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204  Regression and correlation

Values of Values of

Pair X1 X3 Sum  Difference
1 X1 X21 X Y
2 X12 X2 X, ¥y
n X1n Xon Xy Y,

Denoting by ‘cjj the deviation of x; from its expectation,
cov(X;, ¥i) = E[(x}; + x5,) (¥}, — x5,)]
= E[(x},)" - (x)’] (7.25)
= var(xy;) — var(xy).

A test of the equality of var(x|;} and var(xy;) is, therefore, the same as a test of the
hypothesis that the covariance of X; and Y; is zero, which means that the
correlation coefficient must also be zero. The test of equality of variances may,
therefore, be effected by any of the equivalent tests described above for the
hypothesis of zero association between X; and Y;. This test is due to E.J.G.
Pitman. Its adaptation for purposes of estimation is described by Snedecor and
Cochran (1989, §10.8).

7.5 Regression to the mean

The term ‘regression’ was introduced by Sir Francis Galton (1822-1911) to
express the fact that for many inherited characteristics, such as height, the
measurements on sons are on average closer to the population mean than
the corresponding values for their fathers. The regression coefficient of son’s
height on father’s height is less than |. The regression of father’s height on
son’s height is also less than 1, so that whether one looks forwards or backwards
in generations there is a regression to the mean.

Similar phenomena are widely observed in various branches of medicine.
Suppose, for instance, that a person’s systolic blood pressure is determined by
the average of five readings to be 162 mmHg. This is somewhat above the likely
population mean of, say, 140 mmHg. If a further reading is taken from the same
subject, it will on average tend to be less than 162 mmHg. Conversely, a subject
with a sample mean less than the population mean will tend to show an increase
when retested.

The explanation is closely related to the discussion on shrinkage in §6.4, and
anticipates a relevant description of components of variance in §8.3. Suppose that
repeated blood pressure readings on the ith subject follow a distribution with
mean p, and variance o2, and that the values of p; vary from one subject to
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another with a mean p, and variance o3. (As noted in §8.3, o and o} are
‘components of variance’ within and between subjects, respectively.) In terms
of the discussion of §6.2, the variation between subjects may be thought of as a
prior distribution for p;, and the distribution of repeated readings on one subject
as providing the likelihood. It follows from the discussion in §§6.2 and 6.4 that,
for a subject with a mean blood pressure of ¥; based on n observations, the
estimate of the true mean p; will tend to be shrunk from X; towards the popula-
tion mean g, as will the mean value of a future set of replicate readings.
Suppose that for each subject two independent samples of size » are taken,
with means X; and X;; for the ith subject. The correlation coefficient between X;
and X is
o

S — 7.26
o} +o?/n (7.26)

Y
If the distributions between and within subjects are normal, the joint distribution
of x; and X, will be bivariate normal, as in Fig. 7.6, and (7.26) will also measure
the regression coefficient of either of the means on the other one. If there were no
within-subject variation (o° = 0), this regression coefficient would be unity. The
regression towards the mean is therefore measured by 1 — p, so the smaller p is,
the greater is the regression towards the mean. Small values of p will occur when
o? is small in relation to the sampling error of the means, e.g. when there is very
little real heterogeneity between subjects. High values of p will occur when the
sampling error is small relative to variance between individuals, and this may be
achieved by increasing ».

In some studies of medical interventions, subjects are selected by preliminary
screening tests as having high values of a relevant test measurement. For ex-
ample, in studies of cholesterol-lowering agents, subjects may be selected as
having serum cholesterol levels above some critical value, either on a single or
on the mean of repeated determinations. On average, even with no effect of the
agent under test, subsequent readings on the same subjects would tend to regress
toward the mean. A significant reduction below the pretreatment values thus
provides no convincing evidence of a treatment effect.

Nevertheless, if precise estimates of the components of variance, and hence of
p, are available, the extent of regression to the mean can be calculated and
allowed for. Gardner and Heady (1973) studied this effect, in relation to choles-
terol, blood pressure and daily calorie intake, and gave formulae for the regres-
sion effects for various levels of the initial screening cut-off point. As noted
above, the effect is reduced by increasing the number of observations made at the
initial screen. Johnson and George (1991) extended this work by distinguishing
between two sources of within-subject variation: measurement error and
physiological fluctuations. The latter type of variation may result in fluctuations
that are not independent, showing perhaps cyclical or other trends, a topic
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57 =[S = (T /n)l/(mi = 1),
and an approximate or empirical weight calculated as
W= n/s?.

