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3 Likelihood

Besides Clayton & Hills see Edwards Likelihood Ex-
panded Edition 1972 and 1992 (print book), and Pawitan

In All Likelihood: Statistical Modelling and Inference Using Likelihood
(ebook) in the McGill library.

“We need a way of choosing a value of the parameter(s) of the model” (1st
paragraph C&H): It is clear from the later text that C&H do not mean to give
the impression that one is only interested in a single value or point-estimate.
For any method to be worthwhile, it needs to be able to provides some measure
of uncertainty, i.e. an interval or range of parameter values.

“In simple statistical analyses, these stages of model building and estimation
may seem to be absent, the analysis just being an intuitively sensible way of
summarizing the data.” Part of the reason is that (as an example) a sam-
ple mean may simply seem like a natural quantity to calculate, and it does
not seem to require an explicit statistical model. Indeed, Miettinen, in
his Mini-Dictionary (of Science, Medicine, Statistics and Epidemiological Re-
search 1 ), has nicely defined a descriptive statistic as a statistic derived
without any statistical model. The mean can also be seen as the least
squares estimate, in the sense that the sum of the squared deviations of the
sample values from any other value than the sample mean would be larger
than the sum of the squared deviations about the mean itself, i.e., the sam-
ple mean is a least squares estimator/estimate. But that purely arithmetic
procedure still does not require any assumptions about the true value of the
parameter value µ, or about the shape of the distribution of the possible val-
ues on both sides of µ. For the grade 6 exercise about the mean number of
errors per page, it seemed to make sense to divide the total number of errors
by the total number of pages; but what if the task was to estimate the mean
weight of the pages? We discussed in class at least two di↵erent statistical
models – that would lead to di↵erent estimates.

“In modern statistics the concept which is central to the process of parameter
estimation is likelihood.” Older and less sophisticated methods include the
method of moments, and the method of minimum chi-square for count data.
These estimators are not always e�cient, and their sampling distributions
are often mathematically intractable. For some types of data, the method
of weighted least squares is a reasonable approach, and we will also see that
iteratively-reweighed least squares is a way to obtain ML estimates without
formally calculating likelihoods.

1
https://link-springer-com.proxy3.library.mcgill.ca/book/10.1007%2F978-94-007-1171-6

Likelihood is central not just to obtain frequentist-type estimators per se,
but also to allow Bayesian analyses to combine prior beliefs about parameter
values to be updated with the data at hand, and arrive at what one’s post-data
beliefs should be.

Likelihood provides a very flexible approach to combining data, provided one
has a probability model for them. As a simple example, consider the chal-
lenge of estimating the mean µ from several independent observations for a
N(µ,�) process, but where each observation is recorded to a di↵erent degree
of numerical ‘rounding’ or ‘binning.’ For example, imagine that because of
the di↵erences with which the data were recorded, the n = 4 observations are
y1 2 [4, 6), y2 2 [3, 4), y3 2 [5,1), y4 2 [�1, 3.6). Even if we were told the
true value of �, the least squares method cannot handle this uni-parameter
estimation task.

“The main idea is simply that parameter values which make the data more
probable are better supported than values which make the data less probable.”
Before going on to their first example, with a parameter that in principle
could take any value in the unit interval, consider a simpler example where
there are just two values of ⇡. We have sample of candies from one of two
sources: American, where the expected distribution of colours is 30%:70%
and the other Canadian where it is 50%:50%. In our sample of n = 5, the
observed distribution is 2:3. Do the data provide more support for the one
source than the other?

3.1 Likelihood in the binary model

Notice the level of detail at which the observed data are reported in Figure 3.1:
not just the numbers of each (4 and 6) but the actual sequence in which they
were observed. The Likelihood function uses the probability of the observed
data. Even if we did not know the sequence, the probability of observing 4
and 6 would be 10C4 = 210 times larger; however since we assume there is no
order e↵ect, i.e., that ⇡ is constant over trials, the actual sequence does not
contain any information about ⇡, and we would not include this multiplier
in the Likelihood. In any case, we

:::::
think

::
of

::::
the

:::::::::
likelihood

::
as

::
a
::::::::
function

::
of

::
⇡

:::::
rather

:::::
than

:::
of

:::
the

:::::::::
observed

::::::::
numbers

::
of
:::::
each

:::
of

:::
the

::::
two

::::::
types.: these

::::
data

:::
are

::::::::::
considered

:::::
fixed,

::::
and

::
⇡
:::
is

::::::
varied. contrast this with the tail area in a

frequentist p-values, which includes other
::::::::::::
non-observed

::::::
values more extreme

than that observed. Likelihood and Bayesian methods do not do this.

“⇡ = 0.5 is more likely than ⇡ = 0.1” Please realize that this statement by
itself could be taken to mean that we should put more money on the 0.5 than
the 0.1. It does not mean this. In the candy source example, knowing where
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the candies were purchased, or what they tasked like, would be additional
information that might in and of itself make one source more likely than
the other. The point here is to avoid terms that imply a prior or posterior
probability distribution on ⇡. The likelihood function is based just on the
data, and in real life any extra prior information about ⇡ would be combined
with the information provided by the data. It would have been better if the
authors had simply said “the data provide more support for “⇡ = 0.5 than
⇡ = 0.1.” Indeed, I don’t think “⇡ = 0.5 is more likely than ⇡ = 0.1”
is standard terminology. The terminology “0.4 is the ML estimate of ⇡” is
simpler and less ambiguous.

SOME HISTORY

See JH’s Resources re Likelihood for several papers. Warning: JH does
not pretend to be a professional historian, and it is only in the last
decade or so that he has started to take an interest in these matters.
So the reader is warned that the items and interpretations and accounts
given here may not be 100% accurate. For the professional account, see
Stephen Stigler’s The Epic Story of Maximum Likelihood and Anders Hald’s
On the history of maximum likelihood in relation to inverse probability and least squares.
Starting on minute 23 of his 2020 talk in our
McGill Biostatistics Seminar Series, Stigler recounts a critical ‘rejec-
tion’ that led Fisher to the full treatment of estimators on his 1922 paper.
See also
A History of Parametric Statistical Inference from Bernoulli to Fisher, 1713 to 1935 by
Hald, and R. A. Fisher and the Making of Maximum Likelihood 1912-1922
by John Aldrich.

There is some dispute as to who first used the principle of ML for the choice
of parameter value. The names of Laplace and Gauss are often mentioned;
Daniel Bernoulli deserves mention too.2 The seldom mentioned 1912 paper3

by Fisher, while still a student, is a nice clean example, and shows how
Likelihood (he did not use the word likelihood in the paper) is flexible and
allows for the di↵erent bins sizes into which observations might be recorded,
etc. It is worth reading that original paper, but don’t spend too much time on
section 5, where he deals with the ML estimation of the parameters µ and �
of a Normal distribution: the ML estimate of �2 involves a divisor of n rather
than n�1, and an embarrassment for Fisher, who was from early on, insisted

2see ‘Daniel Bernoulli on maximum likelihood’ by M. G. Kendall in Biometrika (1961),
48, 1 and 2, p. 1. here http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/

Likelihood/Kendall1961OnDanielBernoulliML.pdf See also ‘A list of writings relating to the
method of least squares’ by Mansfield Merriman in Transactions of the Connecticut
Academy of Arts and Sciences 1874-78, pp151-232.

3
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Likelihood/

FisherLikelihoodPaper1912.pdf

on the correct degrees of freedom when assessing variation.

The usual reference is to Fisher’s major article in 1922,
On the Mathematical Foundations of Theoretical Statistics, where he
worked out many of the properties of ML estimators.

One interesting feature of the 1912 paper (and in the rejected letter of 1916) is
that

::::::
Fisher

:::::
never

:::::::
defined

:::
the

::::::::::
likelihood

::
as

::
a

:::::::
product

::
of

::::::::::::
probabilities; instead

he defined the
:::::::::::::
log-likelihood

:::
as

::
a
:::::
sum

:::
of

:::::::::::::::::
log-probabilities. This is

very much in keeping with his summation of information over observations.
Indeed, there is a lot in his writings about choosing the most informative
configurations at which to observe the experimental or study units.

Stephen Stigler, an eminent and very readable historian of Statistics, has writ-
ten extensively on Laplace. Indeed, Stigler considers Laplace to be one of the
founders not just of mathematical statistics but of inference in general. His
1774 paper [part 5 of which deals with fitting of a location parameter to 3
data points, when the dispersion is (a) known and (b) not]. That paper (now
translated by Stigler, and accompanied on the website by a Stigler commen-
tary) was written when Laplace was just 25, and it includes what this article
calls Laplace’s First Law of Error or the Laplace Distribution. It is an
open-ended double-sided exponential, centred at zero, where the parameter µ
represents the average

:::::::
absolute

:::::
error, and thus the dispersion, i.e.,

pdf(x) =
µ

2
exp[�µ|x| ].

See more on the Laplace distribution in this Wikipedia site and in this
Significance article.

Some histories tell us that “In 1778, Laplace published his second law

of errors, noting that the frequency of an error was proportional to the ex-
ponential of the

::::::
square of its magnitude. This was subsequently rediscovered

by Gauss (possibly in 1795) and became known as the normal or Gaussian
distribution.” This is the familiar Normal Error curve, with its smoother and
less peaked centre, and thinner tails.

The Laplace website continues that “Laplace published a Bayesian precursor
of the Central Limit Theorem (CLT) in 1785, establishing the asymptotic
normality of posterior distributions. In 1810, however, Laplace introduced
the CLT as it applies to frequentist inference, and as it is mostly known
today. Laplace created large-sample theory for both modes of probability
(Hald, 2004, p. 30).

The frequentist version of the CLT states that the sample mean is approxi-
mately normally distributed in large samples when the variance is finite, re-
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gardless of the shape of the error distribution (Hald, 2004, p. 4). This allowed
Laplace to work with almost any kind of data, rather than being restricted
to binomial [or as we met recently, uniform] problems. Working with larger
data sets, the CLT led Laplace to frequentist inference (Laplace, 1811).”

Part 5 of Laplace’s 1774 paper used (like Daniel Bernoulli below) just 3 data
points to illustrate his approach to obtaining a posterior distribution for the
location parameter when the dispersion is/is not known. To do so, he pro-
poses, and then integrates out, a prior for the dispersion, and arrives at a
posterior distribution for the location parameter. Then, he uses the median
of that distribution as his estimate of the location parameter (he has previ-
ously shown that the median minimizes the average absolute error).

This commentary on part V of that same 1774 paper is taken
from the well known late 19th century author of the widely used
Textbook on Least Squares (Merriman). It is part of a long listing of, and
commentary on, writings up to then on Least Squares and related topics.

3
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Laplace’s treatment of the 3 data-points problem focuses more on the posterior
distribution than on the likelihood implicit in it; thus his approach does not
maximize the likelihood per se (see Edwards p. 221-223 where he distinguishes
between the method of Maximum Likelihood and the Method of Maximum
Probability). And so, given we are in a chapter dealing only with likelihood.
we will not replicate his worked examples. Instead we will use another lesser
known worked example (by Daniel Bernoulli – it is di�cult to keep track of
the various Bernoulli’s - there were so many of them) that has the likelihood
as the ultimate target, even if it does not call it by that name.

See the articles: Daniel Bernoulli, Leonhard Euler, and Maximum Likelihood
by Stephen Stigler; Studies in the history of probability and statistics:
XI. Daniel Bernoulli on maximum likelihood by Maurice Kendall; and The
most probable choice between several discrepant observations and the for-
mation therefrom of the

:::::
most

:::::
likely

:::::::::
induction by Daniel Bernoulli, translated

by C. G. Allen.

Whereas you might be tempted to call the product �(x1)�(x2)�(x3) a Likeli-
hood and to just go ahead and maximize it, that is not how Laplace saw it.
Rather, because he assumed a flat prior for the unknown dispersion parame-
ter µ, it integrates out when he forms the posterior distribution for x, and so
he has a probability density function for the posterior distribution of x that
(apart from any normalizing constants) is the same as the likelihood function
for x.

