This article was downloaded by: [McGill University Library]
On: 8 November 2009
Access details: Access Details: [subscription number 793538288]
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Philosophical Magazine Series 5

Philosophical Magazine
Series 5
(1876-1900)
Fint thellation not

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t910588686
X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling
Karl Pearson ${ }^{\text {a }}$
a University College, London
Online Publication Date: 01 July 1900

To cite this Article Pearson, $\operatorname{Karl}(1900)^{\prime} \mathrm{X}$. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling',Philosophical Magazine Series 5,50:302,157-175
To link to this Article: DOI: 10.1080/14786440009463897
URL: http://dx.doi.org/10.1080/14786440009463897

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
```

X. On the Criterion that a given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it can be reasonably supposed to have arisen from Random Sampling. By Karl Pearson, F.R.S., University College, London*.
THE object of this paper is to investigate a criterion of the probability on any theory of an observed system of errors, and to apply it to the determination of goodness of fit in the case of frequency curves.
(1) Preliminary Proposition. Let $x_{1}, x_{2} \ldots x_{n}$ be a system of deviations from the means of n variables with standard deviations $\sigma_{1}, \sigma_{2} \ldots \sigma_{n}$ and with correlations $r_{12}, r_{13}, r_{23} \ldots$ $r_{n-1, n}$.

Then the frequency surface is given by

$$
-\frac{1}{\mathbf{Q}}\left\{\mathrm{~S}_{1}\left(\frac{\mathrm{R}_{p p}}{\mathrm{R}} \frac{x_{p}{ }^{2}}{\sigma_{p}^{2}}\right)+2 \mathrm{~S}_{2}\left(\frac{\mathrm{R} p q}{\mathrm{R}} \frac{x_{p}}{\sigma_{p}} \frac{x_{q}}{\sigma_{q}}\right)\right\}
$$

$$
\begin{equation*}
\mathrm{Z}=\mathrm{Z}_{0} e \tag{i.}
\end{equation*}
$$

where R is the determinant

1	r_{12}	$r_{13} \ldots r_{1 n}$
r_{21}	1	$r_{23} \ldots r_{2 n}$
r_{31}	r_{32}	$1 \ldots r_{3 n}$
-	- \cdot	. . .
-	. \cdot	- .
$r_{n 1}$	$r_{n 2}$	$r_{n 3} . .1$

and $\mathrm{R}_{p p}, \mathrm{R}_{p q}$ the minors obtained by striking out the p th row and p th column, and the p th row and q th column. S_{1} is the sum for every value of p, and S_{2} for every pair of values of p and q.

Now let

$$
\begin{equation*}
\chi^{2}=\mathrm{S}_{1}\left(\frac{\mathrm{R}_{p p}}{\mathrm{R}} \frac{x_{p}^{2}}{\sigma_{p}^{2}}\right)+2 \mathrm{~S}_{2}\left(\frac{\mathrm{R}_{p q}}{\mathrm{R}} \frac{x_{p} x_{q}}{\sigma_{p} \sigma_{q}}\right) \tag{ii.}
\end{equation*}
$$

Then : $\boldsymbol{x}^{2}=$ constant, is the equation to a generalized " ellipsoid," all over the surface of which the frequency of the system of errors or deviations $x_{1}, x_{2} \ldots x_{n}$ is constant. The values which $\boldsymbol{\chi}$ must be given to cover the whole of space are from 0 to ∞. Now suppose the "ellipsoid" referred to its principal axes, and then by squeezing reduced to a sphere, $X_{1}, X_{2}, \ldots X$ being now the coordinates; then the chances of a system of errors with as great or greater frequency than

[^0]that denoted by χ is given by
$$
\mathrm{P}=\frac{\left[\iiint \int \ldots e^{-\frac{1}{2} x^{2}} d \mathrm{X}_{1} d \mathrm{X}_{2} \ldots d \mathrm{X}_{n}\right]_{\mathrm{x}}^{\infty}}{\left[\iiint \int^{\infty} e^{-\frac{1}{2} x^{2}} d \mathrm{X}_{1} d \mathrm{X}_{2} \ldots d \mathrm{X}_{n}\right]_{0}^{0}},
$$
the numerator being an n-fold integral from the ellipsoid χ to the ellipsoid ∞, and the denominator an n-fold integral from the ellipsoid 0 to the ellipsoid ∞. A common constant factor divides out. Now suppose a transformation of coordinates to generalized polar coordinates, in which χ may be treated as the ray, then the numerator and denominator will have common integral factors really representing the generalized "solid angles" and having identical limits. Thus we shall reduce our result to
\[

$$
\begin{equation*}
\mathrm{P}=\frac{\int_{X}^{\infty} e^{-\frac{1}{2} x^{2}} x^{n-1} d x}{\int_{0}^{\infty} e^{-\frac{1}{2} x^{2}} x^{n-1} d x} \tag{iii.}
\end{equation*}
$$

\]

This is the measure of the probability of a complex system of n errors occurring with a frequency as great or greater than that of the observed system.
(2) So soon as we know the observed deviations and the probable errors (or σ 's) and correlations of errors in any case we can find χ from (iii), and then an evaluation of (iii.) gives us what appears to be a fairly reasonable criterion of the probability of such an error occurring on a random selection being made.

For the special purpose we have in view, let us evaluate the numerator of P by integrating by parts; we find

$$
\begin{aligned}
& \int_{x}^{\infty} e^{-\frac{1}{2} x^{2}} \chi^{n-1} d \chi=\left[\chi^{n-2}+(n-2) \chi^{n-4}+(n-2)(n-4) \chi^{n-}\right. \\
& \left.+\ldots+(n-2)(n-4)(n-6) \ldots(n-2 r-2) \chi^{n-2 r}\right] e^{-\frac{1}{2} x^{2}} \\
& \quad+(n-2)(n-4)(n-6) \ldots(n-2 r) \int_{1}^{\infty} e^{-\frac{2}{x} x^{2}} \chi^{n-2 r-1} \\
& =(n-2)(n-4)(n-6) \ldots(n-2 r)\left[\int_{x}^{\infty} e^{-\frac{1}{2} x^{2}} \chi^{n-2 r-1} d \chi\right. \\
& +e^{-\frac{1}{2} x^{2}}\left\{\frac{\chi^{n-2 r}}{n-2 r}+\frac{\chi^{n-2 r+3}}{(n-2 r)(n-2 r+2)}+\frac{\chi^{n-2 r+4}}{(n-2 r)+(n-2 r+2)(n-2 r+}\right. \\
& \left.\left.\quad \ldots+\frac{\chi^{n-2}}{(n-2 r)(n-2 r+2) \ldots(n-2)}\right\}\right] .
