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CASE I
• Prob[surv. benefit] if man, aged 58, PSA 9.1, c̄ ‘Gleason 7’

prostate cancer, selects radical over conservative Tx?
• RCT: prostate ca. mortality reduced with radical Tx (HR

0.56). 10-y ‘cum. incidence, CI’ of death: 10% vs. 15%.
• “Benefit of radical therapy ... differed according to age but

not according to the PSA level or Gleason score.”
• Nonrandomised studies: (1) ‘profile-specific’ prognoses but

limited to conservative Tx (2) few patients took this option
(3) n= 45,000 men 65-80: “Using propensity scores to
adjust for potential confounders,” the authors reported “a
statistically significant survival advantage” in those who
chose radical treatment (HR, 0.69)”. An absolute 10-year
survival difference (in percentage points) was provided for
each “quintile of the propensity score”,

• MD couldn’t turn info. into surv. ∆ for men with pt’s profile.
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CASE II

• Physician consults report of a classic randomised trial
(Systolic Hypertension in Elderly Program (SHEP) to
assess 5-year risk of stroke for a 65-year old white woman
with a SBP of 160 mmHg and how much it is lowered if she
were to take anti-hypertensive drug treatment.

• Reported risk difference was 8.2% - 5.2% = 3%, and the
“favorable effect” of treatment was also found for all age,
sex, race, and baseline SBP groups.

• Report did not provide information from which to estimate
the risk, and risk difference, for this specific profile.
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STATISTICS AND THE AVERAGE PATIENT

• For a patient, ĤR = ÎDR = 0.6 not very helpful.

• ĈI0−10 = 15% if Tx = 0; 10% if Tx = 1, more helpful.

• Not specific to this particular type of patient, if grade &
stage {of Pr Ca} or age/race/sex/SPB {SHEP Study} not
near the typical of those in trial.
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ARE THESE ISOLATED CASES?

• Are survival statistics from clinical trials – and
non-randomised studies – limited to the “average” patient?

• Is Cox regression used merely to ensure ‘fairer
comparisons’?

• How often is it used to provide profile-specific estimates of
survival and survival differences?
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SURVEY: SURVIVAL STATISTICS IN RCT REPORTS

• RCT’s : Jan - June 2006 : NEJM, JAMA, The Lancet
• 20 studies with statistically significant survival difference

between compared treatments w.r.t. primary endpoint.
• Documented whether presented profile-specific t-year and

Tx-specific survival, { or complement, t-year risk }.
• Most abstracts contained info. on risk and risk difference

for the ‘average’ patient.
• Some articles provided RD’s or HR’s for ‘univariate’

subgroups (e.g. by age or by sex).
• Despite range of risk profiles in each study, and common

use of Cox regression, none presented info. that would
allow reader to assess Tx-specific risk for a specific profile,
e.g., for a specific age-sex combination.
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WHY THIS CULTURE?

Predominant use of the semi-parametric ‘Cox model.’

• Time is considered as a non-essential element.

• Primary focus is on hazard ratios.

• Form of hazard per se as function of time left unspecified.

• Attention deflected from estimates of profile-specific CI.

• Many unaware that software provides profile-specific CI.
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DIFFERENT CULTURE

Practice of reporting estimates of profile-specific probability
more common when no variable element of time of outcome.

• Estimates can be based on logistic regression.

• Examples

• (“Framingham-based”) estimated 6-year risk for Myocardial
Infarction as function of set of prognostic indicators;

• estimated probability that prostate cancer is
organ-confined, as a function of diagnostic indicators.
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WHAT WE WISH TO DO

• Model the hazard (h), or incidence density (ID), as a
function of

• set of prognostic indicators
• choice of intervention
• prospective time.

• Estimate the parameters of this function.