The distinction between this example and the one by Daniel Bernoulli is very
clear: Bernoulli maximizes his �(x1)�(x2)�(x3) directly, and he never invokes
a posterior distribution for x. To him, it is simply ‘the x value that has the
highest probability ’.

The following, one of the first attempts to use ML directly, albeit with a
very rudimentary (semicircular) error distribution, is fromDaniel Bernoulli,
written somewhere  1778, when, Kendall tells us, he was 78. Indeed, it
seems that in his 1774 piece, Laplace is aware that both Lagrange and Daniel
Bernoulli had ‘considered the same problem in manuscript memoirs that I have
not seen’, He added that “This announcement both added to the usefulness of
the material and reminded me of my ideas on this topic. I have no doubt that
these two illustrious geometers have treated the subject more successfully than
I; however, I shall present my reflections here, persuaded as I am that through
the consideration of di↵erent approaches, we may produce a less hypothetical
and more certain method for determining the mean that one should take
among many observations.”

Even though we would all now agree that Laplace had the much more com-
prehensive approach (and ultimately even derived a di↵erent and more justi-

fiable error distribution), it is worth starting with the simpler idea in Daniel
Bernoulli’s paper, which appeared in 1778. So here are some extracts from it,
as well as an exercise on his Example 1.

Daniel Bernoulli (1700-1782) (Wikipedia)

See also Portrait of Daniel Bernoulli - Smithsonian Libraries.

4
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10. First of all, I would have every observer ponder thoroughly in his own mind

and judge what is the greatest error which he is morally certain (though he should

call down the wrath of heaven) he will never exceed however often he repeats the

observation. He must be his own judge of his dexterity and not err on the side of

severity or indulgence. Not that it matters very much whether the judgement he

passes in this matter is fitting or somewhat flighty. Then let him make the radius

of the controlling circle equal to the aforementioned greatest error; let this radius

be r and hence the width of the whole doubtful field = 2r.
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Studies in the history of probability and Btati8tics 7 
If you desire a rule on this matter common to all observers, I recommend you to suit your 
judgement to the actual observations that you have made: if you double the distance 
between the two extreme observations, you can use it, I think, safely enough as the diameter 
of the controlling circle, or, what comes to the same thing, if you make the radius equal to 
the difference. between the two extreme observations. Indeed, it will be sufficient to increase 
this difference by half to form the diameter of the circle if several observations have been 
made; my own practice is to double it for three or four observations, and .to increase it by 
half for more. Lest this uncertainty offend any one, it is as well to note that if we were to 
make our controlling semicircle infinite we should then coincide with the generally accepted 
rule of the arithmetical mean; but if we were to diminish the circle as much as possible 
without contradiction, we should obtain the mean between the two extreme observations, 
which as a rule for several observations I have found to be less often wrong than I thought 
before I investigated the matter. 

11. After all these preliminaries it remains to determine the position of the controlling 
circle, since it is at the centre of this circle that the several observations should be deemed 
to be, as it were, concentrated. The aforesaid position is deduced from the fact that the whole 
complex of observations would occur more easily, and therefore more probably, for this 
location than for any other position of the circle. We shall have the true degree of probability 
for the whole complex of observations if we note the probability corresponding to the 
several observations that have been carried out and multiply all the probabilities by each 
other, just as we did in§ 9. Then the product of the multiplication is to be differentiated and 
the differential put = 0. In this way we shall obtain an equation whose root will give the 
distance of the centre from any given point. 

Put the radius of the controlling circle = r; the smallest observation = A; the second 
A +a; the third A + b; the fourth A + c, and so on; the distance of the centre of the controlling 
semicircle from the smallest observation = x, so that A + x will denote the quantity which 
is most probably' to be assumed on the basis of all the observations. By our hypothesis 
the probability for the first observation alone is to be expressed by .J{r2- x2}; for the 
second observation by .J{r2 - (x-a)2}; for the third by .J{r2 - (x-b)2}; for the fourth by 
.J{r2- (x- c)2} and so on. Then I would have the several probabilities multiplied together 
according to the rules of the theory of probability, which gives 

.J{r2-x2} x .J{r2- (x-a)2} x .J{r2- (x-b)2} x .J{r2- (x-c)2} x .... 

Finally, if the differential of this product is put= 0, the equation, by virtue of our hypo-
theses, gives the required value x as having the highest probability. As, however, the afore-
said· quantity is to be brought to its maximum value, it is obvious that its square will 
simultaneously be brought to the same state. So we can use, for ease of calculation, a 
formula which is composed entirely of rational terms, viz. 

(r2-x2) x {r2-(x-a)2} x {r2- (x-b)2} x {r2-(x-c)2} x ... 

and the differential is once more put = 0. For the rest, as many factors are to be taken as 
there were observations. 

12. If a single observation was made, we must accept the observation as true. Now this 
is shown by our hypothesis. If only the first factor r2 - x2 is taken, we shall have - 2xdx = 0 
or x = 0 and consequently A+ x = A. So in this ca.se our hypothesis agrees with the common 
one. 

(...)

8 M. G. KENDALL

If two observations have been made, A and A + a, two factors are to be taken, namely

{r2-x2}x{r2-(x-a)2} or ri-2r2x2 + x* + 2ar2x-a2r2 + 2ax3xa2x2,

the differential of which

= - 4r2xdx + to?dx + 2ar2dx - 6ax2dx + 2a2xdx = 0 or 2x? - 3ax2 - 2r2x + a2x + ar2 = 0.
The only useful root which this equation gives is x = \a, and A + x = A + \a. This also is
the teaching of the common hypothesis. This agreement holds whatever be the radius of
the controlling circle, a fact which shows clearly enough, in the case of several observations,
that the size of our controlling circle in an enterprise of this sort need not be strictly exact,
and one should not expect it to be. What is awkward—and I do not conceal it—is that for
several observations a very long calculation is required, and so I hardly dare propose more
than general discussions of these cases. Let me at least expound the theory of three observa-
tions, which is of the highest importance.

13. When we have three observations to deal with, viz. A; A+a and A+b, we shall
have three factors

{r2 - x2} x {r2 - (x - a)2} x {r2 - (x - b)2},

for which we have to find the maximum value. If now these factors are actually multiplied
together we shall obtain

r6 + 2ar*x - 3r*x2 - 4ar2x* + 3r2x* + 2axb - x6

- a2r* - 2ab2r2x + 2b2r2x2 + 2ab2x3 - b2x* + 2bxs

- b2r* + 2br*x - a2b2x2 - AbrW - 4abx*
+ a2b2r2 - 2a2br2x + 4abr2x2 + 2a2bx3 - a2x*

+ 2a2r2x2.

If this expression is differentiated, and then after division by dx is put = 0 to obtain the
maximum value, the following general equation for any three observations whatsoever will
result

2ar* - 6r*x - 12ar2x2 + 12r2x* + 1 Oax* - Qx?
- 2ab2r2 + 4b2r2x + 6ab2x2 - ibV + lObx*

+ 2br* - 2a2b2x- 12br2x2 -
- 2a2br2 + 8abr2x + 6a2bx2 -

+ 4a2r2x = 0.
The root of this equation, which is indeed of the fifth degree and consists of twenty terms,
gives the distance of the centre of the controlling circle from the first observation, and the
quantity A + x gives the value which is most probably to be deduced from the three obser-
vations which have been made.

14. Unless the force of our fundamental arguments has been most attentively weighed
there will be few perhaps who will see any relation whatever between the enormous equation
and what seems to be a very simple question; for the common answer is a; = §(a + b). Never-
theless, our equation corresponds well enough to notions which crop up elsewhere, some of
which I will now expound.

(a) If the radius of the controlling circle is supposed to be infinite compared with a and b,
all terms are to be rejected except those in which r rises to the highest power, in which case
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Example 1 {wording from Bernoulli}
Let us assume three observations A; A + 0.2 and A + 1, so that a = 0.2
and b = 1 and let the value to be assumed as most likely from these three
observations be A+x. The common rule gives x = 0.4. Let us see the new one
which to my mind is more probable, and let us put r = 1 (cf. paragraph 10,
where he invokes a semi-circular probability density function). The following
purely numerical equation results

1.92� 0.32x� 12.96x2 + 4.64x3 + 12x4 � 6x5 = 0,

the solution of which is approximately x = 0.44xx, which exceeds the com-
monly accepted value by more than a tenth.

5
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Supplementary Exercise 3.1

1. Plot the log-likelihood for Example 1 above, and visually obtain an
approximate xML value. Then use the optim or optimize function4 in
R (or its equivalent in your favourite package) to find the xML value.
Compare it with Bernoulli’s solution of the quintic equation.

2. If, as does Bernoulli, we take r = 1, what variance does Bernoulli’s
‘distribution with a semi-circular pdf’ have?

3. What value of the dispersion parameter in the Laplace Distribution5

would lead to the same variance as is obtained with r = 1 in Bernoulli’s
distribution?

4. Using the Laplace Distribution with that same variance (i.e. matching
the variances of the two error distributions), what is the ML value cor-
responding to the data in Bernoulli’s Example 1?

For continuation of section 10 of Bernoulli, on the choice of r, see footnote6

{ (For those interested) Continuing with Bernoulli’s words... }
This marked excess is due to the fact that the middle observation is much
nearer to the first than to the third. From this it is easily deduced that the
excess will be changed to a defect if the middle observation is nearer to the
third than to the first, and that the nearer the middle observation is to the
mean between the two extreme observations, the smaller will be this defect.
To test this conjecture I retain the other values and change only the middle
observation, as follows.

4
optim recommended for � 2-D, optimize for 1-D. optimize doesn’t return the Hessian,

but you can obtain it via optim by using a fake 2nd parameter in the likelihood function.
5In the version described in Wikipedia, the dispersion parameter (what JH calls µ) is

replaced by a ‘precision’ parameter b)
6 “If you desire a rule on this matter common to all observers, I recommend you

to suit your judgement to the actual observations that you have made: if you double
the distance between the two extreme observations, you can use it, I think, safely
enough as the diameter of the controlling circle, or, what comes to the same thing, if
you make the radius equal to the di↵erence between the two extreme observations.
Indeed, it will be su�cient to increase this di↵erence by half to form the diameter of
the circle if several observations have been made; my own practice is to double it for
three or four observations, and .to increase it by half for more. Lest this uncertainty
o↵end any one, it is as well to note that if we were to make our controlling semicircle
infinite we should then coincide with the generally accepted rule of the arithmetical
mean; but if we were to diminish the circle as much as possible without contradiction,
we should obtain the mean between the two extreme observations, which as a rule
for several observations I have found to be less often wrong than I thought before I
investigated the matter.” Note by JH: today, with enough data, we would estimate
both the dispersion parameter r and the location parameter of primary interest.

Example 2

Let a now = 0.56, and as before r = b = 1. By the commonly accepted rule
we shall have x = 0.52. Let us see what happens with ours. The equation of
section 13 gives the following numerical equation

1.3728 + 3.1072x� 13.4784x2 � 2.1244x3 + 15.6x4 � 6x5 = 0.

which is approximately satisfied by x = 0.51xx. In accordance with our
principles, the value of x is less than the arithmetical mean which is usually
accepted, but the di↵erence between the two is now quite small, viz. 0.00yy,
exactly as I had anticipated would be the case. Hence it can also be seen that
the greatest di↵erence between the two estimates occurs when it so happens
that two observations exactly coincide and only the third diverges. There are
two cases, viz. when a = 0 and when a = b. I will expound the result in each
case.

10 M. G. KENDALL

which is approximately satisfied by x = 0-5128. In accordance with our principles, the
value of x is less than the arithmetical mean which is usually accepted, but the difference
between the two is now quite small, viz. 0-0072, exactly as I had anticipated would be the
case. Hence it can also be seen that the greatest difference between the two estimates occurs
when it so happens that two observations exactly coincide and only the third diverges.
There are two cases, viz. when a = 0 and when a = b. I will expound the result in each case.