\end{aligned}
$$

Further,

$$
\int_{0}^{\infty} e^{-\frac{1}{2} x^{2}} \chi^{n-1} d \chi=(n-2)(n-4)(n-6) \ldots(n-2 r) \int_{0}^{\infty} e^{-\frac{1}{2} x^{2}} \chi^{n-2 r-1} d \chi
$$

Now n will either be even or odd, or if n be indefinitely great we may take it practically either.

Case (i.) n odd. Take $r=\frac{n-1}{2}$. Hence

$$
\mathrm{P}=\frac{\int_{\chi}^{\infty} e^{-\frac{1}{2} x^{2}} d \chi+e^{-\frac{1}{2} x^{2}}\left\{\frac{\chi}{1}+\frac{\chi^{3}}{1.3}+\frac{\chi^{5}}{1.3 .5}+\ldots+\frac{\chi^{n-2}}{1.3 .5 \ldots n-2}\right\}}{\int_{0}^{\infty} e^{-\frac{1}{2} x^{2}} d \chi}
$$

But

$$
\int_{0}^{\infty} e^{-\frac{1}{2} x^{2}} d \chi=\sqrt{\frac{\pi}{2}}
$$

Thus

$$
\begin{align*}
\mathbf{P}= & \sqrt{\frac{2}{\pi}} \int_{x}^{\infty} e^{-\frac{1}{2} x^{2}} d \chi \\
& +\sqrt{\frac{2}{\pi}} e^{-\frac{1}{2} x^{2}}\left(\frac{\chi}{1}+\frac{\chi^{3}}{1.3}+\frac{\chi^{5}}{1.3 .5}+\cdots+\frac{\chi^{n-2}}{1.3 .5 \ldots n-2}\right) \tag{v.}
\end{align*}
$$

As soon as χ is known this can be at once evaluated.
Case (ii.) n even. Take $r=\frac{1}{2} n-1$. Hence

$$
\begin{align*}
\mathrm{P} & =\frac{\int_{x}^{\infty} e^{-\frac{1}{2} x^{2}} \chi d \chi+e^{-\frac{1}{2} x^{2}}\left\{\frac{\chi^{2}}{2}+\frac{\chi^{4}}{2 \cdot 4}+\frac{\chi^{6}}{2 \cdot 4 \cdot 6} \frac{\chi^{\infty}}{2 \cdot+}+\frac{\chi^{n-2}}{2.4 \cdot 6 \ldots n-2}\right\}}{\int_{0}^{\infty} e^{-\frac{1}{2} x^{2}} \chi^{d} \chi} \\
& =e^{-\frac{1}{2} \chi^{2}}\left(1+\frac{\chi^{2}}{2}+\frac{\chi^{4}}{2.4}+\frac{\chi^{6}}{2 \cdot 4.6}+\ldots+\frac{\chi^{n-2}}{2.4 \cdot 6 \ldots \cdot n-2}\right) . \text { (vi.) } \tag{vi.}
\end{align*}
$$

The series (v.) and (vi.) both admit of fairly easy calculation, and give sensibly the same results if n be even moderately large. If we put $P=\frac{1}{2}$ in (v.) and (vi.) we have equations to determine $\chi=\chi_{0}$, the value giving the "probability ellipsoid." This ellipsoid has already been considered by Bertrand for $n=2$ (probability ellipse) and Czuber for $n=3$. The table which concludes this paper gives the values of P for a series of values of χ^{2} in a slightly different case. We can, however, adopt it for general purposes, when we only want a rough approximation to the probability or improbability of a given system of deviations. Suppose we
have n correlated variables and we desire to ascertain whe ther an outlying observed set is really anomalous. Then we calculate χ^{2} from (ii.) ; next we take $n^{\prime}=n+1$ to enter our table, i.e. if we have 7 correlated quantities we should look in the column marked 8. The row χ^{2} and the column $n+1$ will give the value of P, the probability of a system of deviations as great or greater than the outlier in question. For many practical purposes, the rough interpolation which this table affords will enable us to ascertain the general order of probability or improbability of the observed result, and this is usually what we want.
If n be very large, we have for the series in (v.) the value $e^{\frac{1}{2} x^{2}} \int_{0}^{x} e^{-\frac{1}{8} x^{2}} d x^{*}$, and accordingly

$$
\mathrm{P}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-\frac{1}{2} x^{2}} d \chi=1
$$

Again, the series in (vi.) for n very large becomes $e^{\frac{1}{2} x^{2}}$, and thus again $\mathrm{P}=1$. These results show that if we have only an indefinite number of groups, each of indefinitely small range, it is practically certain that a system of errors as large or larger than that defined by any value of χ will appear.

Thus, if we take a very great number of groups our test becomes illusory. We must confine our attention in calculating P to a finite number of groups, and this is undoubtedly what happens in actual statistics. n will rarely exceed 30 , often not be greater than 12.
(3) Now let us apply the above results to the problem of the fit of an observed to a theoretical frequency distribution. Let there be an ($n+1$)-fold grouping, and let the observed frequencies of the groups be

$$
m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime} \ldots m_{n}^{\prime}, m_{n+1}^{\prime}
$$

and the theoretical frequencies supposed known a priori be

$$
m_{1}, m_{2}, m_{3} \ldots m_{n}, m_{n+1} ;
$$

then $\mathrm{S}(m)=\mathrm{S}\left(m^{\prime}\right)=\mathrm{N}=$ total frequency.