We calculate the weighted sum of squares (8.15) as
G" = L wiy; — (S wih) /S w)

On the null hypothesis of homogeneity of the p;, G is distributed approximately
as x(zk 1y high values indicating excessive disparity between the y;. The approxi-
mation is increasingly inaccurate for smaller values of the »; (say, below about
10), and a refinement is given by James (1951) and Welch (1951). For an
application of this method in a comparison of sets of pock counts, see Armitage
(1957, p. 579).

8.3 Components of variance

In some studies which lead to a one-way analysis of variance, the groups may be
of no great interest individually, but may nevertheless represent an interesting
source of variation. The result of a pipetting operation, for example, may vary
from one pipette to another. A comparison between a particular pair of pipettes
would be of little interest; furthermore, a test of the null hypothesis that the
different pipettes give identical results on average may be pointless because there
may quite clearly be a systematic difference between instruments. A more rel-
evant question here will be: how great is the variation between pipettes as
compared with that of repeated readings on the same pipette?

A useful framework is to regard the k& groups as being randomly selected
from a population of such groups. This will not usually be strictly true, but it
serves as an indication that the groups are of interest only as representing a
certain type of variation. This framework is often called Mode! I1, or the random-
effects model, as distinct from Model I, or the fixed-effects model, considered in
§8.1.

Suppose, in the first instance, that each group contains the same number, #,
of observations. (In the notation of §8.1, all the n; are equal to n.) Let p; be the
‘true’ mean for the ith group and suppose that in the population of groups p; is
distributed with mean p and variance 0. Readings within the ith group have
mean p,; and variance . The quantities o and o3 are called components of
variance within and between groups respectively. The situation is illustrated in
Fig. 8.1. The data at our disposal consist of a random sample of size n from each
of k randomly selected groups.
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Distribution of j;
var(y) =,

Distribution of y in
ith group
var(y) =c*

e R e =

<t~

\ Mean of n

observations

Fig. 8.1 Components of variance between and within groups, with normal distributions for each

component of random variation.

Consider first the variance of a single group mean, y;. We have
yi— =y — 1)+ 0= ),

and the two terms in parentheses represent independent sources of variation—
that of p, about p and that of y; about ;. Therefore, using (5.10),

var(3,) = var(p,) + var(y,. given p)

= a5 + (07 /n). (8.17)
Now, the analysis of variance will have the following structure:
DF MSq
Between groups k-1 55
Within groups k(n —1) Sy
Total nk—1(=N-1)
The Between-Groups SSq is (with notation for 7; and T as in §8.1)
DR
n N

= n[S5 ~ (T3 /K].
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summations running from i = 1 to k. Thus, the Between-Groups MSq. s3.
= [ - (K] k= 1)

= n times an unbiased estimate of var(y;)

= n times an unbiased estimate of o3 + (o°/n), from (8.17),
= an unbiased estimate of no% + o>,

That s,

E(s3) = o° + nop. (8.18)

This important result 1s similar to (8.9), which is the analogous result for the
sttuation in which the w; are fixed.

The Within-Groups MSq is (from §8.1) an unbiased estimate of o>. The result
(8.18) thus confirms the plausibility of the F test, for the null hypothesis is that
0% =0 and in this case both mean squares are unbiased estimates of o2, If
o3 > 0,53 will on average be greater than s3,, and F will tend to be greater
than 1.

To estimate o, note that

E(s3 —s3,.) = E(s%) — E(s%)
= (0* + noy) — o*

eyl
= noy.

Hence, an unbiased estimate of 0% is given by

2
) B " Sw
Bt e 1
Tp " (8.19)
If 53, < 53, (as will often be the case if 0 is zero or near zero), % is negative.
There is a case for replacing 6% by 0 when this happens, but it should be noted
that the unbiased property of (8.19) is then lost.

Example 8.2

Bacharach er al. (1940) carried out an experiment on ‘diffusing factor’, a substance
which, when present in an inoculation into the skin of rabbits, spreads the blister caused
by the inoculation. They gave inoculations of the same dose at six sites on the back of each
of six animals. Their experimental design permitted a study of the influence of the
particular site and the order of administration, but there was no evidence that these
factors had any effect and we shall regard the data as forming a one-way classification:
between and within animals. The variable analysed is the area of the blister (square
centimetres).
An analysis of variance was as follows:
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SSq DF MSq VR
Between animals 12-8333 5 2-5667 4.39
Within animals 17-5266 30 0-5842
Total 30-3599 35

We have

65 = (2:5667 — 0-5842)/6
=0-3304.