Example 3. Put a = 0, leaving the remaining denominations unaltered. Dividing by
26 — 2x we have the following numerical equation

which is approximately satisfied by x = 0-3977, whereas the value of x obtained from the
common rule is x = 0-3333. The former exceeds the latter by 0-0644. If, however, we put
a = b and divide by 2x, the following equation results

3x* = 0.
This is approximately satisfied by x = 0-6022, while the common value is 0-6666. So the
difference between the two is once more 0-0644, but this time our new value is less than the
common one, whereas previously it was greater. It is clear from this that our method takes
better aim at a certain intermediate point than does the common method. Evidence of this
sort does much to commend the method that I propose, and I will go a little more closely
into this consideration, if so be that an argumentum ad hominem may be accepted in a matter
which does not admit of mathematical demonstration.

16. If we combine the two cases in example 3, and suppose that six observations have
been made, viz. A, A, A + b and A + b,A + b, A,itis obvious that three observations support
the value A and the same number the value A + b. We see by § 12 that in this case both
methods give the required mean value as A + \b, or for example 3, A + 0-5; or, omitting
the constant quantity A, simply 0-5. This value, derived from the six observations combined,
will not be doubted by anyone. Now let us divide these six observations into two other
triads, namely A, A, A +1 and A + l, A + 1,A. In this case, rejecting once more the quan-
tity A, the commonly accepted rule gives for the first triad 0-3 and for the second 0-6, both
differing, the first by defect and the second by excess, by 0-l6 from the mean 0-5. So for
either triad of observations taken separately the common theory involves an error of 0-16,
while ours involves an error of 0-1022, which is notably smaller. A great deal more evidence
of this kind could be adduced to give further support to our fundamental argument; but
I am afraid I should appear immoderate if I went on extending something which cannot be
settled with certainty and absolute perfection. We have no higher aim than to be able to
distinguish what is more probable from what is less.

17. Such further perfection as we may reasonably expect will consist in a stricter and more
accurate determination of the controlling scale and its width. I will add a few further com-
ments on this topic. It is obvious from the foregoing considerations that our estimates are
not so very different from the commonly accepted rule: so it is a question of a certain correc-
tion which this rule appears to allow. This correction is provided by the actual divergences
of the observations from the required true point, since they can be so arranged, for any given
width of the controlling scale, as to make the most probable fit with this point. But for my
part I can see no way of strictly determining the width of the aforesaid scale except that which
I mentioned in § 10. If an observer, through undue mistrust of his own powers, enlarges the
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3.2 Supported range

The choice of critical value is much less standardized or conventional than
say the one for a significance test, or confidence level, or a highest posterior
density.

Fig 3.4 (based on 20/50) vs. Fig 3.3 (based on 4/10): the authors don’t
say it explicitly, but the sharpness of the log- likelihood function is measured
formally by the second derivative at the point where the function attains its
maximum.

3.3 The log likelihood

The (log-)likelihood is invariant to alternative monotonic transformations of
the parameter, so one often chooses a parameter scale on which the function
is more symmetric, so that z-based (CLT) inference is more accurate.

3.4 Censoring in follow-up studies

See applications below. These will be more relevant after we consider all of
the fitting options, and the benefits/flexibility of a Likelihood approach.

3.5 Other fitting methods

We mentioned earlier that the method of least squares does not make an ex-
plicit assumption about the distribution of the deviations from the target or
even that the observed data are a sample from a larger universe. Another
older method, that does not make explicit assumptions about the variations
about the postulated means, (and the subject of Fisher’s (rejected) 1916 sub-
mission to Biometrika) is the method of minimum chi-square . It was
used for fitting simpler models for dose response data involving count data.
This minimum chi-square criterion does not lead to simple methods of esti-
mation, or to estimators with easily derived sampling distributions. Never-
theless, it is one of the three methods (the others are ML – which requires
a fully specified model for the variations, and LS, that does not) used in
the java applet, superceded by the shiny app, accessible from then webpage
2 Datapoints And a Model. The applet allows you to fit a linear model to the
above-described 2-datapoints dataset, and to monitor how the log-likelihood,
the sum of squared deviations, and the chi-square goodness of fit statistics
vary as a function of the entertained values of �.

[ Note added in 2022: This applet was built some years ago, before (in
2021) JH collaborated with Prof. Christian Genest, in the Dept. of Mathe-
matics and Statistics, on the Randomized Response survey method for asking
sensitive questions. JH produced an initial draft (available on request) based
on the

:::
ML method of fitting, but Christian convinced him that it would be

over the heads of too many readers/teachers/users, and that it was better to
go with the simpler-to-explain and simpler-to-implement Method of Moments
(MoM) – a technique that goes way back, and was used extensively by Karl
Pearson and others. JH had always regarded the MoM as an ‘ine�cient’ es-
timator, where the SE was not always readily available, and thought it had
gone out of favour. So he was happy to have this modern endorsement of it,
and has now elevated it in his list of parameter-estimation tools. This also
explains the appearance in the 2022 notes of exercise 3.20 on the fitting of the
‘chain-binomial’ model, where he suspects that Major Greenwood also used
the Method of Moments to fit a ‘suitable’ value of p.]

The applet reminds us that the
:::
LS

:::::::
method

:::::::::
measures

::::
lack

::
of

:::
fit

:::
on

:::
the

:::::
same

::::
scale

::::
that

:::
the

:::
y’s

:::
are

:::::::::
measured

:::
on (cf the two red lines). The min-X2 method –

applied to y’s that represent counts or frequencies, is similar, in that the “loss
function” is

P
(y� ŷ)/ŷ2. The criterion for the

:::
ML fitting of a Poisson model

is very di↵erent, in that it is measured on the
:::::::::
probability or

:::::::::::::
log-probability

scale, and projecting out from the x� y plane.

Under some Normal models with homoscedastic
7
variation, the LS

and ML methods give the same estimates for the parameter(s) that

make up the mean. For example, if y|x ⇠ Normal(µx,�2), then

Lik =
Y

(1/�) exp[�{(yi � �xi)
2/2�2}].

7

7
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This Likelihood is maximized when its log

LogLik =
X

(� log �)� {(yi � �xi)
2/2�2}

is max imized, or equivalently when
P

{(yi � �xi)2/2�2} is minimized. The
minimization is the same one involved in the LS estimation.

Supplementary Exercise 3.2

Grouped Normal data, from section 12.2 of Fisher’s paper.8Three hundred
observed measurement errors (✏’s) from a N(0,�) distribution are grouped
(binned) in nine classes, positive and negative values being thrown together
as shown in the following table:-

Bin 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 All
Frequency (f) 114 84 53 24 14 6 3 1 1 300

Estimate �2 ...

1. as (1/300)
P

f⇥✏2
mid

. Note that we estimate it using a divisor of n rather
than n� 1, since we do not have to estimate µ : the errors are deviations
from known values, so µ = 0 (structurally).

2. Using Sheppard’s correction for the grouping, i.e, by subtracting w2/12,
where w is the width of each bin, in this case 1. Incidentally, can you
figure out why Sheppard subtracts this amount? Shouldn’t grouping add
rather than subtract noise?

3. Using the method of Minimum �2.

4. By directly maximizing the (log) Likelihood, either by plotting or tabulat-
ing it and zooming in on the maximum, or by supplying the log-likelihood
to a function such as optim or optimize, or by using a root-finding ap-
proach, such as that of Newton-Raphson, to obtain the root of the equa-
tion dLogL(�)/d� = 0, or dLogL(✓)/d✓ = 0, where ✓ = �2 or log(�) or
log(�2) or some other transform of �.

5. Using the method of Maximum Likelihood, but using the ‘EM’ algorithm.
For a compact description of the EM algorithm, see section 2.2 in the
paper ‘A statistician plays darts’ by Tibshirani (Jr), Price and Taylor.
Hint : be careful when you iteratively re-estimate the expected values:
since we are focused on �2, at issue is the expected values of the squares
of the values inside each bin, not the values themselves.

8On the Mathematical Foundations of Theoretical Statistics, Philosophical Transactions
of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical
Character, Vol. 222 (1922), pp. 309-368. available here: http://www.medicine.mcgill.

ca/epidemiology/hanley/bios601/Likelihood/Fisher1922.pdf.

Supplementary Exercise 3.3

Frequency data, the subject of Galton’s 1894 correspondence with the
Homing News and Pigeon Fanciers’ Journal. 9 Significance magazine had
special Galton coverage in 2011, the 100th anniversary of his death – Galton
was born in 1822, the same year, he noted himself, as the geneticist Gregor
Mendel. In the article “Sir Francis Galton and the homing pigeon”, Fanshawe
writes...

”The results for the 3,207 “old birds” are shown in the table. The
table shows the proportion of birds in each category. Galton suggests
summarising the figures by their mean and “variability”, which he
estimates as 976 and 124 yards per minute respectively. It is not clear
which quantity Galton calls the “variability” – his figure appears too
small to be a standard deviation.

The second row of figures are Galton’s, and arise from the propor-
tions that would be expected by approximating the original data by
a Normal distribution. The fit appears extremely good.”

Using these frequencies and bin-boundaries10 from the journal article, and the
Normal distribution assumed by the journal and by Galton,

Bin -5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14+ All
Freq 22 43 164 284 598 645 683 396 132 120 120 3207

estimate µ and �, and, where possible, using SE(µ̂) and SE(�̂), 11 form sym-
metric (frequentist) confidence intervals for µ and �,

1. by concentrating the frequencies at the midpoints, and at suitably chosen
values for the two open-ended categories

2. via the method of Minimum �2, and

3. via the method of Maximum Likelihood. Then

4. determine whether Fanshawe is correct: i.e., is the “124 yards” measure
of “variability” indeed too small to be a standard deviation (SD)?

9Fanshawe’s article, and R code) are available here.
105-6 means 500-600 yards per minute, etc.
11Since s2 ⇠ (1/⌫) ⇥ �2 ⇥ ChiSq(d.f. = ⌫), then Var[s2] = (1/⌫2) ⇥ �4 ⇥ 2⌫. By Delta

method,

Var[s] ⇡ Var[s2]⇥
n

ds
ds2

o2
= (1/⌫2)⇥ �4 ⇥ 2⌫

| {z }
⇥ (1/4)⇥ {1/�2}

| {z }
= (1/2⌫)⇥ �2,

so SE[s] ⇡ �/
p
2⌫

8
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5. Galton rarely used the SD.12 Instead he – as Gosset often did – used the
Probable Error (PE), i.e., 1/2 the IQR.13

In a Gaussian distribution, how much smaller/larger is the PE than the
SD?

Does this factor explain how Galton arrived at the 124 yards per minute?

The sample size is so large here that the symmetric (z-based) CI for � is
quite accurate. By what if the sample size were quite small? In this case you
could use the tails of the (non-symmetric) distribution of the distribution of
s2 to derive an asymmetric first-principles frequentist confidence interval for
�2, and by transformation, for �.14

Supplementary Exercise 3.4 : Did Isaac Newton know the ‘
p
n Law’?

Both in his recent book Seven Pillars of Statistical Wisdom, and in his 1977
JASA article Eight Centuries of Sampling Inspection: The Trial of the Pyx,
Stephen Stigler explains how the quality control scheme used by the Royal
Mint was based on the – flawed – ‘law’ (or belief) that, for i.i.d. random
variables y ⇠?(µ,�),

SD

 nX

1

yi

�
= n⇥ �, and SD


ȳ = (1/n)⇥

nX

1

yi

�
=

�

n
.

It appears they were unaware that it is variances that add, not SD’s, and that
SD’s of sums or means scale with

p
n,, not n.

Understanding which version is correct is key in quality control, and in set-
ting critical values to flag when the process has (been) altered – or in this
application, to detect cheating. The Mint based their tolerances (they called
it the ‘remedy’, because those who were caught had to pay back.) Stigler
continues...

