










BIOS602: Notes, Clayton&Hills. Ch 7 (Competing risks and selection). updated 2014.11.07.

7.1 Censoring in follow-up studies

JH would use a di↵erent word for the so-called ‘censoring’ that removes a
subject from pool of candidates for the transition of interest.

7.2 Competing causes

A good way to visualize how things play out over time is to use a table
with rows for time intervals, and 3 columns (one can also show columns of
cumulative totals for the transitions):

interval no. candidates transitions, type 1 transitions, type 2
interval no. candidates transitions, type 1 transitions, type 2

... ... ... ...
interval no. candidates transitions, type 1 transitions, type 2

The numbers of transitions of type i, when the transition rates are �1 and �2,
in an interval of length w,1 are:

no. of candidates⇥ (1� exp{��i ⇥ w})

If �i is a smooth function of age or time, then we replace the �i ⇥w product
by the integral

R
�i(t)dt over the interval.

The number of candidates for the next interval is the number for the previous
one minus the sum of the numbers of transitions in that previous interval.

The number of candidates at the beginning of an interval can also calculated
as

initial no. of candidates⇥ exp{�⌃(�1 + �2)⇥ w}

where the summation (or integral, if the If �’s are smooth functions of age or
time) is over the time span already elapsed.

1C&H use h for the duration of a ‘click.’

Supplementary Exercise 7.1. The BIOS601 website has, under the tab
‘Competing Risks’, (and inside the R code) data on age-specific breast cancer
incidence and mortality, as well as all cause mortality.

1. Use these (and if you wish, the R code provided) to calculate the ‘lifetime’2

risk of being diagnosed with breast cancer.

2. Compare your answers with those given in the report (now on the
601 site) ‘Google Canadian Cancer Statistics 2013’ (which JH
obtained by ‘Google-ing’ Canadian Cancer Statistics 2013). The
relevant Table 1.1 is at the end of Chapter 1.

Incidentally, do you agree with the wording ‘Lifetime probability

(%) of developing cancer in next 10 years by age group’ further

to the right in the Table? If not, suggest a better wording.

3. Calculate the lifetime risk in the absence of competing causes of removal
from the candidate pool. You can do this by repeating the calcu-
lation in Q1, but setting the mortality function to zero.

4. Calculate how many more years of life, on average, women could expect
to live if all deaths from breast cancer mortality could be averted. Either
carry the calculations out to age 105, using a sensible extrapolation of
the breast cancer mortality curve, or stop where the breast cancer
mortality curve ends.

Note added 2014.11.06: JH realizes that he gave you misleading advice
today – he had not read part 4 of the question carefully, and thought the
question referred to just those women who died of breast cancer. In fact,
as worded, it refers to an average of all women, under 2 scenarios.

The question asks what is the average life expectancy at birth if we use
(i) the all-cause death rate function generated in the R code and (ii) if
we subtract from this rate function the breast cancer death rate function,
also generated in the code.

For (ii) one can subtract the breast cancer death rates from the overall
rates.

And to get the life expectancy at birth, one can indeed – as some of you
had surmised – use the area under the survival curve.

One caveat is that by removing the breast cancer deaths, one is not re-
moving a cause of some other disease(s) that kill(s) women. C & H write
about this issue when considering stroke and MI.

2Since the available breast cancer rates only go as far as age 92 or so, and are negligible
before age 20, consider the lifespan from 22 to 92.
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2014.11.06: Here is what JH was thinking about when he spoke
with some of you after class: he thought the question was ‘For
those who die of breast cancer, how many years of life do they lose, on
average?’

For this, one could use the breast cancer death rate function and the other
cause death rate function to create a 3-ply table, with the columns (a)
alive at this age, (b) died at this age of breast cancer, (c) died at this age
of other causes. The second column would give you the age distribution
of the ages at which women die of breast cancer. And from this, one
could indeed then use these as weights to get a weighted average of the
remaining life expectancies at these ages. Some of you saw me find a
Canadian life table with such life expectancies in it.

This distribution is somewhat synthetic or artificial. Another more real
way is to use data from an actual population, such as those provided by
the WHO – see the beginning of the R code, which extracts the distri-
bution of ages at breast cancer death from recent WHO cancer statistics
from Canada. These can then be used as as weights to get a weighted
average of the remaining life expectancies at these ages.

Supplementary Exercise 7.2. The website also has, under the same tab,
data on the 767 men reported on in Albertsen et al. 2005 article on prostate
cancer mortality in men who had their prostate cancer managed conserva-
tively. See also the statistical methods in the 1998 and 2005 articles.

