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Outline

Some ways to quantify Reliability:
Reliability Coefficient

- Reliability Coefficient
r XX = 

σ2T 
 σ2T + σ2ε

  i.e. the fraction of observed variation that is 'real'

Note that one can 'manipulate' r by choosing a large or small σ2T

- Internal Consistency (Cronbach's α)

Implications:
-

...................................................................................
Effect of # of Items on Reliability Coefficient
(if all items have same variance and same intercorrelations)

Model for Reliability

SCALE 2   N Times more items than SCALE 1

r SCALE 2  =  
N  × rSCALE 1

1 + [N–1] × rSCALE 1

e.g.

Scale # Items   r

  1    10 0.4

  2    20 (× 2) 0.57

  3    30 (× 3) 0.67

Distribution of 
TRUE values 
for individuals

T

ε

Var
2σ

Τ

σ 2

ε

X = T + ε

2σ
Τ

+ σ 2

ε

Distribution of 
OBSERVED values 
for individuals

+
+

0

"True" scores / values not knowable;

Variance calculation assumes that the distribution of errors is independent of T
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Cronbach's 
INTRACLASS CORRELATIONS (ICC's)

k items

 = 
k × r–

 1 + [k–1] × r–
    , where  r– = average of inter-item correlations

• Various versions

TEST-RETEST

INTRA-RATER

INTER-RATER...
is an estimate of the expected correlation of one test with an alternative form
with the same number of items.

• Formed as Ratios of various Variances

e.g. 
σ2

TRUE

σ2
TRUE + σ2

ERROR

with estimates of various σ2 's substituted for the σ2 's .

Estimates of various components typically derived from ANOVA.

is a lower bound for r XX    i.e   r XX  ≥ 

r XX  = if items are parallel.

parallel

Average [ item 1] = Average [ item 2] =Average [ item 3] =  ...

Variance[ item 1] = Variance[ item 2] =Variance [ item 3] =  ...

Correlation[ item 1, item 2] = Correlation[ item 1, item 3] = ...

   =Correlation[ item 2, item 3] = ...
• Note the distinction between DEFINITIONAL FORM (involving

PARAMETERS) and COMPUTATIONAL FORM (involving
STATISTICS)

Fleiss Chapter 1 good here; Norman & Streiner not so good!!)
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ICC's (Portnoy and Wilkins) model: weight gain  for person j in family i = µ + µ + αi + e ij

(1) multiple (unlabeled) measurements of each subject

(2) same set of raters measure each subject; raters thought of as a random sample
of all possible raters.

1-way Anova and Expected Mean Square (EMS)

Source Sum d.f Mean     Expected Mean Square
of Sq Square(3) as in (2), but these raters studied are the only raters of interest

............................................................................
Between (families)  99 11   9.0     σ2"error" + k0 σ2between

(1) multiple (unlabeled) measurements of each subject

σSUBJECTS
ERRORσ

µ
µ + α

µ + α + ε

Error(Within families)  30 12   2.5     σ2"error"
---------------------------------------------------------------------------------
Total 129 23

In our example, we measure k=2 members from each family, so k0 is simply 2

[if the k's are unequal, k0 is somewhat less than the average k... k0 = average k –
(variance of k's) / (n times average k) ...see Fleiss page 10]

Estimation of parameters that go to make up ICC

2.5 is an estimate of σ2"error"

ICC = 
σ2

SUBJECTS

σ2
SUBJECTS + σ2

ERROR

9.0 is an estimate of σ2"error" +  2 σ2between
-------------------------------------------------------