“The most illustrious master of the Mint was Isaac Newton, who
served in that position from 1699 until his death in 1727, having been
Warden since 1696. It is natural to ask if this great scientist might

12Karl Pearson was the one who promoted the SD.
13Thus, it is equally probable (50:50) for an observation to be more/less than this amount

from the middle (truth).
14Hint: (taking some semantic liberties) a first-principles 100(1-↵)% frequentist CI, (L,U)

for ✓ is the pair of statistics (L,U), such that Prob(✓̂ � ✓̂observed | ✓ = L) = ↵/2 and

Prob(✓̂  ✓̂observed | ✓ = U) = ↵/2.

have benefited from the remedy during his tenure with the Mint,
either with or without the approval of the Crown. Such evidence
as exists seems to indicate that he did not. Newton’s manuscripts
show him to have had a conscientious concern with the integrity
of the Mint’s product and to have put particular emphasis on the
reduction of the variation in individual pieces. He was acutely aware
of the possible benefit of the remedy to importers (through their
returning of overweight coins for remelting) and sought to maintain
a high standard for accuracy.

Was Newton’s grasp of statistical theory su�cient to allow him to
take advantage of the remedy, had he wished? His published works
have little to say about probability (Sheynin 1971), and his inter-
pretations of data relevant to his physical theories were sometimes
more influenced by his preconceptions than by statistical analysis
(Westfall 1973). Nonetheless, in order to obtain some insight into
Newton’s understanding of the behavior of sample means, we shall
examine a work he wrote while master of the Mint, where an inter-

val estimate of a mean is presented in a situation conceptually
similar to the trial of the Pyx.

The work in question was Newton’s last, The Chronology of Ancient
Kingdoms Amended, published post-humously in 1728. It had been
written primarily as a defense of a short chronology of ancient history
he had prepared for the Princess Caroline which had been printed
in an unauthorized version in France in 1725. As part of his inves-
tigation of the dates of ancient events, Newton sought to show that
earlier chronologists who had reckoned the average reign of ancient
kings as being 35 to 40 years had been in error. By appealing to data
from the more accurately recorded periods of history he meant to de-
termine an estimate of the mean length of a reign, a quantity
that could in turn be used to estimate lengths of eras when numbers
of kings were more accurately recorded than were years. He wrote:

For by the ordinary course of nature Kings Reign, one with
another, about eighteen or twenty years a-piece: and if in
some instances they Reign, one with another, five or six
years longer, in others they Reign as much shorter: eigh-
teen or twenty years is a medium. So the eighteen Kings of
Judah who succeeded Solomon, Reigned 390 years, which
is one with another 22 years a-piece ... (Newton 1728, p.
52).

Newton went on to list the data for eleven more periods of
time; these data are presented in tabular form in Table 2.

9
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 instances they Reign, one with another, five or six years longer,
 in others they Reign as much shorter: eighteen or twenty years
 is a medium. So the eighteen Kings of Judah who succeeded
 Solomon, Reigned 390 years, which is one with another 22
 years a-piece ... (Newton 1728, p. 52).

 Newton went on to list the data for eleven more periods
 of time; these data are presented in tabular form in

 Table 2. After presenting the data, he repeated his

 2. Newton's Data on Length of Kings' Reigns

 Number Mean reign Mean
 Kingdom of kings Years (Newton) reign

 Judah 18 390 22 21.67
 Israel 15 259 171/4 17.27
 Babylon 18 209 112At 11.61
 Persia 10 208 21 20.80
 Syria 16 244 151/4 15.25
 Egypt 11 277 25 25.18
 Macedonia 8 138 171/4 17.25
 England (1066-1714) 30 648 211/2 21.60
 France (first 24) 24 458 19 19.08
 France (second 24) 24 451 18V4 18.79
 France (last 15) 15 315 21 21.00
 France (all) 63 1224 191/2 19.43

 Source: Adapted from Newton (1728, pp. 52-3).

 contention that in "the course of nature," the reign of
 kings should be reckoned "at about eighteen or twenty
 years a-piece" (Newton 1728, p. 54). Where did Newton
 get his interval estimate of the mean? That he repeated
 "eighteen or twenty years" three times rather than even
 once quoting nineteen as a "medium" would indicate
 that he did indeed think of his estimate as an interval.
 Newton presented no calculations, but it is instructive
 to use the twelve average reigns of the third column of
 Table 2 to compute an overall mean plus or minus an
 estimated standard error of the mean, or X i s/V12,
 in the manner of present day physicists. We find
 19.10 i 1.01. An alternative analysis would (a) note that
 the kings of France should not be included twice, elimi-
 nating the twelfth row of the table, (b) use the actual
 means of column 4 rather than Newton's approximations,
 (c) use a weighted (by number of kings) mean of the
 eleven remaining numbers in column 4, and the corre-
 sponding maximum likelihood estimate of the standard
 deviation of this weighted mean. This would give
 19.03 i 1.01. Now, the point is not that Newton did
 either of these calculations. We can be certain he did not,
 although he may have calculated the mean of the third
 column. The point is that the ad hoc or intuitively
 derived interval he did present was in rough accord
 with something reasonable, i.e., roughly a 65 percent
 confidence interval. Had Newton specified an interval
 on the same basis as that apparently used to determine
 the remedy in the trial of the Pyx, he would have made
 a very different statement. As we have seen, the limits
 set for the trial of the Pyx correspond to values such that
 a sizable proportion (about 95 percent) of single coins
 fall between them; these limits were then, in effect,
 applied to average weights of large numbers of coins. An

 analysis of the length of reigns of the kings of England,
 data easily available to Newton, suggests that an interval
 such as 19 i 11 includes about 65 percent of king's reigns.
 Yet Newton, who knew he would be applying his state-

 ment to aggregates of reigns, based his analysis upon
 aggregates and gave an interval appropriate to aggregates.
 Newton must have realized that 19 ? 1 would only
 contain a small fraction of individual reigns, and it
 seems safe to say on the basis of this that he had at least

 an approximate intuitive understanding of the manner
 in which the variability of means decreased as the number

 of measurements averaged increased. The application of
 this understanding to the trial of the Pyx would have
 been well within Newton's capabilities.

 Newton's term as master was not free of scandal.

 Following a 1710 trial of the Pyx, the charge was made

 that his gold coinage was less fine than the trial plate,
 but he survived with his reputation intact after success-

 fully arguing that the 1707 trial plate being used was too
 fine a standard for fair comparison (Craig 1953, p. 216;
 1946, p. 77; Newman 1975). Newton did become wealthy
 as master of the Mint. Prior to 1695, "his pecuniary
 circumstances are said to have been rather straightened,"
 (De Morgan 1840, p. 200) yet when he died he left a

 princely estate of ?32,000. However, Craig (1946, p. 124)
 feels that this can be accounted for by savings from
 salary and fees of about ?1,500 per year and investment
 income; indeed, de Villamil (1931, pp. 19-29), in a partisan

 but apparently factual account of Newton's finances,
 provides a detailed scenario of how Newton, despite
 investment losses of ?4,000 and considerable generosity
 to friends and relatives, could have amassed such a
 fortune. Thus while the inventor of the calculus and
 discoverer of the law of gravity may or may not have
 fathomed the intricacies of the significance test, there
 seem to be no grounds for believing that he took ad-
 vantage of this knowledge for personal gain.

 6. THE SITUATION IN THE UNITED STATES

 Trials similar to that of the Pyx have long been carried
 out in the United States but with an interesting differ-

 ence. The Constitution reserved the right to coin money
 to the federal government, and the U.S. Mint was
 established by congressional action in 1792. The Act of
 1792 provided that of each "separate mass" of metal
 made into coin, no fewer than three coins be reserved
 for a yearly assay in the presence of the Chief Justice,
 the Secretaries of State and Treasury, and the Attorney
 General. The Act (Section 18) further specified that
 results must be within one part in 144 parts of the given
 standards, else the Mint officers "shall be deemed dis-
 qualified to hold their respective positions." (United
 States 1894, p. 6). Thus, at the outset, the American
 system was much like the British.

 However, in 1837 another Act of Congress introduced

 a subtle change into this procedure. In Section 25 of the
 Act of January 18, 1837, a double system of tolerances
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After presenting the data, he repeated his contention that
in “the course of nature,” the reign of kings should be reck-
oned “at about eighteen or twenty years a-piece” (Newton
1728, p. 54). Where did Newton get his interval esti-
mate of the mean? That he repeated “eighteen or twenty
years” three times rather than even once quoting nineteen
as a “medium” would indicate that he did indeed think of
his estimate as an interval. Newton presented no calcula-
tions, but it is instructive to use the twelve average reigns
of the third column of Table 2 to compute an overall mean
plus or minus an estimated standard error of the mean,
or x̄ ± s/

p
12, in the manner of present day physicists.

We find 19.10 ± 1.01. An alternative analysis would (a)
note that the kings of France should not be included twice,
eliminating the twelfth row of the table, (b) use the actual
means of column 4 rather than Newton’s approximations,
(c) use a weighted (by number of kings) mean of the eleven
remaining numbers in column 4, and the corresponding
maximum likelihood estimate of the standard deviation of
this weighted mean. This would give 19.03 ± 1.01.

Now, the point is not that Newton did either of these cal-
culations. We can be certain he did not, although he may
have calculated the mean of the third column. The point
is that the ad hoc or intuitively derived interval he did
present was in rough accord with something reasonable,
i.e., roughly a 65 percent confidence interval. Had Newton
specified an interval on the same basis as that apparently

used to determine the remedy in the trial of the Pyx, he
would have made a very di↵erent statement. As we have
seen, the limits set for the trial of the Pyx correspond to
values such that a sizable proportion (about 95 percent)
of single coins fall between them; these limits were then,
in e↵ect, applied to average weights of large numbers of
coins. An analysis of the length of reigns of the kings of
England, data easily available to Newton, suggests that an
interval such as 19 ± 11 includes about 65 percent of king’s
reigns. Yet Newton, who knew he would be applying his
statement to aggregates of reigns, based his analysis upon
aggregates and gave an interval appropriate to aggregates.
Newton must have realized that 19 ± 1 would only contain
a small fraction of individual reigns, and it seems safe to

say on the basis of this that he had at least an ap-

proximate intuitive understanding of the manner

in which the variability of means decreased as the

number of measurements averaged increased. The
application of this understanding to the trial of the Pyx
would have been well within Newton’s capabilities.

Q. for suppl. exercise 3.4 for bios601: (1) What do you think of Stigler’s
evidence, and his conclusion? (2) Either analytically or numerically, try to
re-produce the 19.03 ± 1.01, stating any additional assumptions made.

Supplementary Exercise 3.5

Refer again to the article Maternal Lead Levels after Alterations to Water
Supply in The Lancet 1981 https://www-sciencedirect-com.proxy3.library.

mcgill.ca/science/article/pii/S0140673681903846 .

1. The authors do not explain how exactly they handled the 9 tabulated in-
tervals for blood lead concentrations. Argue why the boundaries for these
9 intervals may well have been lower = c(0, seq(0.255,1.655,0.2) )
and upper = c(seq(0.255,1.655,0.2), Inf)

2. Fit two separate log-normal models to the reported 1977 and 1980 dis-
tributions, and plot the fitted distributions on the original scale.

3. How close do the fitted medians come to the reported ones?

4. How would you obtain a standard error for the estimated di↵erence in
medians?
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5. Indicate how you could include the two separate models within one larger
regression model that includes (0,1) term(s) for ’post-intervention’

6. Explain how you might fit this larger ‘all-in-1’ model (a) using ‘canned’
software (b) your own homegrown ML-fitting routine. [you don’t have to
actually develop the code; just the approach.]

3.6 Other Applications: exercises

3.6.1 2 datapoints and a model

One has 2 independent observations from the (no-intercept) model

E[y|x] = µy|x = � ⇥ x.

The y’s might represent the total numbers of typographical errors on x ran-
domly sampled pages of a large document, and the data might be y = 2 errors
in total in a sample of x = 1 page, and y = 8 errors in total in a separate
sample of x = 2 pages. The � in the model represents the mean number of
errors per page of the document. Or the y’s might represent the total weight
of x randomly sample pages of a document, and the data might be y = 2 units
of weight in total for a sample of x = 1 page, and y = 8 units for a separate
sample of x = 2 pages. The � in the model represents the mean weight per
page of the document.

We gave this ‘estimation of �’ problem { (x, y) = (1, 2) & (2, 8)} to several
statisticians and epidemiologists, and to several grade 6 students, and they
gave us a variety of estimates, such as �̂ = 3.6/page, 3.33/page, and 3.45!