1. Use Poisson regression to fit a model for the rate (incidence density,
hazard) function governing all-Other-cause mortality – ie fit a smooth
�O(age) function Hint: you will probably find that Gompertz’ law
(log[rate] is linear in age) gives a reasonably acceptable fit. The one
other variable, besides age, that would matter is how many concurrent
diseases (e.g, diabetes, heart disease, etc..) the man has – we tried to
capture this information by using the Charlson score, but you can ignore
it in this exercise. You can also ignore (i.e., pool the experience over)
Gleason categories.

This is the ‘blue’ function in the lower right panel. Inspect the R code and
explain how it was fitted. Think of a rate function as an ‘intensity’ func-
tion, i.e. how the intensity of the blue dots (deaths from other causes)
in the population-time space increases with age. This way of thinking
about it should drive home the point that these rates are NOT propor-
tions: a rate of 0.03 deaths per man-year does not mean that there is a
3% probability that death will occur within the year. It means that it is
1 � exp[0.03deaths/year ⇥ 1year] = 1 exp[�(µ =) 0.03 deaths]. This is

close to a 0.03 probability in this instance, but it would not be if we were
dealing with a death rate of 2 deaths per person year if we are at age 110!
With this high rate, an average of 2 110-year olds are needed to create a
continuous 1-person chain from age 110 to 111.
Another example, related to a fast-killing disease, is cancer of the pan-
creas. Suppose one were running a 5-bed hospice for such patients, that –
because of the few beds – was always full, and that the average longevity
from admission to death was 0.5 years. Then in a calendar year, one
would accumulate 10 deaths in 5 bed-years, so the death rate would be
2 deaths/bed-year. Now the chance of a patient living a whole year is
exp[�2 deaths/year⇥ 1 year = 2deaths] = 14% and the chance of dying
within the year is therefore 86%.

2. Use Poisson regression to fit separate (Gleason-category-specific)
models for the rate (incidence density, hazard) function governing
prostate Cancer mortality – i.e., for each category, fit a separate smooth-
in-time �C(t) function where t is the number of years elapsed since the
date of diagnosis. Assume the function is independent of age.

This is the ‘red’ function in each of the 5 panels. Inspect the R code and
explain how it was fitted. The rate function shows how the intensity of
the red dots (deaths) in the population-time space varies with follow-up
time. The code assumes a log-linear model, but of course, if there were
more data, more complex models could be used. In the JAMA paper, for
parsimony, some parameters were ‘shared’ across the Gleason categories.

3. Compute ‘3-ply’ curves, of the types contained in the articles, for a few
selected combinations of age-at diagnosis, and Gleason score categories
– they won’t match exactly those in the JAMA article, where a slightly
more extensive model was used for the prostate cancer mortality rate
function. You can use integrals or sums.

E.g.: men diagnosed at age 65, with a Gleason 7 cancer. To reach 85,
they must avoid 2 ( red and the blue) ongoing threats. Some textbooks
use the image of people being shot at by red and blue guns, with di↵erent
lethalities, as they walk down that street. The proportion reaching the
end alive is exp[�

R 20
0 [�red(u) + �blue(u)] ⇥ du ].

The proportion alive at any t is S[t] = exp[�
R u

0 [�red(u)+�blue(u)] ⇥du ].
This forms the upper boundary of the ‘white’ area in the JAMA figure.

The numbers of red and blue casualties in the interval (t, t + dt)
are S(t)dt ⇥ �red(t) and S(t)dt ⇥ �blue(t) respectively. Cumulated over
time, they form the darker and lighter bands in the JAMA figure.
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The concept of population-time as a 2-D surface

The vertical dimension is the population size, and the

horizontal dimension is time.

The schematic on the right illustrates the ‘population

time’ segments that form the denominators of incidence

densities. Shown are when, and for how long 100 di↵er-

ent motor vehicle drivers drove while using or not using

cellular telephones, during a specific time-window on a

particular morning. The raw data are depicted in two

formats

(1) in detail, driver by driver, with the driving time

shown as thin horizontal lines, and the time driving

while using a cellular telephone in darker and thicker

horizontal lines and

(2) collectively, i.e., de-personalized. The height of the

upper curve indicates how many were driving at the in-

dicated instant, and the lower curve how many of them

were at that instant using the phone while driving. The

area under the lower curve represents the total amount

of driver-time ‘on-the-phone’, and that between the two

curves the total driver-time ‘o↵-the-phone.’

We could imagine dots in these ‘population-time

surfaces’ representing tra�c accidents in the ‘on the

phone’ and ‘o↵ the phone’ experience.

These lead naturally to an intensity function.
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