Further, if $e=m^{\prime}-m$ give the error, we have

$$
e_{1}+e_{2}+e_{3}+\ldots+e_{n+1}=0
$$

Hence only n of the $n+1$ errors are variables; the $n+1$ th is

* Write the series as F , then we easily find $d \mathrm{~F} / d_{X}=1+{ }_{x} \mathrm{~F}$, whence by integration the above result follows. Geometrically, $\mathbf{P}=1$ means that if n be indefinitely large, the nth moment of the tail of the normal curve is equal to the nth moment of the whole curve, however much or however little we cut off as "tail."
determined when the first n are known, and in using formula (ii.) we treat only of n variables. Now the standard deviation for the random variation of e_{p} is

$$
\begin{equation*}
\sigma_{p}=\sqrt{\mathrm{N}\left(1-\frac{m_{p}}{\mathrm{~N}}\right) \frac{m_{p}}{\mathrm{~N}}} \tag{vii.}
\end{equation*}
$$

and if $r_{p q}$ be the correlation of random error e_{p} and e_{q},

$$
\begin{equation*}
\sigma_{p} \sigma_{q} r_{p q}=-\frac{m_{p} m_{q}}{\mathrm{~N}} \tag{riii.}
\end{equation*}
$$

Now let us write $\frac{m_{q}}{\mathrm{~N}}=\sin ^{2} \beta_{q}$, where β_{q} is an auxiliary angle easily found. Then we have

$$
\begin{gather*}
\sigma_{q}=\sqrt{N} \sin \beta_{q} \cos \beta_{q} \tag{ix.}\\
r_{p q}=-\tan \beta_{q} \tan \beta_{p} . \tag{x.}
\end{gather*}
$$

We have from the value of R in $\S 1$

$$
\begin{aligned}
& =(-1)^{n} \tan ^{2} \beta_{1} \tan ^{2} \beta_{2} \tan ^{2} \beta_{3} \ldots \tan ^{2} \beta_{n} \times
\end{aligned}
$$

$$
\begin{aligned}
& =\tan ^{2} \beta_{1} \tan ^{2} \beta_{2} \tan ^{2} \beta_{z} \ldots \tan ^{2} \beta_{n} \times \mathrm{J}, \text { say. } \\
& \text { Similarly, } \\
& \mathrm{R}_{11}=(-1)^{n-1} \tan ^{2} \beta_{2} \tan ^{2} \beta_{3} \ldots . . \tan ^{2} \beta_{n} \times J_{11}, \\
& \mathrm{R}_{12}=(-1)^{n-1} \tan \beta_{1} \tan \beta_{2} \tan ^{2} \beta_{3} \ldots \tan ^{2} \beta_{n} \times \mathrm{J}_{12} . \\
& \text { Phil. Mag. S. 5. Vol. 50. No. 302. July 1900. M }
\end{aligned}
$$

Hence the problem reduces to the evaluation of the determinant J and its minors.

If we write

$$
\begin{align*}
& \eta_{q}=\cot ^{2} \beta_{q}=\frac{\mathrm{N}}{m_{q}}-1 . \tag{xi.}\\
& \left.\boldsymbol{J}=\left\lvert\, \begin{array}{cccccc}
-\eta_{\mathbf{1}} & 1 & 1 & \ldots & \ldots & 1 \\
1 & -\eta_{z} & 1 & \ldots & \ldots & 1 \\
1 & 1 & -\eta_{3} & \ldots & \ldots & 1 \\
\cdot & . & \cdot & . & . & .
\end{array}\right.\right) \cdot .
\end{align*}
$$

Clearly,

$$
\begin{aligned}
& =(-1)^{n-1}\left(\eta_{3}+1\right)\left(\eta_{4}+1\right) \cdots\left(\eta_{n}+1\right) .
\end{aligned}
$$

Generally, if $\lambda=\left(\eta_{1}+1\right)\left(\eta_{2}+1\right)\left(\eta_{3}+1\right) \ldots\left(\eta_{\Delta}+1\right)$,

$$
\begin{equation*}
J_{p q}=(-1)^{n-1} \frac{\lambda}{\left(\eta_{p}+1\right)\left(\eta_{q}+1\right)} . \tag{xii.}
\end{equation*}
$$

But

$$
\mathrm{J}_{11}-\eta_{2} \mathrm{~J}_{12}+\mathrm{J}_{13}^{\prime}+\mathrm{J}_{14}+\ldots+\mathrm{J}_{1 n}=0
$$

Hence $\mathrm{J}_{11}=\left(1+\eta_{2}\right) \mathrm{J}_{12}-\mathrm{J}_{12}-\mathrm{J}_{13}-\mathrm{J}_{14} \ldots-\mathrm{J}_{1 n}$

$$
=\frac{(-1)^{n-1} \lambda}{1+\eta_{1}}\left(1-\frac{1}{1+\eta_{2}}-\frac{1}{1+\eta_{3}}-\frac{1}{1+\eta_{4}} \cdots-\frac{1}{1+\eta_{n}}\right) .
$$

Whence, comparing J with J_{11}, it is clear that :
$J=(-1)^{n} \lambda\left(1-\frac{1}{1+\eta_{1}}-\frac{1}{1+\eta_{2}}-\frac{1}{1+\eta_{3}}-\frac{1}{1+\eta_{4}} \cdots-\frac{1}{1+\eta_{n}}\right)$.
Now

$$
\mathrm{S}\left(\frac{1}{1+\eta}\right)=\mathrm{S}\left(\frac{m}{\mathrm{~N}}\right), \text { by }(\mathrm{xi} .),=\frac{\mathrm{N}-m_{n+1}}{\mathrm{~N}}=1-\frac{m_{n+1}}{\mathrm{~N}} .
$$

Thus:

$$
\mathrm{J}=(-1)^{n} \lambda \frac{m_{n+1}}{\mathrm{~N}}
$$

Similarly:

$$
J_{p p}=(-1)^{n-1} \frac{\lambda}{1+\eta_{p}}\left(\frac{m_{p}}{\mathrm{~N}}+\frac{m_{n+1}}{\mathrm{~N}}\right) .
$$

Thus:

$$
\frac{\mathrm{R}_{p p}}{\mathrm{R}}=-\frac{\mathrm{J}_{p p}}{\mathrm{~J}} \cot ^{2} \beta_{p}=\cot ^{2} \beta_{p} \frac{m_{p}}{\mathrm{~N}}\left(1+\frac{m_{p}}{m_{n+1}}\right) ;
$$

or from (vii.)