Supplementary Exercise 3.6

How can this be? The di↵erences have to do with (i) what model they (im-
plicitly or explicitly) used for the variation of each y | x around the mean µy|x
and (ii) the method of fitting.

1. From 1st principles derive the Method of Moments (MM), Least Squares
(LS) and (if possible the) Maximum Likelihood (ML) estimators15 of �
when

(a) y | x ⇠ ???(µy|x)

(b) y | x ⇠ Poisson(µy|x)

(c) y | x ⇠ N(µy|x,�) [assume � is known]

15[if the estimator doesn’t dependent on the model, just say so.

(d) y | x ⇠ N(µy|x,�
2 = x⇥ �2

0) [assume �2
0 is known]

2. Where possible, match the estimators with the various numerical esti-
mates above.

3. One of the numerical estimates came from another fitting method, namely
the (now seldom-used) method of Minimum Chi-square, which seeks the

value of � that minimizes
P (O�E)2

E
=

P (y��x)2

�x
in this example. Verify

that the one remaining estimate of unknown origin is in fact obtained
using this estimator.

See the shiny app 2 Datapoints And a Model.

One of the messages of this exercise is that for one to use a likelihood approach, one
must have a fully-specified probability model so that one can write the probability of each
observed observation.

And, with di↵erent distributions of the y’s around the mean µy|x = E(y|x) = � ⇥ x, the
probabilities (and thus the overall likelihood, and its maximum, would be di↵erent.

3.6.2 Application: Estimation of parameters of gamma distribu-

tion fitted to tumbler mortality data [interval-censored and

right-censored data].

The important but seldom-visited article “Tumbler Mortality” by Brown and Flood in
JASA in 1947 shows the “survival” of tumblers (Free Online Dictionary: a. A drinking
glass, originally with a rounded bottom. b. A flat-bottomed glass having no handle, foot,
or stem.) in a cafeteria. Note that whereas the authors used the word truncation for the
observations on tumblers that were still in service at the end of the test, we would use the
word ‘right-censored ’ today. Since inspections were only once a week, the lengths of service
of the items that did fail are also censored, but within [in most instances] a 1-week interval.
This type of censoring is called ‘interval-censoring’.

Supplementary Exercise 3.7

Using the data16 in Table 1 of the “Tumbler Mortality” article, determine the MLEs of the
two parameters of the gamma distribution, and compare them with those obtained by the
original authors [they use a slightly approx. ML method]. Do so in two ways (they should
give the same likelihood function, and thus the same MLEs):

1. using an unconditional approach, based on 549 contributions – one per tumbler, with
each tumbler considered in isolation from the other 548 – so that each failure (uncon-
ditional) contributes one term and each (ULTIMATELY) censored observation (also
unconditional) contributes another. [of course, there are ‘multiplicities’; thus, instead
of a sum of 549 log-likelihhods, you can use the multiplicities (and multiplication of a
1-item log-likelihood by the multiplicity) to reduce the computation].

2. using the binomial structure created by the authors: a row that has n exposed tum-
blers that week (and that only considers whether the tumbler that began that week
survived that week) makes n Bernoulli-based log-likelihoods, (or 1 Binomial-based
log-likelihood) for that week.

16Contained in the R code.
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This exercise shows that there is more than 1 way to set up the likelihood.

3.6.3 Application: Estimation of parameters of a parametric dis-

tribution fitted to avalanche mortality data [all observations

are censored – either left-censored or right-censored. Such

data are often referred to as “current-status” data].

One example of status-quo data is data from a cross-sectional survey of menarche status
in girls, or the prevalence of decayed-missing-or-filled (DMF) teeth (or say permanent den-
tition) in dental public health, or HIV prevalence in the general population or in specific
sub-populations, such as partners of persons who contracted HIV though blood donations.

Another is the data from the Avalanche Survival Chances by Falk et al. in the journal
Nature in 1994. The data are here and some R code here.

The authors fitted a non-parametric model. We will discuss in class which parametric
models (or mixtures of di↵erent parametric models) might make sense. But, just to get
some practice with this type of data, we will start with a very simple one, even if we know
a priori it is too simplistic.

Supplementary Exercise 3.8

Using the raw data, and (for now) the simplistic parametric model we agreed on in class,
determine the MLEs of the two parameters of this gamma distribution, and compare the
fit with the fit of the smooth and non-parametric curves shown in the authors’ article.

3.6.4 Application: Genetics of Blood Groups

[Premiminary] Questions 1-6 below were set by Olli Saarela for course EBIB607. See here
for the relevant pages from section 3.7 of Edwards’ book, where his main purpose is to
illustrate the Likelihood ratio

Prob(data | single tri-allelic locus)

Prob(data | two bi-allelic loci)
,

and section 6.8 where he addresses the parameter fitting.

The example is from the book “Likelihood” by Edwards (1972) and originates from
Bernstein, who in 1924 and 1925 discovered the inheritance pattern of ABO blood groups.
Formerly, it was thought that the ABO bloodgroup phenotype was determined by two bial-
lelic loci with alleles {A, a} and {B, b}, respectively. Under this model, the individual has
a bloodgroup phenotype ‘AB’ when both alleles A and B are present, bloodgroup ‘A’ when
allele A is present and allele B is not present, bloodgroup ‘B’ when allele B is present and
allele A is not present, and finally, bloodgroup ‘O’ when neither A or B is present. The 6
sub-questions Saarela posed were the following [JH would immediately turn to trees to see
what was going on]

1. List the possible genotypes under the two loci model (there are 9 in total).

2. In a population of 502 individuals, 42.2% had the observed bloodgroup phenotype
‘A’, 20.6% had the bloodgroup ‘B’, 7.8% had the bloodgroup ‘AB’, and the remaining
29.4% had the bloodgroup ‘O’. Let us denote by P (A = 1) the (marginal) probability
that the allele A is present, and P (B = 1) the (marginal) probability that the allele
B is present. Recall from the lecture notes that the probabilities of mutually exlusive
alternatives are additive, so that

P (A = 1) = P (A = 1 and B = 1) + P (A = 1 and B = 0)

and
P (B = 1) = P (B = 1 and A = 1) + P (B = 1 and A = 0).

Using the observed data, and estimating the probabilities by the corresponding em-
pirical proportions, calculate the probabilities P (A = 1), P (A = 0), P (B = 1) and
P (B = 0).

3. Under the two loci model, and assuming the loci to be independent (not in linkage
disequilibrium), we can calculate the probability of each bloodgroup phenotype from
the above four marginal probabilities; for instance the probability of the ‘AB’ pheno-
type is given by

P (‘AB’) = P (A = 1 and B = 1) = P (A = 1)P (B = 1).

Using the observed data, calculate the probabilities of the four blood group phenotypes
under this model.

4. An alternative model is that the ABO bloodgroup is in fact determined by a single
triallelic locus with the alleles {A,B,O}. List the possible genotypes under this model
(there are 6 in total), and the bloodgroup phenotype related to each of these.

5. Suppose that from the observed data, the allele frequencies (that is, the probabili-
ties that a copy of the particular allele is inherited from a given parent) under the
single locus model were estimated as P (A = 1) = 0.2945, P (B = 1) = 0.1547 and
P (O = 1) = 0.5508. Using these estimates, calculate the four phenotype probabilities
P (‘AB’), P (‘A’), P (‘B’) and P (‘O’) under the single locus model. (Hint: add the
probabilities of di↵erent possible genotypes corresponding to a particular phenotype
and assume that the maternal and paternal alleles are inherited independently).
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6. Which model fits better to the observed phenotype proportions?

The 607 exercise illustrates the competing hypotheses (probability models) as to how the
ABO blood group phenotypes are determined.

Edwards used the Likelihood ratio to show the far greater support for the single tri-allelic
locus hypothesis (H1) over than the two bi-allelic loci hypothesis (H2)

Part (5) of the 607 exercise gives, without the technical details, the (data-based) estimates
of P (A = 1), P (B = 1), & P (O = 1) = 1� {P (A = 1) + P (B = 1)}. The 607 students are
then asked to calculate the 4 expected frequencies under this model, and to compare these
fitted frequencies with those calculated under the other model.

When he uses p̂, q̂ & r̂ to calculate the Likelihood ratio, in section 3.7 of his book, Edwards
simply says that p = P (A = 1), q = P (B = 1), & r = P (O = 1) ‘must be (were) obtained

by iteration’. In his section 6.8 (ML with a constraint among parameters) he gives several
suggestions for estimation: one is to plot the log-Likelihood ‘surface’ as contours on a ‘Streng
diagram’ (a triangle used for 3-nomial probabilities) and zoom in numerically; another is
what he calls ‘Fisher’s method’; another is to use the Lagrangian multiplier method; and
the last is the ‘counting method’, which he works through, starting on p139.

Nowadays, the simplest way is to simply write down the log-likelihood and directly maximize
it. It is a 4-nomial, (e↵ectively) 2-parameter log-likelihood, and thus easily maximized.
Ignore the slightly ‘non-integer’ observed frequencies.17

Phenotype Genotype(s) Theoretical Proportion Observed Frequency⇤

‘A’ AA, AO p(p+ 2r) 502 ⇥ 0.422
‘B’ BB, BO q(q + 2r) 502 ⇥ 0.206
‘AB’ AB 2pq 502 ⇥ 0.078
‘O’ OO r2 502 ⇥ 0.294

Supplementary Exercise 3.9

1. Find p̂ML and q̂ML (and thus r̂ML ) directly.

Hint : To avoid inadmissible parameter regions (< 0 or > 1), you could re-express the
3 parameters as

p =
exp[↵]

exp[↵] + exp[�] + 1
; q =

exp[�]

exp[↵] + exp[�] + 1
; r =

1

exp[↵] + exp[�] + 1
,

and maximize over ↵ and �.

2. In 1977, the ‘counting method’ described by Edwards became known as the ‘EM
algorithm.’ Explain exactly what the EM does, and why it works, and then formally
apply it to these data. [The Tibshirani Jr. article in section 3.6.7, ‘estimating one’s
accuracy in darts’, may be of help.]

17⇤Edwards tells us that ‘the data are for Japanese in Korea, and are due to Kirihara. I
cannot find and set of frequencies adding to 502 which would lead to the given proportions,
so I have made the ensuing calculations in terms of the proportions themselves’. But for
precision purposes, the 502 does matter, so JH suggests using the ‘slightly non-integer’
frequencies. Some software, expecting binomial or multinomial frequencies, would object,
but you do not need to tell the optim function that the supplied frequencies in the log-
likelihood are non-integer.

3.6.5 Application: Estimating the concentration of micro-

organisms via a Dilution Series.

[Again, text from (section 12.3 of) Fisher’s 1922 paper. [Note: for clarity, JH replaced

some of Fisher’s notation, by letting the expected or average concentration of micro-

organisms
:
in

:::
the

:::::::
original

:::::::
solution be µ per cubic centimetre – Fisher had n per cubic

centimetre – and by modifying the descriptions of x and a.]

An important type of discontinuous distribution occurs in the application of the dilution
method to the estimation of the number of micro-organisms in a sample of water or of
soil.18

The method here presented was originally developed in connection with Mr. Cutler’s ex-
tensive counts of soil protozoa carried out in the protozoological laboratory at Rothamsted,
and although the method is of very wide application, this particular investigation a↵ords
an admirable example of the statistical principles involved.

In principle the method consists in making a series of dilutions of the soil sample, and
determining the presence or absence of each type of protozoa in a cubic centimetre of the
dilution, after incubation in a nutrient medium. The series in use proceeds by powers of
(a =) 2, so that the frequency of protozoa in each dilution is one-half that in the last. The
frequency at any stage of the process may then be represented by

µx =
µ

2x
,

when x indicates the number of dilutions.

In practice it would be exceedingly laborious to calculate the optimum (ML) value of µ
for each series observed (of which many are made daily). On the advice of the statistical
department, therefore, Mr. Cutler adopted the plan of

::::::
counting

:::
the

::::
total

::::::
number

::
of
:::::
sterile

:::::
plates,

:::
and

::::::
taking

:::
the

::::
value

::
of

::
µ

:::::
which

::
on

:::
the

::::::
average

:::::
would

::::
give

::::
that

::::::
number. (i.e., by

the
::::::
Method

::
of

:::::::
Moments).