∴ 6.5 is an estimate of                   2 σ2between
Model for observed data:

y[subject i, measurement j] = µ + αi + εij

EXAMPLE 1

6.5
2   is an estimate of                     σ2between

6.5
2

6.5
2  + 2.5

 =    
3.25

3.25 + 2.5 = 0.57

is an estimate of ICC  =  
  σ2between

σ2between + σ2error

This example is in the spirit of the way the ICC was first used, as a measure of the
greater similarity within families than between families: Study by Bouchard (NEJM)
on weight gains of 2 members  from each of 12 families: It is thought that there will
be more variation between members of different families than between members of
the same family: family (genes) is though to be a large source of variation; the two
twins per family are thought of as 'replicates' from the family and closer to each other
(than to others) in their responses. Here the "between" factor is family i.e. families
are the subjects and the two twins in the family are just replicates and they don't need
to be labeled (if we did label them 1 and 2, the labels would be arbitrary, since the
two twins are thought to be 'interchangeable'. (weight gain in Kg over a summer)
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COMPUTATIONAL Formula for "1-way" ICC

MSbetween – MSwithin
k0

MSbetween – MSwithin
k0

   + MSwithin 

=  
MSbetween– MSwithin

MSbetween + (k0–1)MSwithin    [shortcut]

is an estimate of the ICC

Increasing Reliability by averaging several measurements

In 1-way model: yi,j  = µ + αi + e ij

where    var[αi ] = σ2between subjects ;     var[eij ] = σ2"error"

Then if we average k measurements, i.e.,

ybari =  µ + αi + ebari

then

 Va
i
r [ybari ] = σ2between + 

  σ2"error" 
k

So ICC[k]  =  
  σ2between

σ2between + 
  σ2"error" 

k

Notes:
• Streiner and Norman start on page 109 with the 2-way anova for inter-observer
variation. There are mistakes in their depiction of the SSerror on p 110 [it should be
(6-6)2+(4-4)2+(2-1)2 +...(8-)2 =10. If one were to do the calculations by hand, one
usually calculates the SStotal and then obtains the SSerror by subtraction] This is called "Stepped-Up" Reliability.
• They then mention the 1-way case, which we have discussed above,  as "the
observer nested within subject" on page 112
• Fleiss gives methods for calculating CI's for ICC's.

EXAMPLE 2: INTRA-OBSERVER VARIATION FOR 1 OBSERVER

Computations performed on earlier handout...

Var(SUBJECT) = 23.67 Var(ERROR) = 1.38

IĈC = 23.67 / (23.67 + 1.38) = 0.94

An estimated 94% of observed variation in earsize measurements by this observer is
'real' .. i.e. reflects true between-subject variability.

Note that I say 'an estimated 94% ...". I do this because the 94% is a statistic that is
subject to sampling variability (94% is just a point estimate or a 0% Confidence
Interval). An interval estimate is given by say a 95% confidence interval for the true
ICC (lower bound of a 1-sided CI is 82% ... see previous handout)
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ICC's (Portnoy and Wilkins).
ESTIMATING  INTER-OBSERVER VARIATION  from occasion=1;

(2) same set of raters measure each subject; raters thought of as a random sample
of all possible raters. PROC GLM in SAS ==> estimating components 'by hand'

INPUT subject rater occasion earsize; if occasion=1; (32 obsns)

• Model proc glm; class subject rater; model earsize=subject rater / ss3;

Subjects

1

4

5

2

3

Raters
←II
0

I←

←
←

←
←
II

I

y for subject 2, rater  II

y for subject 2, rater  I

II

I

y for subject 3, rater  II

y for subject 3, rater  I

etc ...

µ α [subject] [rater]β ε

σ 2
subjects σ 2

raters

+ + +

σ 2
error

  random subject rater;

 General Linear Models Procedure: Class Level Information

Class    Levels    Values
SUBJECT       8    1 2 3 4 5 6 7 8
RATER         4    1 2 3 4 Number of observations in data set = 32

                      Sum of    Mean
Source            DF  Squares  Square  F Value  Pr > F
Model             10  764.500  76.45   78.80    0.0001
Error             21   20.375   0.97
Corrected Total   31  784.875

R-Square       C.V.  Root MSE   EARSIZE Mean
0.974040   1.534577   0.98501      64.1875

Source   DF  Type III SS  Mean Square  F Value  Pr > F
SUBJECT   7   734.875000   104.98     108.20  0.0001
RATER     3    29.625000     9.87      10.18  0.0002

Source      Type III Expected Mean Square
SUBJECT     Var(Error) + 4 Var(SUBJECT)
RATER       Var(Error) + 8 Var(RATER)

So... solving 'by hand' for the 3 components...