The two components of variance are then estimated as follows, where each is expressed as
a percentage of the total:

Between animals % 0-3304 36%
Within animals 57 0-5842 64%
Total 6% + 53y 0-9146 100%

The sum of the two components is the estimated variance of a single reading from a
randomly chosen rabbit, and the analysis shows that of this total variance 36% is
estimated to be attributable to systematic differences between rabbits. (For further
analysis of these data. see below; see also Example 9.4, p. 260.)

Confidence limits for o2 are obtained from the Within-Groups SSq by use of
the x* distribution, as in §5.1. Confidence limits for o} are rather more trouble-
some. An approximate solution is recommended by Boardman (1974). For
100(1 — )% confidence limits we need various entries in the F table correspond-
ing to a tabulated one-sided level of 1 a. Thus, for 95% confidence limits we need
entries corresponding to P = 0-025. Denoting the entry for degrees of freedom v,
and vy as F,, ,,, and putting f1 =k — 1, fo = k(n—1), we need

Fy=Fy.p,
Fy = Fy
Fy=Fp 5
Fy=Fyx5

2,2
F = observed value, s5/575,.

Then the upper limit for o is

1 53
Gy = Fy (F - E) <";> (8.20)

F—F)\ (s
6%,_:( = ‘)(%) (8.21)

and the lower limit is
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Note that the lower limit is zero if F = Fj, i.e. if F is just significant by the
usual test. If F < Fy, the lower limit will be negative and in some instances
the upper limit may also be negative. For a discussion of this apparent anomaly,
see Schefté (1959, §7.2). The validity of these limits will depend rather heavily on
the assumption of normality, particularly for the between-groups variation.

Example 8.2, continued

The 95% confidence limits for ¢* are (from §5.1)

17.5266
46-98
and
17-5266
16:79

0-373 and 1-044,

the divisors being the appropriate percentiles of the x(zm) distribution.

; For confidence limits for o we need the following tabulated values of F, writing
fi =5, f =30

Fy=303,F =257, F, =623, Fy = 6-02,

and the observed F is 4-39. Thus, from (8.20) and (8.21),

R : 1
gy = (6:02) (4-39 = )(0‘0974) =248

6-23

and

Opr =

2 (439303
gy ) (0-0974) = 0-052.

The wide ranges of error associated with these estimates makes it clear that the
percentage contributions of 36% and 64% are very imprecise estimates indeed.

If the numbers of observations from the groups are unequal, with #; from the
ith group, (8.19) must be modified as follows:

2 _ 2
S Sw

A
O'B—-
o

(8.22)

where
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A further difficulty is that (8.22) is not necessarily the best way of estimating o5
The choice of method depends, however, on the unknown ratio of the variance
components which are being estimated, and (8.22) will usually be a sensible
method if the »; are not too different. See Searle (1987, §13.3) and Robinson
(1998) for a fuller discussion of the issues involved. The situation corresponds to
a multilevel model, methods for analysing which are given in §12.5.

8.4 Multiple comparisons

We return now to the fixed-effects model of §8.1. In the analysis of data in this
form it will usually be important not to rely solely on the analysis of variance
table and its F test. but to examine the differences between groups more closely
to see what patterns emerge. It is, in fact, good practice habitually to report the
mean values y; and their standard errors, calculated as sy /\/ni, in terms of the
Within-Groups MSq s, unless the assumption of constant variance is clearly
inappropriate.

The standard error of the difference between two means is given by (8.11),
and the ¢ distribution may be used to provide a significance test or to assign
confidence limits, as indicated in §8.1. If all the n; are equal (to n, say), it is
sometimes useful to calculate the least significant difference (LSD) at a certain
significance level. For the 5% level, for instance, this is

tfiaoos‘v‘*/\/(z/n)ﬂ

where f> = k(n — 1), the degrees of freedom within groups. Differences between
pairs of means which are significant at this level can then be picked out by eye.

Sometimes interest is focused on comparisons between the group means
other than simple differences. These will usually be measurable by a linear
contrast of the form

L=5 NV (8.23)
where > \; = 0. From (5.10),
var(L) = 32 N var(3),
and the standard error of L is thus estimated as
SE(L) = sw /(3N /n), (8.24)

and the usual ¢ test or confidence limits may be applied.
Some examples of linear contrasts are as follows.