To calculate the
:::
ML value, Fisher proceeded as follows: “Under conditions of random

sampling, the chance of any plate made from the xth dilution receiving 0, 1, 2, 3 protozoa
of a given species is given by the Poisson series

e�µx

✓
1, µx,

µ2
x

2!
,
µ3
x

3!
, . . .

◆
,

18See related article, What Petri dishes have to do with your research in Significance
Magazine, and Sampling Errors when Determining Bacterial/Virus Density by the
Dilution Method.

::::::
Today’s

::::::::
statistical

::::::
workers might appreciate how easy they have it,

compared with their counterparts ‘back then’, where Haldane boasted that “Such equations
can be solved within an hour or so with no tables beyond an ordinary table of logarithms,
by successive approximations”.
The two ‘no-SE provided’ articles Haldane (1939) refers to are
Halvorsen, 1933 and Parker, 1938. Both of these authors refer to this
very interesting 1917 article by Greenwood and Yule, who “were recently consulted by

an o�cer serving on the Western Front as to the significance attaching to ordinary

bacteriological methods of gauging the potability of waters. He wished to know what was

the probability that a given water supply did not contain more than a certain proportion

of bacteria in the unit volume, it having been found that particular samples tested showed

no growth while, perhaps, larger samples had done so, or that so many out of a series of

samples of the same size had given positive results.”
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and in consequence the (expected) proportion of
::::
sterile plates at dilution x is

px = e�µx ,

and of
:::::
fertile plates (plates that ‘grow’)

qx = 1� e�µx .

In general we may consider a dilution series with dilution factor a so that

log px = �
µ

ax
[= �

µ

2x
in example below],

and assume that nx plates are poured from dilution x. The object of the method is to
estimate µ from a record of the sterile and fertile plates. We can do so by treating the
observed number of fertile plates at dilution x, say n+

x , out of the nx poured from dilution
x, as a realization of a binomial random variable, and thus writing the overall log likelihood
as

logLik =
X

x

n+
x ⇥ log(1� px) + (nx � n+

x )⇥ log(px),

when the summation is over the di↵erent dilutions.”

Supplementary Exercise 3.10

1. Estimate µ by the Method of Moments from the following dilution series data,
and indicate how you might you derive a SE for µ̂MoM. Note that, in the second
row, 1/4 and 1/2 denote 4 and 2 times the original concentration, and 1, 2, 3,
. . . denote 1/2, 1/4, 1/8 . . . times the original concentration. Thus, the 5 plates in the
x = 0; 2x = 1 column are from the original (not diluted, nor concentrated) soil sample

Dilution (x): -2 -1 0 1 2 3 4 5 6 7
2x: 1/4 1/2 1 2 4 8 16 32 64 128

No. of plates (nx) : 5 5 5 5 5 5 5 5 5 5
No. of fertile plates (n+

x ): 5 5 5 5 4 3 2 2 0 0

2. Do so using the
::::::
method

::
of

:::::::::::::::
minimum-chi-square [toggle the R function]

3. Do so using the method of
:::
ML, by directly numerically maximizing the log-L. If you

use optim, you get the Hessian, and thus the SE, ‘for free’.

4. Fisher went on to say that since “the method [of Moments] is of wide application and
appears at first sight to be a very rough one, it is important to calculate its

:::::::
e�ciency”.

On page 366 of his groundbreaking 1922 paper he did just that: so, read that page
and tell us what he found.

5. Fit µ (and a confidence interval for it) by fitting log µ via
::
glm us-

ing the complementary-log-log ‘link’. See the section Dilution assay in

McCullagh and Nelder’s Generalized Linear Models19 for why this works. [McCul-
lagh & Nelder use ⇢0 where Fisher uses m and JH uses µ. You can, w.l.o.g., use v = 1.

19Incidentally, this is the 50th anniversary of Nelder and Wedderburn’s groundbreaking
1972 paper

:::::::::
Generalized

:::::
Linear

::::::
Models, the abstract of which reads: “The

:::::::
technique

::
of

::::::
iterative

:::::::
weighted

:::::
linear

::::::::
regression

:::
can

::
be

::::
used

::
to

:::::
obtain

::::::::
maximum

::::::::
likelihood

:::::::
estimates of

the parameters with observations distributed according to some exponential family and sys-
tematic e↵ects that can be made linear by a suitable transformation. A generalization of the
analysis of variance is given for these models using log-likelihoods. These generalized linear
models are illustrated by examples relating to four distributions; the Normal, Binomial
(probit analysis, etc.), Poisson (contingency tables) and gamma (variance components).”

Their (only) parameter to be estimated/fitted (the estimand) is ↵ = log ⇢0; Since their
coe�cient � in the linear compound has a known value, the regressor variable which
accompanies it is called an

:::::
‘o↵set’. Some people would say we are forcing the value of

� log[2x] to have an accompanying coe�cient of 1: i.e. the
:::::::
coe�cient associated with

the ‘regressor’ x0 = � log[2x] is
::
not

::::::::
estimated

::::
from

:::
the

::::
data, but

:::::
known a-priori on

logical grounds.] The ‘o↵set ’ probably got its name for the fact that ‘in the old days’
the know quantity � ⇥ x0 would be removed by subtracting it from the y on the left
hand side of the regression equation.

3.6.6 Application: Pooled testing:- old and new uses

The following excerpts are from a 1976 article ‘Group testing with a new goal, estimation’,
in Biometrika by authors Sobel and Elasho↵. They begin by referring to Dorfman, whose
article, The Detection of Defective Members of Large Populations in the Annals of Math-
ematical Statistics, 1943, first used the ideas of group testing, with a binomial model, to
reduce the number of medical tests necessary to find all members of a group of
size N that have the syphilis antigen. They continued...

Another aspect of the group-testing problem arises when one is interested not in
the classification of all the individuals but in the estimation of the frequency of
a disease, or of some property, when group-testing methods can be used. Given
a random sample of size N, say, from a binomial population, the best estimate
of the prevalence rate p, in the sense of minimizing the mean square error, will
be obtained by testing each unit separately. However, if N is large and the tests
are costly, then a di↵erent criterion, that includes testing costs, may indicate
that group-testing designs should be used. We might expect benefits from group
testing to increase as p decreases.

[....] Example: Rodents are collected from the harbour of a large city, and,
after being killed, dissected, etc., their liver is to be carefully examined under
a microscope for the presence or absence of a specific type of bacterium. The
goal of the study is to estimate the proportion p of rodents that carry this
bacterium using an economical experimental design. In this application the cost
of obtaining the animals is negligible compared to the cost of testing, i.e. the
microscopic search. It was proposed that an economical design to estimate p
should be possible by combining in a single sample a small portion of the liver
from each of several test animals and then carrying out a microscopic search on
a homogeneous mixture of these liver portions. The problem is to find the best
number, say A, of liver portions to combine and how to estimate the prevalence
rate p from such a design. In addition, if this bacterial type is present in some
particular tests, then the pathologists want to know whether they should carry
out another test on a subset of these same animals or go on to test a new group
of A animals.

[...] Thompson (1962) estimated the proportion of insect vectors capable of trans-
mitting asteryellows virus in a natural population of the six-spotted leafhopper,
an aphid. Instead of putting one insect with a previously unexposed aster test
plant, he puts several insects with one test plant, for economic reasons, and waits
to see if the plant develops the symptoms of this virus. If it does, then at least
one of these insects carried the virus; otherwise it is assumed that none carried
it. The statistical problem is to choose an optimal number A of insects to be
put with one test plant.

Contemporary uses (as of 2019: (can also Google Minipool testing)
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The following text is an excerpt from Canadian Blood Services : Customer Letter #2005-
18, 2005-05-17, entitled “Planned Measures to Protect the Blood Supply from West Nile
Virus (WNV) - 2005 Season.”

Dear Colleague:

West Nile season is approaching once again and this letter is to inform you about
enhanced measures Canadian Blood Services has put in place to further protect
the safety of the blood supply during the 2005 season.

For the summer of 2005, Canadian Blood Services will again use single-unit
testing (SUT) to enhance the sensitivity of the West Nile Virus nucleic acid test.
Minipool testing (6 samples/pool) is used throughout the year.

• In the summer of 2005, a ‘trigger’ will be used to initiate SUT. SUT will
be initiated in a health region when a presumptive positive blood donor
is detected using minipool testing, OR the prevalence of recent confirmed
human cases in the preceding two weeks exceeds 1/1,000 population in
rural areas, or 1/2,500 in urban areas.

• SUT will cease in a health region when there have been no positive donors
for two weeks or the occurrence of WNV cases in the population falls below
the aforementioned population triggers.

Contemporary uses, 2020: COVID-19

See Sample Pooling as a Strategy to Detect Community Transmission of SARS-CoV-2, a
Research Letter in the Journal of the American Medical Association (‘JAMA’) in April
2020, and the preprint, by Clarice Weinberg, for the American Journal of Epidemiology
(‘AJE’) Making the best use of test kits for COVID-19. The published version is here.

See also Group Screening by Christian Genest et Christiane Rousseau.20

20Since its initial appearance as Le dépistage par groupe in volume 15(2) of Accrom↵th in
June 2020, it has now been translated into Czech and published under the title “Skupinový
screening” in Pokroky matematiky, fyziky a astronomie, 66 (2021), 73-80, and into Italian
and published under the title “Il trattamento per gruppi” in Ithaca: Viaggio nella Scienza,
17 (2021), 39-44.

Supplementary Exercise 3.11

Suppose that in order to estimate the prevalence (⇡) of a characteristic in a population,
one tests N randomly sampled objects by pooling them into nb batches of size k (so that
N = nb ⇥k) and determining, for each batch, i.e. collectively, if at least one of its members
is positive. Suppose that nb+ batches are found to be positive. Develop estimators of ⇡
using the method of moments, and using minimum �2 and Maximum Likelihood criteria.

3.6.7 Application: Measuring one’s accuracy at darts

In 2011, Tibshirani (junior!) et al.21 published a very instructive essay. In addition to its
innovative use of a personalized heatmap to show the optimal strategy for throwing darts,
it provides an engaging example for teaching several statistical concepts and techniques,
such as fast Fourier transforms, the EM algorithm, Monte Carlo integration, importance
sampling, and the Metropolis Hastings algorithm. It is a delightful blend of the applied
and the theoretical, the algebraic and the graphical.

It also continues the tradition of statisticians’ fascination with the imagery of marksmen.

In her chapter on metaphor and reality of target practice, Klein22 writes of ‘men reasoning
on the likes of target practice’ and describes how this imagery has pervaded the thinking
and work of natural philosophers and statisticians. Klein shows a frequency curve, by
Yule, for 1,000 shots from an artillery gun in American target practice. Pearson used it
in his 1894 lectures on evolution; he decomposed the frequency curve into two chance
distributions centered slightly to the right and left of the target, gave reasons why this
might occur, and used it to illustrate the interplay between random variation and natural
selection. He also used it in his 1900 paper in one of the illustrations of his test of goodness
of fit. Incidentally, Klein also reminds us of the origin of the term ‘stochastic.’ In Liddell
and Scott (1920) we find the following entries:

�⌧o�o& an aim, shot. a guess, conjecture.
�⌧o�a�µ↵ a missile aimed at a mark; an arrow, javelin.
�⌧o�a�⌧◆o& able to hit: able to guess, shrewd, sagacious.

Since the optimal aiming spot in darts – and thus the heatmap provided by the online applet
– depends strongly on one’s accuracy, much of the Tibshirani et al. article is devoted to
the challenge of estimating the (co)variance parameter(s) that describes this accuracy. All
of the estimators rely on the data generated by throwing n darts, aiming each time at the
centre of the board, i.e., the double-bulls-eye, and recording the result for each throw.