• Calculate ĈIx(t) from this function.
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COX MODEL

Hazard modelled, semi-parametrically, as

hx(t) = [exp(βx)]λ0(t),

• T = t : a point in prognostic time,
• β : vector of parameters with unknown values;
• X = x : vector of realizations for variates based on

prognostic indicators and interventions;
• λ0(t) : hazard as a function – unspecified – of t

corresponding to x = 0.
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FROM β̂ TO PROFILE-SPECIFIC CI’s

• Obtain Ŝ0(t) { the complement of ĈI0(t) }.
• Estimate risk (cum. incidence) CIx(t) for a particular

determinant pattern X = x as ĈIx(t) = 1− Ŝ0(t)
exp(β̂x)

.

• Breslow suggested an estimator of λ0(t) that gives a
smooth estimate of CIx(t). However, step function
estimators of Sx(t), with as many steps as there are
distinct failure times in the dataset, are more easily
derived, and the only ones available in most packages.

• Step-function S0(t) estimators: “Kaplan-Meier” type
(“Breslow”) and Nelson-Aalen. heuristics: jh, Epidemiology 2008

• Clinical Trials article (Julien & Hanley, 2008) encourages
investigators to make more use of these for ‘profiling’.
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TOO MUCH OF A GOOD THING? - 1992

the success of Cox regression has perhaps had the
unintended side-effect that practitioners too seldomly
invest efforts in studying the baseline hazard...

a parametric version, ... if found to be adequate,
would lead to more precise estimation of survival
probabilities.

Hjort, 1992, International Statistical Review
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TOO MUCH OF A GOOD THING? - 2002

Hjort’s statement has been “apparently little heeded”

in the Cox model, the baseline hazard function is
treated as a high-dimensional nuisance parameter
and is highly erratic.

{we propose to estimate it} informatively (that is,
smoothly), by natural cubic splines.

Royston and Parmar, 2002, Statistics in Medicine
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TOO MUCH OF A GOOD THING? - 1994

Reid: How do you feel about the cottage industry that’s grown
up around it [the Cox model]?

Cox: Don’t know, really. In the light of some of the further
results one knows since, I think I would normally want to tackle
problems parametrically, so I would take the underlying hazard
to be a Weibull or something. I’m not keen on nonparametric
formulations usually.
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TOO MUCH OF A GOOD THING? - 1994 ...

Reid: So if you had a set of censored survival data today, you
might rather fit a parametric model, even though there was a
feeling among the medical statisticians that that wasn’t quite
right.

Cox: That’s right, but since then various people have shown
that the answers are very insensitive to the parametric
formulation of the underlying distribution [see, e.g., Cox and
Oakes, Analysis of Survival Data, Chapter 8.5]. And if you want
to do things like predict the outcome for a particular patient, it’s
much more convenient to do that parametrically.

. . . . Reid N. A Conversation with Sir David Cox.

. . . . Statistical Science, Vol. 9, No. 3 (1994), pp. 439-455



Introduction The 2 existing approaches How we fit fully-parametric model Illustration Discussion Summary

FULLY-PARAMETRIC MODEL: FORM

log{h(x , t)} = g(x , t , β) ⇐⇒ h(x , t) = eg(x ,t ,β)

• x is a realization of the covariate vector X , representing
the patient profile P, and possible intervention I.

• β : a vector of parameters with unknown values,
• g() includes constant 1, variates for P, I;
• g() can have product terms involving P, I, and t .
• g() must be ‘linear’ in parameters, in ‘linear model’ sense.
• ‘proportional hazards’ if no product terms involving t & I
• If t is represented by a linear term (so that ‘time to event’
∼ Gompertz), then ĈIp, i(t) has a closed smooth form.

• If t is replaced by log t , then ‘time to event’ ∼ Weibull .
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FULLY-PARAMETRIC MODEL: FITTING

• Parameters of this loglinear hazard function can be
numerically estimated by maximizing the likelihood.

• Unable to find a ready-to-use procedure within the
common statistical packages.

• Likelihood becomes quite involved even if no censored
observations.