$$
\frac{\mathrm{R}_{p p}}{\mathrm{R}} \frac{1}{\sigma_{p}^{2}}=\frac{1}{m_{p}}+\frac{1}{m_{n+1}} \ldots . . .(\text { xiii.) }
$$

Again :

$$
\frac{\mathrm{R}_{p q}}{\mathrm{R}}=-\cot \beta_{p} \cot \beta_{q} \frac{J_{p q}}{J}=\cot \beta_{p} \cot \beta_{q} \frac{m_{p} m_{q}}{\mathrm{~N} m_{n+1}} .
$$

and :

$$
\begin{equation*}
\frac{\mathbf{R}_{p q}}{\mathbf{R}} \frac{1}{\sigma_{p} \sigma_{q}}=\frac{1}{m_{n+1}} . \tag{xiv.}
\end{equation*}
$$

Thus by (ii.) :

$$
\begin{aligned}
\chi^{2} & =\mathrm{S}_{1}\left\{\left(\frac{1}{m_{p}}+\frac{1}{m_{n+1}}\right) \rho_{p}\right\}+2 \mathrm{~S}_{2}\left\{\frac{1}{m_{n+1}} e_{p} e_{q}\right\} \\
& =\mathrm{S}_{1}\left(\frac{e_{p}^{2}}{m_{p}}\right)+\frac{1}{m_{n+1}}\left\{\mathrm{~S}_{1}\left(e_{p}\right)\right\}^{2} .
\end{aligned}
$$

But

$$
\mathrm{S}_{1}\left(e_{p}\right)=-e_{n+1}
$$

hence :

$$
\begin{equation*}
\chi^{2}=\mathbb{S}\left(\frac{e^{2}}{m}\right) \tag{xy.}
\end{equation*}
$$

where the summation is now to extend to all $(n+1)$ errors, and not merely to the first n.
(4). This result is of very great simplicity, and very easily applicable. The quantity

$$
\chi=\sqrt{\mathrm{S}\left(\frac{e^{2}}{m}\right)}
$$

is a measure of the goodness of fit, and the stages of our M 2
investigation are pretty clear. They are :-
(i.) Find χ from Equation (xv.):
(ii.) If the number of errors, $n^{t}=n+1$, be odd, find the improbability of the system observed from

$$
\mathrm{P}=e^{-\frac{1}{2 x} x^{2}}\left(1+\frac{\chi^{2}}{2}+\frac{\chi^{4}}{2 \cdot 4}+\frac{x^{6}}{2 \cdot 4 \cdot 6}+\cdots+\frac{x^{n^{\prime}-3}}{2 \cdot 4 \cdot 6 \cdot \cdot n^{\prime}-3}\right) .
$$

If the number of errors, $n^{\prime}=n+1$, be even, find the probability of the system observed from

$$
\begin{aligned}
\mathrm{P} & =\sqrt{\frac{2}{\pi}} \int_{x}^{\infty} e^{-\frac{1}{2} x^{2}} d \chi \\
& +\sqrt{\frac{2}{\pi}} e^{-\frac{-1}{2} x^{2}}\left(\frac{\chi}{1}+\frac{\chi^{3}}{1.3}+\frac{x^{3}}{1.3 .5}+\cdots+\frac{\chi^{n-3}}{1.3 .5 \ldots n^{\prime}-3}\right) .
\end{aligned}
$$

(iii.) If n be less than 13, then the Table at the end of this paper will often enable us to determine the general probability or improbability of the observed system without using these values for P at all.
(5). Hitherto we have heen considering cases in which the theoretical probability is known à prori. But in a great many cases this is not the fact ; the theoretical distribution has to be judged from the sample itself. The question we wish to determine is whether the sample may be reasonably considered to represent a random system of deviations from the theoretical frequency distribution of the general population, but this distribution has to be inferred from the sample itself. Let us look at this somewhat more closely. If we have a fairly numerous series, and assume it to be really a random sample, then the theoretical number m for the whole population falling into any group and the theoretical number m_{s} as deduced from the data for the sample will only differ by terms of the order of the probable errors of the constants of the sample, and these probable errors will be small, as the sample is supposed to be fairly large. We may accordingly take:

$$
m=m_{s}+\mu,
$$

where the ratio of μ to m_{s} will, as a rule, be small. It is only at the "tails" that μ / m_{s} may become more appreciable, but here the errors or deviations will be few or small *.

* A theoretical probability curve without limited range will never at the extreme tails exactly fit observation. The difficulty is obvious where the observations go by units and the theory by fractions. We ought to take our final theoretical groups to cover as much of the tail area as amounts to at least a unit of frequency in such cases.

Now let χ_{s} be the value found for the sample, and χ the value required marking the system of deviations of the observed quantities from a group-system of the same number accurately representing the general population.

Then:

$$
\begin{aligned}
& \chi^{2}=S\left\{\frac{\left(m^{\prime}-m\right)^{2}}{m}\right\}=S\left\{\frac{\left.m^{\prime}-m_{s}-\mu\right)^{2}}{m_{s}+\mu}\right\} \\
& =S\left\{\frac{\left(m^{\prime}-m_{s}\right)^{2}}{m_{s}}\right\}-S\left\{\frac{\mu\left(m^{\prime 2}-m_{s}^{q}\right)}{m_{s}}\right\}+S\left\{\left(\frac{\mu}{m_{s}}\right)^{2} \frac{m^{\prime 2}}{m_{s}}\right\}
\end{aligned}
$$

if we neglect terms of the order $\left(\mu / m_{s}\right)^{3}$.