1 A contrast of one group with the mean of several other groups. One group may
have a special identity, perhaps as a control group, and there may be some
reason for pooling a set of ¢ other groups (e.g. if related treatments have been
applied to these groups). The relevant comparison will then be
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Example 9.6

Table 9.12 gives counts of particle emission during periods of 1000s, for 30 aliquots of
equal size of certain radioactive material. Each aliquot is placed twice in the counter.
There are three sources of random variation, each with its component of variance, as
follows.

1 Variation between aliquots, with a variance component o35. This may be due to slight
variations in size or in radioactivity, or to differences in technique between the 30
occasions on which the different aliquots were examined.

2 Systematic variation between replicate counts causing changes in the expected level of
the count, with a variance component a?. This may be due to systematic biases in
counting which affect different counts in different ways, or to inconsistency in the
apparatus, due perhaps to variation in the way the material is placed in the counter.

3 Random variation from one time period to another, all other conditions remaining
constant: variance component oj. There is no replication of counts under constant
conditions, but we know that this form of variation follows the Poisson distribution
(§3.7), in which the variance equals the mean. The mean will vary a little over the
whole experiment. but to a close approximation we could estimate o by the observed
mean for the whole data, 303-6.

Table 9.12 Radioactivity counts during periods of 1000s.

Aliquot Counts Aliquot Counts
1 281 291 16 325 267
2 309 347 17 284 296
3 316 356 18 255 281
4 289 277 19 347 285
5 322 292 20 326 302
6 287 321 21 347 307
7 338 320 22 292 344
8 333 275 23 322 308
9 319 31 24 294 272
10 258 302 25 307 303
11 338 294 26 281 331
12 319 281 27 284 322
13 307 247 28 287 305
14 279 259 29 318 352
15 326 272 30 307 301

The analysis of variance is that for a simple one-way classification and is as follows:

9.6 Split-unit designs 271

Expected value

SSq DF MSq of MSq
]?étv?een aliquots 19 898 29 6%6-1 U§ + Ui + 207
Within aliquots 20196 30 6732 ol + o
Total 40094 59 ]
Poisson 303-6 o?

The expected values of the mean squares follow from §8.3, if we note that the within-
aliquots variance component is o3 + o7 (since differences between replicate counts are
affected by variation of both type 2 and type 3), and that the between-aliquots component
is o2

The estimates of the variance components are now obtained:

i

o} = (686-1 — 673-2)/2 6-4
07 =6732-303-6  =369-6
af =303-6
These estimates are, of course, subject to sampling error, but there is clearly no evidence of

any large component, a3, due to aliquot differences. Replicate counts vary, however, by
substantially more than can be explained by the Poisson distribution.
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9.5. The number of swabs positive for Preumococcus is recorded in families. A
simple model might assume that the mean number of swabs is p and the
observation on the jth member of the ith family can be modelled by:

Yi = B+ ey, (12.33)

where &, is a simple error term, with zero mean and variance o, that is independ-
ent from observation to observation. However, this model does not reflect the
fact that the observations are grouped within families. Moreover, if the variation
between families is larger than that within families, then this cannot be modelled
because only one variance has been specified. An obvious extension is to add an
extra term, & to (12.33) to accommodate variation between families. This term
will be a random variable that is independent between families and of the &;, has
zero mean and variance o7. Thus, the new model for the jth member of the ith
family 1s:

M+‘Ei+8ij~

It should be noted that it is the same realization of the random variable that is
applied to each observation within a family; a consequence of this is that
observations within a family are correlated. Two observations within a family
have covariance UZF and, as each observation has variance 012,- + o, the correla-
tion 18

op/ (o} + o). (12.34)

This is not surprising; the model is such that families with a propensity to exhibit
pneumococcal infection will have a large value for & and as this is applied to each
member of the family, each family member will tend to report a large value—that
is, the values are correlated. Clearly, this tendency will be less marked if the
within-family variation is substantial relative to that between families; this is
reflected in (12.34) because, as o/ (rzF becomes larger, (12.34) becomes smaller. It
should be noted that correlations generated in this way cannot be negative: they
are examples of the intraclass correlation discussed in §19.11.

Because they are random variables, the terms £ and e are referred to as
random effects and their effect is measured by a variance or, more accurately, a
component of variance, such as o and o%. More elaborate models can certainly
be built. One possibility is to add extra terms that are not random (and so are
often referred to as fixed effects) to elaborate on the simple mean p. In Example
9.5 the families were classified into three categories measuring how crowded their
living conditions were. The model could be extended to

W+ Byxy + Baxa + & + gy, (12.35)

where xj; = 1 if the jth family lives in crowded conditions and is 0 otherwise, and
xo; = 1 if the ith family lives in uncrowded conditions and is 0 otherwise. The
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and the restriction of response measurements to a random sample of individuals
in each cluster, rather than the whole cluster population.