The authors noted that they would lose considerable information by not measuring the
actual locations where the darts land but considered this to be too time-consuming and
error-prone. Instead, they chose the individual scores produced by the throws (the 44 pos-
sible scores are 0:22, 24:28, 30, 32:34, 36, 38:40, 42, 45, 48, 50, 51, 54, 57, 60). Based on
n = 100 throws by authors 1 and 2, assuming the simplest variance model (equal, uncorre-
lated vertical and horizontal Gaussian errors), their standard deviations were estimated to
be �̂ = 64.6 and 26.9 respectively (the applet gives �̂ to 2 decimal places)

Our follow-up letter provides a measure of the statistical precision of these accuracy es-
timates (for example, we calculate that the 95% limits to accompany the reported point

21A statistician plays darts. See also the follow-up letter, along with several historical
references.

22Klein, J. L. (1997) Statistical Visions in Time: a History of Time Series Analysis 1662-
1938.

15

http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Likelihood/PooledSamplesCivid19jama_hogan_2020.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Likelihood/PooledTests.pdf
https://academic.oup.com/aje/article/189/5/363/5831425
https://accromath.uqam.ca/2020/09/group-screening/
https://accromath.uqam.ca/2020/09/le-depistage-par-groupe/
http://www.medicine.mcgill.ca/epidemiology/hanley/Reprints/Turner-Hanley-JRSS-A.pdf
https://mcgill.on.worldcat.org/v2/search/detail/35701148?datasource=library_web_fields&search=true&scope=wz%3A12129&clusterResults=on&func=find-b&topLod=0&queryString=Statistical%20Visions%20in%20Time&find=Go
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Proportion/Pearson1900.pdf
http://www.stat.cmu.edu/~ryantibs/darts/
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Likelihood/TibshiraniDartsArticle.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Likelihood/letter-jrssa-20110509.pdf


BIOS601: Notes, Clayton&Hills. Ch 3 (Likelihood) . v 2022.10.14

estimate 64.6 derived from 100 scores are approximately 56 and 75). More importantly,
we show that more precise estimates of � can often be achieved with the same number of
throws (or the same precision with fewer throws) if one uses a simpler yet more informative
version of the result from each throw.

Here, as in the letter, we focus on the simplest variance model, where horizontal and vertical
errors, ex and ey , are Gaussian, centered on (0,0), independent of each other and of the
same amplitude, i.e., �ex = �ey = �; ⇢ex,ey = 0.

We first consider the most mathematically tractable, but least practical, method of esti-
mating �, namely to measure the exact (x, y) locations where the n darts land. We then
consider the almost as mathematically tractable, but much more practical – and almost as
statistically e�cient – method of estimating �, namely to merely record in which ‘ring’ each
dart lands. We leave to later the the authors’ more complex – but sometimes less e�cient
– method based on actual 0-60 scoring system used in darts games.

Denote by ec,i the error in the c-th co-ordinate (1=‘x’, 2=‘y’) of the i-th dart.

Supplementary Exercise 3.12 23

1. Show that (1/2n)
P

c{
P

i e
2
c,i} is an unbiased estimator of �2 and that it is the

method-of-moments, the LS, and the ML estimator.

What sampling statistical distribution does this estimator follow?

Use the two separate ↵/2 tails of this (slightly non-symmetric) distribution to
derive an asymmetric first-principles frequentist confidence interval for �2.24

Suppose that for each dart thrown, one calculates the squared distance from
the center, ie d2i = e21,i + e22,i. Show that (1/n)

P
i d

2
i is an unbiased estimator of 2�2.

What sampling statistical distribution does each d2i follow? What is a common name
for the distribution of the square root of this random variable?

2. Suppose we simply divide the dartboard into 7 ‘rings’ 25 and record which one the
dart lands in: 1. the double-bulls-eye; 2. the single-bulls-eye; the ones formed by
the: 3. single-bulls-eye and inner triple; 4. inner and outer triple; 5. outer triple and
inner double; and 6. inner and outer double, wires respectively; and 7. beyond the
outer double wire (i.e., the throw misses the board). In other words, we divide the
dartboard into just 7 regions. Suppose that the distribution of the results of n = 100
throws is as follows:

ring: 1 2 3 4 5 6 7 all
frequency: 0 6 77 5 12 0 0 100

Calculate (and plot) the logLik(�2) function and find the MLE of �2.

23

This R code may/may not help.
24Hint: (taking some semantic liberties) a first-principles 100(1-↵)% frequentist CI, (L,U)

for ✓ is the pair of statistics (L,U), such that Prob(✓̂ � ✓̂observed | ✓ = L) = ↵/2 and

Prob(✓̂  ✓̂observed | ✓ = U) = ↵/2.
25In fact, the innermost region is a circle, the next 5 are rings, and the outermost one is

all of the remaining area.

3.7 An application of the EM algorithm: rounding (and
thus ‘heaping’ of the frequencies) of values

Just like having to code one’s own Newton-Raphson algorithm is being replaced by the
availability of functions such as optim, and as the use of MCMC methods is growing, it is
also the case that the EM algorithm – which used to be seem as a derivative-free approach
to parameter estimation in a large class of problems – may be becoming less common.

But it is still the simplest way for a large number of situations, not all of which are imme-
diately of the ’missing’ or ’incomplete’ data type. The original 1977 paper by Dempster,
Laird and Rubin has examples in contexts where its applicability not have been immedi-
ately obvious. [In her recent presentation in our Biostatistics Seminar Series, Laird tell of
one such use.]

As motivation for why it is an important item in the biostatistician’s repertoire (‘toolbox’),
consider the following example of ‘heaped’ frequencies resulting from the rounding of values.

Digit preference bias in the recording of emergency department times

Objective Digit preference bias has previously been described in a number of
di↵erent clinical settings. The paper aimed to assess whether digit preference bias
a↵ects the recording of the time patients arrive and leave emergency departments.

Method An observational study of 137 emergency departments in England and
Wales was conducted. Each department was asked to submit details of the time
of arrival and time of departure from the emergency department for each patient
attending during April 2004. In addition, interviews with the lead clinician were
undertaken to determine the method used to record the time of departure. The
degree of digit preference bias was assessed using a modification of Whipple’s
index.

Results One hundred and twenty-three (86.9%) departments submitted data
detailing 648 203 emergency department episodes. 114875 (18.0%) episodes had
a recorded minute of departure of ‘0’ or ‘30’, with a further 2 81 890 (44.1%)
having other values with a terminal digit of ‘0’ or ‘5’. The mean modified Whip-
ple’s index for time of departure was 316.9 (range 70.9-484.4). Linear regression
demonstrates a small but significant inverse relationship between the modified
Whipple’s index and the mean total time in department (b = -0.05, 95% CIs
-0.09 to -0.0004, P = 0.048).

Conclusion Some departments show considerable digit preference bias in the
recording of time of departure from the emergency department. Such bias may
cause di�culty in assessing changes in the performance of departments.

Thomas E. Locker and Suzanne M. Mason. European Journal of Emergency
Medicine 13:99-101

Supplementary Exercise 3.13

Refer to the graph below, and to the (.csv) file containing the 60 minute-specific arrival and
departure frequencies, which JH has extracted from it.
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the ED were collected. In addition, interviews were
conducted with the lead clinician in each department
to determine the methods used to record a patent’s time
of departure. The methods used to record the time of
departure were classified as ‘computerized’ if this was
undertaken using a computerized system at the time the
patient left the ED and ‘manual’ when the time was
recorded by hand in the patient’s ED notes and
transcribed to a computerized system at a later stage.

From these data, the minute of a patients’ time of arrival
and time of departure from the ED was determined for
each patient episode. The frequency of each value was
determined for each department. The degree of digit
preference bias for values ending in ‘0’ or ‘5’ was
determined using a modification of Whipple’s index.
The degree of bias was calculated according to the
following formula:

Modified Whipples index ðMWIÞ

¼
P
ðn0 þ n5 þ n10 . . . n55Þ

1=5%
P
ðn1 þ n2 þ n3 . . . n59Þ

% 100:

This method assumes an even distribution of values from
‘0’ to ‘59’. The MWI may range from zero, when no values
end in ‘0’ or ‘5’, to 500 indicating that all recorded times
end in these values. A value of 100 indicates there is no
digit preference bias. The MWI was calculated for each
department.

The total time patients spent in the ED was defined as
the difference between the time of arrival and time of
departure, the mean of these times being determined for
each department. Linear regression was used to examine
the relationship between the mean total time in

department and the degree of digit preference bias,
assessed by the MWI.

Results
One hundred and thirty-seven departments consented to
take part in the UWAIT study. Of these, five (3.7%) were
unable to abstract the data from their information
technology systems and nine (6.6%) did not provide
data. One hundred and twenty-three (86.9%) depart-
ments submitted the required data detailing 648 203 ED
episodes. Of these, 9018 (1.4%) episodes had incomplete
data for either the time of arrival or time of departure and
were therefore excluded from further analysis.

Graph 1 shows the distribution of recorded minute of
arrival and departure. It can be seen that there is little
digit preference bias in the recording of time of arrival
with a mean MWI of 108.6 (range 66.1–279.4). The
recorded minute of departure shows considerable cluster-
ing around values with a terminal digit of ‘0’ or ‘5’.
114875 (18.0%) episodes had a recorded minute of
departure of ‘0’ or ‘30’, with a further 281 890 (44.1%)
having other values with a terminal digit of ‘0’ or ‘5’.
The mean MWI for time of departure was 316.9
(range 70.9–484.4).

The method of recording time of departure was known in
105 (85.4%) departments, of which 42 (40%) recorded
the time of departure using computerized systems and 63
(60%) recorded the time manually. Departments in the
latter group had a significantly higher mean MWI (375.7
vs. 213.7, t(103) = 6.312, P < 0.001).

Graph 2 shows the relationship between each depart-
ment’s MWI and the mean total time patients spent in
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Distribution of the recorded minute of arrival and departure.

1. The authors reported that (from their Graph 1 – above) “it can be seen that there
is little digit preference bias in the recording of time of arrival with a mean MWI of
108.6 (range 66.1-279.4)”.

The digit preference seems to be limited to the rounding of a certain proportion
(we will call it ⇡5) of all arrival times to the nearest 5 and recording the remaining
proportion (1� ⇡5) using the exact arrival minute.

For now, take this to be a reasonable working model, and estimate the model parame-
ters, i.e., the probabilities ⇡1(= 1� ⇡5) and ⇡5, and the ‘mean number of arrivals per
bin,’ µ.26 Do so (i) using grade 6 arithmetic, and (ii) by setting it up in, and fitting,
a linear model.

2. The authors reported that “Some departments show considerable digit preference bias
in the recording of time of departure from the emergency department.’

Suggest a reasonable working model, and outline how you mighty estimate the model
parameters by setting up, and fitting, a linear model.

Supplementary Exercise 3.14 27

Refer to the article ‘Age at menarche in Warsaw girls in 1965’, and to the frequencies and
interval midpoints in the menarche dataset in the MASS R package.

1. Try to replicate the fitted constants and X2 test statistic in the article, and to under-
stand why they are di↵erent from the constants and goodness of fit statistics produced
by the fit in the R example in the menarche documentation.

26You might think of µ as superfluous and irrelevant, but in the more complex case we
are leading up to (numbers of car crashes in each 1-minute bin from 8pm to 10pm, before
and after cell phone calls switch over to being ‘free’ after 9pm) µ will not be constant, but
will decline over the 2 hour period.

27Some R code is available here. The link to the author’s 1996 article is here. See
the Resources website for related material.

2. Fit the probit model by ML, but from scratch – using optim with your own log-
likelihood function.

3. Instead of fitting the Gaussian (Normal) model, fit the Gamma model and the log-
Normal model.

4. Is there a way to fit the N(µ,�) parameters using the boundaries (rather than the
centres) of the intervals? i.e., recognizing that the ages within each bin are spread
out, and not all at the mid-point?

Supplementary Exercise 3.15

Refer to this article on ‘Maternal age at menarche and pubertal development in sons and
daughters: a Nationwide Cohort Study’, and to this one on ‘Timing of puberty in boys and
girls: A population-based study’. Exercise: under construction.