Var(Error) + 4 Var(SUBJECT) = 104.98
Var(Error)                  =   0.97
        ==>  4 Var(SUBJECT) = 104.01• From 2- way data layout (subjects x Raters)

estimate σ2"subjects" ,  σ2"raters"  and   σ2"error" by 2-way ANOVA
        ==>    Var(SUBJECT) = 104.01 / 4 = 26.00

Var(Error) + 8 Var(RATER)   =   9.87
Var(Error)                  =   0.97

• Substitute variance estimates in appropriate ICC form         ==>  8 Var(RATER)   =   8.90
        ==>    Var(RATER)   =   8.90 / 8 =  1.11

e .g . 2 measurements (in mm) of earsize of 8 subjects by each of 4 observers
               Var(Error)                =  0.97

subject    1               2               3                4
obsr 1   2   3  4    1   2  3   4    1   2  3   4     1   2  3   4 Estimating Variance components using PROC VARCOMP in SAS
1st 67 65 65 64   74 74 74 72   67 68 66 65   65 65 65 65 proc varcomp; class subject rater; model earsize = subject rater;
2nd 67 66 66 66   74 73 71 73   68 67 68 67   64 65 65 64

                         Estimate
subject    5               6               7                6 Variance Component        EARSIZE
obsr 1   2   3  4    1   2  3   4    1   2  3   4     1   2  3   4 Var(SUBJECT)              26.00
1st 65 62 62 61   59 56 55 53   60 62 60 59   66 65 65 63 Var(RATER)                 1.11
2nd 61 62 60 61   57 57 57 53   60 65 60 58   66 65 65 65 Var(Error)                 0.97
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• ICC: "Raters Random" (Fleiss § 1.5.2)

USING ALL THE DATA SIMULTANEOUSLY
      Var(SUBJECT)                            26.00
ICC = ------------------------------------- = -------------- = 0.93 (can now estimate subject x Rater interaction .. i.e extent to which raters 'reverse

themselves' with different subjects)      Var(SUBJECT) + Var(RATER) + Var(Error)  26.00+1.11+0.97

1-sided 95% Confidence Interval (see Fleiss p 27)
Components of variance when use both measurements (all 64 obsns)

df for F in CI: (8-1)= 7 and v* , where
proc varcomp;                       proc varcomp;
 class subject rater;               class subject rater;      (8-1)(4-1)(4•0.93•10.18 + 8[1+(4-1)•0.93]-4•0.93)2

 model earsize = subject rater;     model earsize = subject raterv*  = -------------------------------------------------- = 8.12
                                                    subject*rater;      (8-1)•42•0.932•10.182 +  (8[1+(4-1)•0.93]-4•0.93)2

                    Estimateso from Tables of F distribution with 7 & 8 df, F = 3.5
Variance Component   EARSIZE       Variance Component    EARSIZE

So lower limit of CI for ICC is
Var(SUBJECT)          25.52        Var(SUBJECT)            25.47

      8(104.98  - 3.5•0.97) Var(RATER)             0.70        Var(RATER)               0.67
    = --------------------------------------------- = 0.78 Var(Error)             1.37        Var(SUBJECT*RATER)       0.31
      8•104.98 + 3.5•[4•9.87 + (8•4 - 8 - 4)•0.97]                                    Var(Error)               1.13

• ICC: if use one "fixed" observer (see Fleiss p 23, strategy 3)

      Var(SUBJECT)                26.00
ICC = ------------------------- = ------------ = 0.96
      Var(SUBJECT) + Var(Error)   26.00 + 0.97

lower limit of 95% 1-sided CI (eqn 1.49: F = 2.5 ; 7 & 7x3=21 df)

      104.98 - 2.5
ICC = ------------------ = 0.91
      104.98 + (4-1)•2.5
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LINK between STANDARD ERROR OF MEASUREMENT
and RELIABILITY COEFFICIENT Confidence Intervals / Sample Sizes for ICC's

Example: GRE Tests (cf blurb from Educational Testing Service)
see Fleiss...