The most important point about cluster randomization is that, although
response  measurements may be made on individual =~ subjects, the
treatment comparisons are less precise than they would be if subjects were
individually randomized. The reason is that responses of subjects within the
same cluster are likely to be positively correlated. In the extreme case of
perfect correlation, the advantage of replication within clusters is completely
lost, so that the effective sample size is the number of clusters rather than the
number of subjects. Essentially the same point arises with two-stage sampling
(§19.2).

Suppose that there are 2K clusters, to be assigned randomly to two
treatments, with K clusters in each, and that the ith cluster contains s, indi-
viduals, with a total sample size N = S, for each treatment. It can be shown
that the variance of the overall mean response in either group is inflated by a
factor 1 + p[(En?/N) — 1), called the design effect, where p is the correlation
between responses for individuals in the same cluster (the intracluss correla-
tion; see §19.11). If the clusters are all the same size n, this factor becomes
IL+p(n—1). If p=1, the design effect becomes #, and the variance of the
overall mean is proportional to 1 /K rather than 1/N, as noted in the
previous paragraph. At the design stage, sample sizes determined by the
methods described earlier should be multiplied by the design effect (Donner,
1992).

One simple approach to the analysis of a cluster-randomized tria] is
to summarize the responses in each cluster by their mean and use these cluster
means in a standard two-sample analysis—for example, by a two-sample ¢
test or a Mann-Whitney non-parametric test. A theoretical disadvantage
in this approach is that the cluster means will have different variances if
the n; differ. This is unlikely to be a serious problem unless the »,; differ
grossly.

A more formal approach is to represent the data by a random-effects model
(8§8.3, 12.5), with variance components o3 for the variation between clusters,
and o7, within clusters. These variance components can be estimated from the
data (§8.3). If the n vary, the modification given by (8.22) may be used. The
variance components are related to the intraclass correlation by the equation
p=03/(c% + o3y) (see §19.11), which may be used to estimate the design effect
given above.

The more elaborate analysis of §12.5 may be used if the effects of covariates
(defined either for the cluster or for the individual subject) are to be taken into
account.

A comprehensive account of cluster-randomized trials is given by Murray
(1998).
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Suppose a new method is available for measuring some variable and it is
required to assess the agreement between values obtained using the new method
and those obtained with an existing method. Data could be collected in which a
number of individuals were measured using cach method to give a pair of values
for cach individual. A high correlation about a line not passing through the
origin or with a slope different from | would not represent useful agreement
between the methods as far as the user was concerned. although il this oceurred it
might be possible to calibrate the new method to give better agreement. Thus
although. unlike the twins. there is no ambiguity on the identification within
pairs, We reduire i meisure of correlation with the property that it will only
equal unity i the two measurements are identical within cach individual.

The intraclass correlation coefficient is a measure of the correlation between
the values obtained with any two randomly chosen methods within the same
individual (class) and has the above property. The correlation calculated from 2n
pairs as above is approximately cqual to the intraclass correlation coelficient
exeept when i is small. The method is closely related to components of varianee
(888.3 und 9.6). and using this methodology is more convenient and more
accurate than forming multiple pairs. In general. there may be more than (wo
methods under test. and we suppose that there are i methods. each assessed onn
subjects. Then the design is equivalent to randomized blocks (89.2). in which the
methods are tested within the subjects. i.e. the blocks. There are three sources of
variation. each with its component of variance:

1 Variation between subjects. with a variance component o

2 Systematic variation between methods. with a variance component o, This
variability represents differences between methods.

3 Random variation from one measurement to another. with a varianee com-

ponent o-, additional to the sources ol variation I and 2.

Then the two-way analysis of variance has the form:

11 MSy I xpected MSq
Between subjects (classes) n=l M G /mr:
Botween methods -1 \,, oo
Residual o tum D) M o

The intraclass correlation coefficient is defined as the correlation between any
Lwo measurements in the same subject using randomly chosen methods. All three
components of variation contributie to the variance of cach measurement and.
since the two measurements are for the same subject. the variance component
representing variation between stbjects is common o the two measurements.

Therefore the mtraclass correlation coefficient 15





