern society,
children?s enculturation is increasingly likely to come from television and movies, including
their understanding of death. By the age of 10, most children have developed a complete
understanding of death as irreversible, permanent, and inevitable. Before this age, however,
many children may have only a partial understanding of death as they lack the cognitive
maturity to comprehend this concept. Exposure to on-screen death and violence can be
frightening to young children and can have intense and longlasting e↵ects.5 This might be
particularly problematic when children have not been prepared, through candid discussion
with parents or caring adults, to face these themes. [ ... ]

Methods

Animated films

The primary exposure group for this study consisted of the 45 children’s animated films with
the highest all-time box o�ce gross revenue, indexed for inflation. Films were included if
they received a genre tag of “animation” by the Internet Movie Database and received a film
rating of “G-general audience” or “PG-parental guidance suggested.” We excluded films
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in which the main characters were neither humans nor animals (for example, cars, robots,
toys), as the concept of mortality among inanimate yet anthropomorphized characters is
unclear. Sequels were also excluded because important characters might have already died
in a previous film. Film release dates ranged from 1937 (Snow White) to 2013 (Frozen).

Comparison films

The comparison films consisted of the two highest box o�ce grossing films in the same year
of release as each animated film, excluding sequels, that received a genre tag of “drama” by
the Internet Movie Database. We reasoned that these films were more likely to be viewed
solely by adult audiences. In cases in which more than one animated film for a given release
year was included, we also selected the next two top grossing dramatic films of that year
(for instance, third and fourth) for comparison. We excluded films that were additionally
tagged with “action” or “adventure” because they are often also marketed to, and viewed by,
young children. The comparison group nevertheless included a range of subgenres, including
horror (for example, The Exorcism of Emily Rose, What Lies Beneath) and thriller (for
example, Pulp Fiction, The Departed, Black Swan). A complete list of animated films and
their comparisons is in the appendix. [...]

Outcomes measured

Our primary outcome was the elapsed time of the film at which the first on-screen death of
an important character occurred. An important character was defined as a main character,
a friend or family member of a main character, or the main villain or nemesis in the
film. As secondary outcomes, observers also noted two contextual factors as these could
be particularly traumatic for children: instances in which the first on-screen death was a
murder (excluding death in wartime combat); and, instances when the first on-screen death
was of a parent of a main character. In four cases (two animated and two comparison films),
a non-permanent death was noted (that is, the character was later revived). We included
these as outcome events as witnessing such deaths on screen might be traumatic to young
children, irrespective of whether or not they are later reversed. Nevertheless, removal of
these cases as death did not change the pattern of results nor their significance. Trained
research assistants collected data collection using a standardized coding protocol. A panel
of experienced (amateur) film critics (IC, MK, MW) resolved ambiguous or unclear events
by consensus.

Statistical analysis

We used Cox regression to examine the e↵ect of type of film (animated versus comparison)
on time elapsed at first on-screen death. To account for the fact that children?s films are
often shorter than films for adults, we included total runtime as a covariate. Survival curves
presented are based on these Cox regressions, adjusted for total runtime. The proportional
hazards assumption was tested with the procedure developed by Therneau and Grambsch
(test of non-zero slope of Schoenfeld residuals), and the assumption held (ChiSq = 0.71,
P = 0.40). Finally, we included years since release and the interaction between film type
and years since release as covariates to investigate whether films are becoming more or less
deadly over time. Data analysis was carried out with SPSS 21.0.15

Fig 1 .. animated vs. comparison films.

Fig 2 .. animated vs. comparison films for death by murder.

Fig 3 .. parents of protagonists. animated vs. comparison films.

Figures

Fig 1 Survival curves for important characters in animated versus comparison films

Fig 2 Survival curves for important characters in animated versus comparison films for death by murder

Fig 3 Survival curves for parents of protagonists in animated versus comparison films
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