Hence:

$$
\chi^{2}-\chi_{s}{ }^{2}=-\mathrm{S}\left\{\frac{\mu}{m_{s}} \frac{m^{\prime 2}-m_{s}^{2}}{m_{s}}\right\}+\mathrm{S}\left\{\left(\frac{\mu}{m_{s}}\right)^{2} \frac{m^{\prime 2}}{m_{s}}\right\}
$$

Now χ_{s} must, I take it, be less than χ, for otherwise the general population distribution or curve would give a better fit than the distribution or curve actually fitted to the sample. But we are supposed to fit a distribution or curve to the sample so as to get the " best" values of the constants. Hence the right-hand side of the above equation must be positive. If the first term be negative then it must be less than the second, or the difference of χ and χ_{s} is of the order, not of the first but of the second power of quantities depending on the probable errors of the sample. On the other hand, if the first term be positive, it means that there is negative correlation between $\frac{\mu}{m}$ and $\frac{m^{\prime 2}-m_{s}^{2}}{m_{s}^{*}}$, or that when the observed frequency exceeds the theoretical distribution given by the sample ($m^{\prime}>m_{z}$), then the general population would fall below the theoretical distribution given by the sample ($m<m_{s}$), and vice versa. In other words the general population and the observed population would always tend to fall on opposite sides of the sample theoretical distribution. Now this seems impossible; we should rather expect, when the observations exceeded the sample theoretical distribution, that the general population would have also excess, and vice versa. Accordingly, we should either expect the first term to be negative, or to be very small (or zero) if positive. In either case I think we may conclude that χ only differs from χ^{*} by terms of the order of the squares of the probable errors of the constants of the sample distribution. Now our argu-
ment as to goodness of fit will be based on the general order of magnitude of the probability P, and not on slight differences in its value. Hence, if we reject the series as a random variation from the frequency distribution determined from the sample, we must also reject it as a random variation from a theoretical frequency distribution differing by quantities of the order of the probable errors of the constants from the sample t'reoretical distribution. On the other hand, if we accept it as a random deviation from the sample theoretical distribution, we may aceept it as a random variation from a system differing by quantities of the order of the probable errors of the constants from this distribution.

Thus I think we can conclude, when we are dealing with a sufficiently long series to give small probable errors to the constants of the series, that :- -
(i.) If χ_{s}^{2} be so small as to warrant us in speaking of the distribution as a random variation on the frequency distribution determined from itself, then we may also speak of it as a random sample from a general population whose theoretical distribution differs only by quantities of the order of the probable errors of the constants, from the distribution deduced from the observed sample.
(ii.) If $\chi^{\chi / 8}$ be so large as to make it impossible for us to regard the observed distribution as a sample from a general population following the law of distribution deduced from the sample itself, it will be impossible to consider it as a sample from any general population following a distribution differing only by quantities of the order of the probable errors of the sample distribution constants from that sample distribution.

In other words, if a curve is a good fit to a sample, to the same fineness of grouping it may be used to describe other samples from the same general population. If it is a bad fit, then this curve cannot serve to the same fineness of grouping to describe other samples from the same population.

We thus seem in a position to determine whether a given form of frequency curve will effectively describe the samples drawn from a given population to a certain degree of fineness of grouping.

If it serves to this degree, it will serve for all rougher groupings, but it does not follow that it will suffice for still finer groupings. Nor again does it appear to follow that if the number in the sample be largely increased the same curve will still be a good fit. Roughly the χ^{2} 's of two samples appear to vary for the same grouping as their total contents. Hence if a curve be a good fit for a large sample it will be good for a small one, but the converse is not true, and a larger
sample may show that our theoretical frequency gives only an approximate law for samples of a certain size. In practice we must attempt to obtain a good fitting frequency for such groupings as are customary or utile. To ascertain the ultimate law of distribution of a population for any groupings, however small, seems a counsel of perfection.
(6) Frequency know or supposed known a priori. Illustration I .
The following data are due to Professor W. F. R. Weldon, F.R.S., and give the observed frequency of dice with 5 or 6 points when a cast of twelve dice was made 26,306 times :-

No. of Dice in Cast with 5 or 6 Points.	Observed Frequency, m^{\prime}.	Theorelical Frequency, m.	Deviation, $e_{\text {. }}$
0	185	203	- 18
1	1149	1217	-68
2	3265	3345	-80
3	5475	5576	-101
4	6114	6273	-159
5	5194	5018	$+176$
6	3067	2927	$+140$
7	1331	1254	+ 77
8	403	392	+ 11
9	105	87	+ 18
10.	14	13	+1
11	4	1	$+\quad 3$
12	0	0	0
	26306	26306	

The results show a bias from the theoretical results, 5 and 6 points occurring more frequently than they should do. Are the deviations such as to forbid us to suppose the results due to random selection? Is there in apparently true dice a real bias towards those faces with the maximum number of points appearing uppermost?

We have:-

Group.	e^{2}.	e^{2} / m.	Group.	e^{2}.	e^{2} / m.
$0 \ldots$	324	1.59606	$7 \ldots$	5939	$4 \cdot 72807$
1	4624	379951	8	121	030903
$2 \ldots$.	6400	1.91330	$9 \ldots$.	324	372414
3	10201	1.82945	$10 \ldots$.	1	0.07346
4	25281	4.03013	$11 \ldots$	9	9.00000
$5 \ldots$	30976	$6 \cdot 17298$	12	0	. 00000
6	19600	669628	'Total...	...	43.87241

$$
\chi^{2}=43 \cdot 87241 \text { and } \chi=6 \cdot 623,625
$$

As there are 13 groups we have to find P from the formula:
$\mathrm{P}=e^{-\frac{1}{2} x^{2}}\left(1+\frac{\chi^{2}}{2}+\frac{\chi^{4}}{2.4}+\frac{\chi^{6}}{2.4 .6}+\frac{\chi^{8}}{2.4 .6 .8}+\frac{\chi^{10}}{2.4 .6 .8 .10}\right)$,
which leads us to

$$
\mathrm{P}=\cdot 000016
$$

or the odds are 62,499 to 1 against such a system of deviations on a random selection. With such odds it would be reasonable to conclude that dice exhibit bias towards the higher points.

Illustration II.
If we take the total number of fives and sixes thrown in the 26,306 casts of 12 dice, we find them to be 106,602 instead of the theoretical 105,224 . Thus $\frac{106,602}{12 \times 26,306}=\mathbf{3 3 7 7}$ nearly, instead of $\frac{1}{3}$.