Supplementary Exercise 3.16

This exercise is motivated by this article on ‘Trends In The Black-White Life Expectancy
Gap Among US States, 1990-2009’. The authors fit age-, sex-, year- and race-specific
mortality rates from ‘data obtained from the (U.S.) National Vital Statistics System.28

‘The NCHS reports zero counts for deaths when, for a given group (for example, black males
ages 15-19 in Wyoming in 2001), no deaths have been reported. However, for reasons of
confidentiality, the NCHS suppresses the number of deaths if the count is 1-9.
For these categories (12.9 percent of all 69,920 state-age- sex-race observations),’ the authors
‘imputed the unobserved count using a truncated29 Poisson regression to accommodate the

28‘The system, which is maintained by the National Center for Health Statistics (NCHS),
collects information on all deaths occurring in the United States each year. For the fifty
states and the District of Columbia.’ They calculated state-specific all-cause mortality
rates for infants, children ages 1-4, and the remaining five-year age categories (up to ages
85 and older) from 1990 to 2009 for black and white males and females. They extracted
the data using software from the National Cancer Institute?s Surveillance, Epidemiology,
and End Results Program,18 for which the NCHS provides the underlying mortality data
and population es-timates.’

They ‘used data for nineteen age categories, forty-six state entities, two races, two sexes,
and twenty years. Thus, there were 69,920 crude mortality rates that could be calculated
from the data. However, given the small black populations in many states, these crude
estimates su↵er from a lack of precision.

They obtained denominator counts from the Census Bureau.’ They modeled the number
of deaths in each state-age-sex-race category in each year using Poisson regression, with the
size of each group as an o↵set term in the regression.

29Technically, it should be called interval-censored, and the term ‘truncated’ avoided. A
distribution is truncated if some of the distribution is missing. Here it would happen if a
segment where the count was zero was not even reported. A good example from biology
is the distribution of the sizes of fish: if the net used to catch them has too large a mesh,
the small fish will be missed, and the observed distribution will be distorted version of
the truth; likewise if the distribution of how many times people visit their doctor over a
year was estimated by only looking at the files of those who visited at least once. The
distribution of heights of 5 year old children visiting Disney World would be distorted if it
was estimated from only those short enough to pass under a bar used to limit certain rides
to smaller children, or at the other end if they had to be a certain minimum height to go
on a ride.

The di↵erence between censoring and truncation is sometimes described by saying that
in a censoring situation, one records the fact that an observation is censored, whereas in a
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fact that the true number of deaths was censored. 30

For these two reasons (the sometimes-interval-censored numerators, and the need to smooth
adjacent rates) they ‘used Markov chain Monte Carlo methods to obtain state-specific
annual mortality rates for each race by sex and age.’

For this exercise, we will deal only with the presence of interval-censored counts. We
wish to estimate two mortality rates, one for females, one for males. The data come from
a 1-year age interval (while people were in their 58th year of life) in the year 2012 in
a European country. But they come in 20 segments, since the death certificates were
processed in batches. The count of deaths (D) in each segment is accompanied by the
numbers of person years (PY) in the sub-population. If the numerator was 1, 2, 3, or 4 it
was ‘suppressed’ (‘coarsened’ would be a better term) and is shown below as -124.

Exercise

1. Use the Poisson model to estimate the log of the death rate among males, i.e., the
parameter of interest is ✓M = log(�M ).

2. Repeat for the parameter ✓F = log(�F ) for females.

3. Use these 2 estimates to estimate the rate ratio ✓M/✓F .

F e m a l e M a l e
D PY D PY
8 1490 35 2865
7 2030 -124 101
5 679 -124 272
5 2087 20 2185

-124 591 -124 264
19 4001 37 4559

-124 653 5 947
9 1884 41 5123

16 3293 14 2069
0 74 13 1439
8 2222 12 747

-124 324 -124 399
-124 258 15 1553
-124 606 26 2826
-124 1254 18 1875
18 2373 20 2157
12 1830 11 1074

-124 583 8 1338
10 2591 10 675
14 2906 -124 960

D: Number of Deaths; PY: Person-Years.

truncation, these observations are not even recorded – they are missed.
30Furthermore, ‘because mortality rates were less stable in categories that had a small

number of deaths (for example, in places with relatively small populations or where death
rates were very low),’ they ‘opted to smooth all state-age-sex-race death rates across years
using a conditional auto-regressive prior specification. This specification allowed the death
rates for each state-age-sex-race group to be smoothed toward the rate in adjacent years.
For example, the death rate for black men ages 35?39 in New Hampshire in 2003 was
smoothed using data for those in 2002 and 2004 to provide a more stable estimate.

3.8 Bayesian approach to parameter estimation

Given that the Bayesian approach is a very important and conceptually di↵erent way of
making inference about the parameters of a model, and even though they mentioned Bayes
rule in Chapter 2, it is surprising that Clayton and Hills do not make a statement about
the Bayesian approach until Chapter 10; and even then, they do not give it much space.
Maybe it’s because they wanted the reader to become quite comfortable with Likelihood
(which provides the Bridge between the prior and posterior distributions) before doing so.

3.9 Santa Clara Study – revisited

The study reported 50 positive test results in 3330 persons, a ‘test positivity’ proportion of
P̂ = 50/3330. It used a sero-immunity test in which, in earlier studies involving blood from
401 persons known not to have had COVID-19, and 122 known to have had COVID-19),

the false positive rate was ↵̂ = 2/401, and the miss-rate of �̂ = 19 (i.e., the detection rate

was 1� �̂ = 103/122.

The authors inverted the parametric relation linking the target parameter, i.e., the popu-
lation prevalence, ⇡, and the test’s errors parameters ↵ and � to the expected proportion,
P, of positive tests

P = ⇡ ⇥ (1� �) + (1� ⇡)⇥ ↵,

to obtain the following estimator or ⇡,

⇡ =
P � ↵

1� � � ↵
,

and, plugging in the empirical values,

⇡̂ =
50

3330 � 2
401

103
122 � 2

401

= 0.012 = 1.2 percent.

Supplementary Exercise 3.17

If, to calculate a lower and an upper limit, we were to

1. (as Gelman and Carpenter first did) scale up the SE of the 50
3330 , i.e. the binomial-

based SE =
q

50
3330 ⇥ 3280

3330 ÷ 3330 = 0.002, by 1
103
122� 2

401

to obtain a SE of 0.003, would

that take care of all/most of the statistical uncertainty?

2. (as the authors ‘kind of’ did) use the delta method for the variance of ⇡̂, how would
you do that calculation? What SE would it produce? Would you feel comfortable
using ± 1.96 SE’s?

3. (as someone suggested) use separate bootstrap samples from the 3330, 122 and 401,
and calculate the middle 95% of the resulting set of ⇡̂’s, what would the limits be?

4. (as another suggested) use a profile likelihood31, i.e., write down the 3-parameter
logLikelihood(⇡,↵,�), then ‘profile out’ the 2 nuisance parameters ↵ and �, what
would that profile likelihood look like? In view of the comments in McCullagh and

31For an orientation to profile likelihoods, see Chapter 13.2 of C&H, as well as
Appendix C in C&H and this excerpt from McCullagh and Nelder.
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Nelder, how comfortable would you be with it? For the 3 parameters would you use
the (0,1), (0,1) , (�1, 0) or (�1,1) scale?

5. (as Gelman and Carpenter did) carry out a ‘simple Bayesian analysis’, what limits
would we get?

3.10 Where Flying Bombs landed in London – revisited

Supplementary Exercise 3.18

Fit a Bivariate Normal model using the ‘grid-censored‘ data (2-D bin counts, 5 parameters).

3.11 Biochemistry values with many below the limit of
detection

Supplementary Exercise 3.19

This link contains the blood levels of a substance32 measured in a sample of children. As
you will see, a substantial fraction of the measurements are below the limit of detection of
the instrument, i.e., they are below the indicated level of 0.2.

1. Fit a mimimal (age- and sex- independent) log-normal model to the data. (When
writing your R code, allow for the possibility that later you will enlarge the model and
make the fitted mean and fitted SD of the log.levels functions of age and sex.) Make
sure to take account of the fact that many values are below the limit of detection.

2. What if you got around this issue by simply replacing all the values below the limit
by putting them all at (a) (0+0.2)/2 (b) 0.01 (c) at the centre of gravity of a triangle
ABC where A = (0,0), B=(0.2,0) and C = (0.2,H) where H is visually estimated to
conform with the shape of the histogram of the uncensored data values.

3. What if you got around this issue by ‘imputing’ the right-censored values from this
triangular distribution?

4. Is the EM algorithm useful here, and if so how would you go about implementing it?

5. Fit a (larger) log-normal model where the fitted mean of the log.values is the same
linear function of age for each sex, but possibly higher for one sex than the other (i.e.
the fitted lines are parallel) and the fitted SD of the log.values is also a parallel-lines
function of age and sex.

If interested, see here for a fancier analysis, with ‘o↵ the shelf ’ software, more flexible

models, and a much larger sample over a wider age range. Note that if the objective is

to create reference percentiles, it is not enough to get the middle ones near 50% (ie the

‘fitted middles’) correct, but also the fitted SD’s and fitted shapes. The SD function

is a lot simpler in our exercise because we have a smaller age range to deal with.

Incidentally, our sample cannot be used to construct reference values, as the selection

criteria are quite particularistic and lead to an over-representation of children with

higher values.

32Levels increase many-fold following an injury, inflammation or tissue death.

3.12 Epidemics and Crowd-Diseases: Measles

Supplementary Exercise 3.20

Refer to the republished article ‘Epidemics and Crowd-Diseases: Measles’ by Major Green-
wood, and to the material starting with the paragraph at the bottom of page 494.

Another postulate assumed in earlier explanations of the periodicity of measles
is that the time during which a sick person is capable of infecting others is very
short, that in this respect measles contrasts strongly strongly with diphtheria.

and more specifically the material that follows the sentence

We could di↵erentiate broadly between distributions of the latter and the former
type by saying that in the latter type we should expect some conformity with a
pure chance distribution of events.

1. From the fitted frequencies in the table at the top of the first column of page 495,
back-calculate the fitted probability of winning a prize – the probability33 that was
then used to calculate these fitted binomial frequencies.

2. Without finishing the arithmetic involved in calculating a formal goodness of fit test
statistic, do enough calculations to convince yourself that ‘evidently the hypothesis is
wildly wrong.’

3. How many degrees of freedom are involved in the GoF statistic? Explain your answer.

4. Now address the second model, namely that ‘all cases after the first are generated
by personal infection’. Greenwood has already laid out the probability that all 3
will become infected, and he has left you to work out the probabilities of 2, 1, and
0 additional34 Verify that the four probabilities {P0, P1, P2, P3} are those in this R
function

probs = function(p) {

q = 1-p

P = c(

q^3,

3 * p * q^2 * q^2,

3 * p^2 * q^2 + 6 * p^2 * q^4,

p^3 + 3 * p^3 * q + 3 * p^3 * q^2 + 6 * p^3 * q^3)

return( P )

}

5. Use these, and the observed frequencies {84, 60, 57, 27} at the bottom of the second
column of page 494, to derive a point estimate (a “suitable value”) of p. Use whatever
fit criterion is easiest to implement, and don’t be afraid to use trial and error to arrive
at p̂.

33As one can read in his 1931 Journal of Hygiene ‘paper on the subject.*’, the ‘whole of
the data’ involved 1338 houses, with the number of contacts under age 10 (first case not
included) ranging from 1 to 10. Among the total of 3112 contacts, there were 952 cases.
Incidentally, if measles is as infectious as it is claimed to be – its R0 is reputed to be nearly
20 – why is the attack rate so low?

34JH hesitates to call them ‘secondary’ cases, since some of them will be ‘tertiary’ – and
even ‘quaternary.’
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6. On the basis of your (new) GoF statistic, do you the agree with Greenwood that “the
agreement between observation and expectation is reasonable”?

7. List the various other ways you might fit a“suitable value” (p̂) of p. For each of them,
indicate how you could calculate the standard error of p̂. Do you expect the various
estimators to give the same estimate? Why/Why Not?

8. Implement the estimator based on the ML criterion, and calculate its SE.

9. Might it be better to do the work (including the calculation of the SE (and ME for a
CI) not in the p scale, but in some transform of this scale? Explain.
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