Standard Error of Measurement = 23 points
CI's based on F distribution tables;

Reliability Coefficient: R = 0.93
recall... CI's not symmetric;

Distribution of 
TRUE values 
for individuals

T

ε

Var
2σ

Τ

σ 2

ε

X = T + ε

2σ
Τ

+ σ 2

ε

Distribution of 
OBSERVED values 
for individuals

+
+

0

More interested in 1-sided CI's   i.e.  (lower bound, 1) i.e. ICC ≥
0.xx;

See also Donner and Eliasziw.

NOTE: If interested in ICC that incorporates random raters, then
sample size must involve both # of raters and  # of raters

CI will be very wide if use only 2 or 3 raters

Approach sample size as "n's or raters and subjects needed for a
sufficiently narrow CI.

 σ2
e  = 23     ==> σ2

e   =  529 ;

R =  
σ2 T 

σ2 T  +  σ2
e
   =  0.93   ==> σ2 T  = 

R  × σ2
e

1 –  R
  =  

0.93 × 529
1 – 0.93

   = 7028

 σ2 T  + σ2
e    = 7028 + 529  =  7557  ==>   σ2 T  +  σ2

e  =  7557 = 87

So if 3 SD's on either side of the mean of 500 covers most of the observed scores,
this would give a range of observed scores of 500 – 261 = 239 to 500 + 261 = 761.

Another way to say it (see Streiner and Norman, bottom of page 119) :-

σe    =  σ2 T  +  σ2
e    × 1 – R    = SD[observed scores] × 1  –  R
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Why Pearson's r is not always a good [or practical]
measure of reproducibility

Method of Bland & Altman [Lancet                 ]

Difference of 2 
measurements

average*
  of 2 

x

x
x

xx

x

x

x

x

x

x

x
x

x

x

xx

xx
x

* use mean of 2 if neither measurements 
is considered the gold standard; use gold 
standard otherwise

1.  It does not pick up "shifts"

x

x
x

x
x x

x x
x

x x

icc includes "shifts" 
and is lower than r

+++  see biases quickly

can explain to your in-laws
(can you explain ICC to them?)

emphasises errors in measurements scale itself
(like ±23 in GRE score)

2. not practical if > 2 measurements or variable # of measurements
per subject

ICC 'made for' such situations

– – –  if don't know real range, magnitudes of standard error of
measurement not helpful (see Norman & Streiner)

cannot use with > 2 measurements

doesn't generalize to raters
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Assessing reproducibility of measurements made on a
CATEGORICAL scale

Categorizations of 
subjects by RATER 1

Categorizations of n 
subjects by RATER 2

C1

C1

C3

C2

C2 C3

n

See chapter 13  in Fleiss's book on Rates and Proportions
or  pp 516-523 of Chapter 26 of Portnoy and Wilkins

• Simple Measure

% agreement = 
# in diagonal cells

n  x 100

• Chance-Corrected Measure

κ = 
 % agreement – % agreement expected by chance* 
100% agreement – % agreement expected by chance

* expected proportion = ∑ p[row]*p[col] --- ∑ over the diagonals

(see Aickin's arguments against 'logic' of chance-correction:
Biometrics                                    199 )

can give weights for 'partial' agreement

if > 2 raters, use range or average of pairwise kappas

with quadratic weights, weighted kappa = icc