Professor Weldon has suggested to me that we ought to take $26,306(\cdot 3377+\cdot 6623)^{12}$ instead of the binomial $26,306\left(\frac{1}{3}+\frac{2}{3}\right)^{12}$ to represent the theoretical distribution, the difference between 3377 and $\frac{1}{3}$ representing the bias of the dice. If this be done we find:

Group.	m^{\prime}.	m.	e.	e^{2} / m,
0	185	187	-2	-021,3904
1	1149	1146	+ 3	. 007.8534
2	3265	3215	$+50$	$\cdot 777,6050$
3	5475	5465	$+10$	$\cdot 018,2983$
4	6114	6269	-155	3091,8645
5	5194	515	$+79$	1-220,1342
6	3067	3043	+ 24	$\cdot 189,2869$
7	1331	1330	+ 1	$\cdot 000,7519$
8	403	424	- 21	1040,0948
9	105	96	+ 9	-841,8094
10	14	15	-1	$\cdot 666,6667$
11	4	1	+ 3	9
12	0	0	0	0

Hence :

$$
x^{q}=17 \cdot 775,7555
$$

This gives us by the first formula in (ii.) of art. 4 :

$$
\mathrm{P}=\cdot 1227
$$

or the odds are now only 8 to 1 against a system of deviations as improbable as or more improbable than this one. It may be said accordingly that the dice experiments of Professor Weldon are consistent with the chance of five or six points being thrown by a single die being -3377, but they are excessively
improbable, if the chance of all the faces is alike and equal to $1 / 6$ th.

Illustration III.

In the case of runs of colour in the throws of the rouletteball at Monte Carlo, I have shown * that the odds are at least 1000 millions to one against such a fortnight of runs as occurred in July 1892 being a random result of a true roulette. I now give χ^{2} for the data printed in the paper referred to, i.e.:

4274 Sets at Roulette.

From this we find $\chi^{2}=17243$, and the improbability of a series as bad as or worse than this is about $14: 5 / 10^{30}$! From this it will be more than ever evident how little chance had to do with the results of the Monte Carlo roulette in July 1892.
(7) Frequency of General Population not known a priori.

Illustration IV. \dagger
In my memoir on skew-variation (Phil. Trans. vol. clxxxvi. p. 401) I have fitted the statistics for the frequency of petals in 222 buttercups with the skew-curve

$$
y=\cdot 211225 x^{-322}(7 \cdot 3253-x)^{3 \cdot 142} .
$$

The possible range is from 5 to 11 petals, and the frequencies are :-

No. of Petals...	5	6	7	8	9	10	11
Obser ration ...	133	55	23	7	2	2	0
Theory	1369	48.5	22.6	9.6	3.4	0.8	0.2

These lead to $\chi^{2}=4.885,528$; whence we find for the probability of a system of deviations as much or more removed

* 'The Chances of Death,' vol. i.: The Scientific Aspect of Monte Carlo Roulette, p. 54.
\dagger Illustrations IV. and V. were taken quite at random from my available data. Other fits with skew-curves may give much worse results, others much better, for anything I can as yet say to the contrary.
from the most probable

$$
\mathrm{P}=\cdot 5586
$$

In 56 cases out of a hundred such trials we should on a random selection get more improbable results than we have done. Thus we may consider the fit remarkably good.

Illustration V.

The following table gives the frequencies observed in a system recorded by Thiele in his Forelaesinger over almindelig Iagttagelseslaere, 1889, together with the results obtained by fitting a curve of my Type 1. The rough values of the moments only were, however, used, and as well ordinates used measure areas :-

Groups.	Observed m^{\prime}.	Curve m_{1}.	e.	e^{2}.	e^{2} / n,
1	0	-18	- 18	-0324	$\cdot 18$
2	3	$\cdot 68$	- 232	$5 \cdot 3824$	$7 \cdot 9153$
$3 \ldots$.	7	$13 \cdot 48$	$+6.48$	41.9904	$3 \cdot 1150$
4	35	$45 \cdot 19$	+10.19	$103 \cdot 8361$	$2 \cdot 2977$
5	101	$79 \cdot 36$	-21.64	$468 \cdot 2896$	59008
6	89	96-10	$+7 \cdot 10$	50.4100	$\cdot 5245$
$7 \ldots . . .$.	94	90.90	-310	$9 \cdot 6100$	$\cdot 10.98$
8	70	71-41	$+141$	19881	- 0278
9	46	$48 \cdot 25$	+2.25	50625	-1049
10	30	$28 \cdot 53$	- 1.47	$2 \cdot 1609$	$\cdot 0757$
11	15	14.94	- 06	-0036	.0002
12	4	$6 \cdot 96$	$+296$	8.7616	$1 \cdot 2523$
13.	5	$2 \cdot 88$	-2.12	4-4944	1.5605
14.	1	106	+ 06	-0036	. 0035
$15 \ldots \ldots$.	0	-34	+ 34	-1156	-3400
16	0	$\cdot 10$	+ 10	-0092	. 0960
17	0	-00	$+0$	$\cdot 0$	0
Total	500	$50036 *$	+ 36	\ldots	23.5000

Thus gives $\frac{1}{2} \chi^{2}=11 \cdot 75=\eta$, say.
Then

$$
\mathrm{P}=e^{-\eta}\left(1+\frac{\eta}{1}+\frac{\eta^{2}}{\underline{\underline{2}}}+\frac{\eta^{3}}{\underline{3}}+\frac{\eta^{4}}{4}+\frac{\eta^{5}}{1 \underline{5}}+\frac{\eta^{6}}{\sqrt[6]{\mid}}+\frac{\eta^{7}}{\underline{7}}\right) .
$$

Substituting and working out we find

$$
\mathrm{P}=\cdot 101=\cdot 1, \text { say }
$$

Or, in one out of every ten trials we should expect to differ from the frequencies given by the curve by a set of deviations as improbable or more improbable. Considering that we should get a better fit of our observed and calculated frequencies by (i.) reducing the moments, and (ii.) actually

[^1]calculating the areas of the curve instead of using its ordinates, I think we may consider it not very improbable that the observed frequencies are compatible with a random sampling from a population described by the skew-curve of Type I.

Illustration VI.

In the current text-books of the theory of errors it is customary to give various series of actual errors of observation, to compare them with theory by means of a table of distribution based on the normal curve, or graphically by means of a plotted frequency diagram, and on the basis of these comparisons to assert that an experimental foundation has been established for the normal law of errors. Now this procedure is of peculiar interest. The works referred to generally give elaborate analytical proofs that the normal law of errors is the law of nature-proofs in which there is often a difficulty (owing to the complexity of the analysis and the nature of the approximations made) in seeing exactly what assumptions have been really made. The authors usually feel uneasy about this process of deducing a law of nature from Taylor's Theorem and a few more or less ill-defined assumptions; and having deduced the normal curve of errors, they give as a rule some meagre data of how it fits actual observation. But the comparison of observation and theory in general amounts to a remark - based on no quantitative criterion-of how well theory and practice really do fit! Perhaps the greatest defaulter in this respect is the late Sir George Biddell Airy in his text-book on the ' Theory of Errors of Observation.' In an Appendix he gives what he terms a "Practical Verification of the Theoretical Law for the Frequency of Errors."

Now that Appendix really tells us absolutely nothing as to the goodness of fit of his 636 observations of the N.P.D. of Polaris to a normal curve. For, if we first take on faith what he says, namely, that positive and negative errors may be clubbed together, we still find that he has thrice smoothed his observation frequency distribution before he allows us to examine it. It is accordingly impossible to say whether it really does or does not represent a random set of deviations from a normal frequency curve. All we can deal with is the table he gives of observed and theoretical errors and his diagram of the two curves. These, of course, are not his proper data at all: it is impossible to estimate how far his three smoothings counterbalance or not his multiplication of errors by eight. But as I understand Sir George Airy, he would have considered such a system of errors as he gives on his p. 117 or in his diagram on p. 118 to be sufficiently represented by a normal curve. Now I have investigated his 37 groups of errors, observational
and theoretical. In order to avoid so many different groups, I have tabulated his groups in $\cdot 10^{\prime \prime}$ units, and so reduced them to 21 . From these $\% 1$ groups I have found χ^{2} by the method of this paper. By this reduction of groups I have given Sir George Airy's curve even a better chance than it has, as it stands. Yet what do we find? Why,

$$
\chi^{2}=30.2872
$$

Or, using the approximate equation,

$$
\mathrm{P}=\cdot 01423
$$

That is to say, only in one occasion out of 71 repetitions of such a set of observations on Polaris could we have expected to find a system of errors deviating as widely as this set (or more widely than this set) from the normal distribution. Yet Sir George Airy takes a set of observations, the odds against which being a random variation from the normal distribution are 70 to 1 , to prove to us that the normal distribution applies to errors of observation. Nay, further, he cites this very improbable result as an experimental confirmation of the whole theory! "It is evident," he writes, "that the formula represents with all practicable accuracy the observed Frequency of Errors, upon which all the applications of the Theory of Probabilities are founded: and the validity of every incestigation in this Treatise is thereby established."

Such a passage demonstrates how healthy is the spirit of scepticism in all inquiries concerning the accordance of theory and nature.

Illustration VII.

It is desirable to illustrate such results a second time. Professor Merriman in his treatise on Least Squares * starts in the right manner, not with theory, but with actual experience, and then from his data deduces three axioms. From these axioms he obtains by analysis the normal curve as the theoretical result. But if these axioms be true, his data can only differ from the normal law of frequency by a system of deviations such as would reasonably arise if a random selection were made from material actually obeying the normal law. Now Professor Merriman puts in the place of honour lo00 shots fired at a line on a target in practice for the U.S. Government, the deviations being grouped according to the belts struck, the belts were drawn on the target of equal breadth and parallel to the line. The following table gives the distribution of hits and the theoretical frequency-

[^2]distribution calculated from tables of the area of the normal curre*.

Belt.	Observed Frequency.	Normal Distribution.	e.	$\frac{e^{2}}{m}$.
1	1	1	0	0
2	4	6	-2	$\cdot 667$
3	10	27	-17	$10 \cdot 704$
4	89	67	$+22$	7-294
5	190	162	$+28$	4839
6	212	242	-30	3719
7	204	240	-36	5400
8	193	157	+36	8.255
9	79	70	+9	$1 \cdot 157$
10	16	26	-10	$3 \cdot 846$
11	2	2	0	0
	1000	1000	$\chi^{2}=45 \cdot 811$	

Hence we deduce: $\quad \mathrm{P}=\cdot 000,00155$.
In other words, if shots are distributed on a target according to the normal law, then such a distribution as that cited by Mr. Merriman could only be expected to occur, on an average, some 15 or 16 times in $10,000,000$ trials. Now surely it is very unfortunate to cite such an illustration as the foundation of those axioms from which the normal curve must flow : For if the normal curve flows from the axioms, then the data ought to be a probable system of deviations from the normal curve. But this they certainly are not. Now it appears to me that, if the earlier writers on probability had not proceeded so entirely from the mathematical standpoint, but had endeavoured first to classify experience in deviations from the average, and then to obtain some measure of the actual goodness of fit provided by the normal curve, that curve would never have obtained its present position in the theory of errors. Even today there are those who regard it as a sort of fetish; and while admitting it to be at fault as a means of generally describing the distribution of variation of a quantity x from its mean, assert that there must be some unknown quantity z of which x is an unknown function, and that z really obeys the normal law ! This might be reasonable if there were but few exceptions to this universal law of error ; but the difficulty is to find even the few variables which obey it, and these few are not those usually cited as illustrations by the writers on the subject!

[^3]The reader may ask: Is it not possible to find material which obeys within probable limits the normal law? I reply, yes; but this law is not a universal law of nature. We must hunt for cases. Out of three series of personal equations, I could only find one which approximated to the normal law. I took 500 lengths and bisected them with my pencil at sight. Without entering at length into experiments, destined for publication on another occasion, I merely give the observed and normal distribution of my own errors in 20 groups.

Group.	Observation.	Theory.	Group.	Observation.	Theory.
1	1	$2 \cdot 3$	11	53	$57 \cdot 0$
2	3	$3 \cdot 4$	12	505	47-1
3 ...	11	6.9	13	$28 \cdot 5$	34-0
4	14.5	$13 \cdot 1$	14	27	$22 \cdot 7$
5	21.5	222	15	135	$13 \cdot 5$
6	30	33.6	16	$7 \cdot 5$	$7 \cdot 0$
7	47	$47 \cdot 5$	17	0	35
8	51.5	57.8	18	1	$1 \cdot 6$
9	72	$63 \cdot 2$	19	0	$\cdot 6$
10	65.5	$62 \cdot 7$	20	2	$\cdot 3$

Calculating χ^{2} in the manner already sufficiently indicated in this paper, we find

$$
x^{2}=22 \cdot 0422
$$

We must now use the more complex integral formula for P, and we find

$$
\mathrm{P}=\cdot 2817
$$

Or, in every three to four random selections, we should expect one with a system of deviations from the normal curve greater than that actually observed.

I think, then, we may conclude that my errors of judgment in bisecting straight lines may be fairly represented by a normal distribution. It is noteworthy, however, that I found other observers' errors in judgment of the same series of lines were distinctly skew.
(8) We can only conclude from the investigations here considered that the normal curve possesses no special fitness for describing errors or deviations such as arise either in observing practice or in nature. We want a more general theoretical frequency, and the fitness of any such to describ a given series can be investigated by aid of the criterion discussed in this paper. For the general appreciation of the probability of the occurrence of a system of deviations defined by χ^{2} (or any greater value), the accompanying table has been calculated, which will serve to give that probability closely enough for many practical judgments, without the calculations required by using the formulæ of art. 4.

	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
	606,	-801,253	-909,7	962,	185,612	-994	98,	99,438	28	$\cdot 999,950$	-999,	999,997	999,999		1.			
	367,879	:572,407	735,75	849,1	919,699	959,8	981,01	991,466	996,340	-998,494	-999,	999,772	999,917	999.969	-999,990	-999,996	-999,999	999,999
3	223,130	-391,633	-557,825	-699,994	-808,847	-885,010	$\cdot 934,357$	964,303	-981,424	-990,734	-995,544	-997,942	999,074	-999,605	999,830	999,938	-999,972	999,997
	-135,335	261,470	-406,006	-549,422	-676,676.	779,783	857,123	911,418	8947,347	-969,923	-983,436	-991,197	-995,466	.997,743	-998,903	-999,489	-999,	99,899
5	-082,085	-171,799	-287,298	-415,882	-543,813	$\cdot 659,965$	757,576	-834,310	891,178	$\cdot 931,168$	$\cdot 957,979$	$\cdot 975,195$	985,813	-992,128	-995,754	997,772	998,	33
	049,787	-111,611	199,148	-306,220	423,190	-539,750	647.232	739,919	-815,263	-873,366	-916,08:	$\cdot 946,15$	966,491	979,749	$\cdot 988,0$	993,1	996,	
	-030,197	.071,888	135,888	220,631	320,847	-428,870	-536,632	637,110	-725,544	-799,074	-857,613	-902,142	934,711	-957,640	-973,2	-983,539	990,1	203
	-018,316	-046,012	-091,578	156,23	238,103	332,594	433,47	534,1	628,837	-713,304	$\cdot 785,131$	$\cdot 843,601$	889,327	923,783	948,867	966,54	978,	$\cdot 986,671$
9	011,109	029,291	-061,099	109,064	173,578	252,656	342,296	437,274	-532,104	-621,892	702,931	772.944	831,051	-877,518	913,414	-940,26	959,	973,479
10	$\cdot 006,738$	018,567	$\cdot 040,428$	075,236	124,652	$\cdot 188,574$	-265,026	350,486	440,493	-530,388	-615,960	-693,935	762,183	-819,740	866,62	$\cdot 903,611$	-931,9	-952,946
15	000,553	$\cdot 001,817$	004,701	010,363	020,256	-036,000	-059,145	090,810	-132,061	-182,371	241,436	-307,227	378,154.	-450,691-	-524,638	-594,156	-661,	,272
20	$\cdot 000,045$	$\cdot 000,170$	000,499	001,250	-002,769	-005,570	010,336	017,913	029,253	$\cdot 045,341$	-067,086	-095,212	130,141.	171,934	-220,220	-274,231	332,8	
25	-000,004	000,016	000,050	$\cdot 000,139$	000,341.	$\cdot 000,759$	-001,554	$\cdot 002,971$	105,345	$\cdot 009,117$	-014,822	-023,08	034,5	049.943	-069,8	094,7	-124,9	,542
30	-000,000	$\cdot 000,001$	000,005	-000,015	000,039	-000,095	$\cdot 000,211$	000,439	-000,857	$\cdot 001,585$	002,792	004,71	007,632	011,921	018,002	-026,34	-037,446	-051,798
40	-000,000	.000,000	000,000	000,000	-000,000	000,001	-000,003	000,008	-000,017	$\cdot 000,036$	000,072	$\cdot 000,13$	000,255	000,453	000,778	-001,294	-002,087	-003,272
50	-000,000	-000,00	000,000	000,000	000,000	00,000	-000,00	000,000	000,000	$\cdot 000,000,5$	-000,001	$\cdot 000,00$	000,006	-000,012	$\cdot 000,023$	-000,042	$\cdot 000,0$	-000,131
60	-000,000	-000,000	-000,000	-000,000			-000,000	000,000.	.000,000	$\cdot 000,000$	000,000	$\cdot 000,000$	-000,000	-000,000	000,000	-000,001	-000,00	000,004
70	$\cdot 000,000$	-000,000	-000,000	-000,000	$\cdot 000,000 \cdot$	000,000	000,000	$\cdot 000,000 \cdot$	000,000	$\cdot 000,000$	$\cdot 000,000$	-000,000	-000,000	$\cdot 000,000 \cdot$	$\cdot 000,000 \cdot$	000,000	$\cdot 000,000$	000,000

[^0]: * Communicated by the Author.

[^1]: * Due to taking ordinates for areas and fewer figures than were really required in the calculations.

[^2]: * 'A Textbook on the Method of Least Squares,' 1891, p. 14.

[^3]: * I owe the work of this illustration to the kindness of Mr. W. R. Macdonell, M.A., LL.I.