• Albertsen and Hanley(1998), Efron(1988, 2002), and
Carstensen(2000-) have circumvented these technical
problems of fitting by dividing the observed ‘survival time’
of each subject into a number of time-slices and treating
the number of events in each as a Binomial (1988) or
Poisson (2002) variate.
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FULLY-PARAMETRIC MODEL: OUR APPROACH

• An extension of the method of Mantel (1973) to binary
outcomes with a time dimension.

• Mantel’s problem:

• (c =)165 ‘cases’ of Y = 1,

• 4000 instances of Y = 0.

• Associated regressor vector X for each of the 4165

• A logistic model for Prob(Y = 1 | X )

• A computer with limited capacity.
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MANTEL’S SOLUTION

• Form a reduced dataset containing...

• All c instances (cases) of Y = 1
• Random sample of the Y = 0 observations

• Fit the same logistic model to this reduced dataset.

“Such sampling will tend to leave the dependence of
the log odds on the variables unaffected except for an
additive constant.”

Anderson (Biometrika, 1972) had noted this too.

• Outcome(Choice)-based sampling common in Epi, Marketing, etc...
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DATA TO EXPLAIN OUR APPROACH

Systolic Hypertension in Elderly Program (SHEP)
.......................... SHEP Cooperative Research Group (1991).

.......................... Journal of American Medical Association 265, 3255-3264.

• ??? Effectiveness of antihypertensive drug treatment in
preventing (↓ risk of) stroke in older persons with isolated
systolic hypertension.

• We obtained data, without subject identifications, under
program “NHLBI Datasets Available for Research Use”.

• 4,701 persons with complete data on P = {age, sex, race,
and systolic blood pressure} and I = {active, placebo}.

• Study base of B = 20, 894 person-years of follow-up;
c = 263 events ("cases") of stroke identified.
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STUDY BASE, and the 263 cases
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STUDY BASE
− 20,894 person−years [B=20,894 PY]
− 10,982,000,000 person−minutes (approx)
− infinite number of person−moments

● ↑↑  c = 263 events (Y=1)
in this infinite number
of person−moments
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THE ETIOLOGIC STUDY IN EPIDEMIOLOGY

• Aggregate of population-time: ‘study base.’
• All instances of event in study base identified → study’s

‘case series’ of person-moments, characterized by Y = 1.
• Study base – infinite number of person-moments – sampled
→ corresponding ‘base series,’ characterized by Y = 0.

• Document potentially etiologic antecedent, modifiers of
incidence-density ratio, & confounders.

• Fit Logistic model
.............................................................................................

• With our approach . . .
• → Incidence density, hx(u) in study base.
• → CIx(t) = 1− exp{−Hx(t)} = 1− exp{−

∫ t
0 hx(u)du}.



Introduction The 2 existing approaches How we fit fully-parametric model Illustration Discussion Summary

WHAT MAKES OUR APPROACH WORK
• Base series: representative (unstratified) sample of base.
• → logistic model, with t having same status as x , and

offset, directly yields ̂IDx ,t = exp{ĝ(x , t)}.
• Using same argument (algebra) as Mantel...

b = size of base series
B = amount of population-time constituting study base.

Prob(Y = 1|{x , t})
Prob(Y = 0|{x , t})

= lim
ε→0

h(x , t)ε
1− h(x , t)ε

× B/ε

b
= h(x , t)× B

b
.

log

[
Prob(Y = 1|{x , t})
Prob(Y = 0|{x , t})

]
= log[h(x , t)] + log(B/b).

• log(B/b) is an Offset [a regression term with known coefficient of 1].
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How large should b be on relation to c?

Mantel (1973)... [our notation, and slight change of wording]

By the reasoning that cb/(c + b) [= (1/c + 1/b)−1] measures the
relative information in a comparison of two averages based on
sample sizes of c and b respectively, we might expect by analogy,
which would of course not be exact in the present case, that this
approach would result in only a moderate loss of information. (The
practicing statistician is generally aware of this kind of thing. There
is little to be gained by letting the size of one series, b, become
arbitrarily large if the size of the other series, c, must remain fixed.)

• With 2008 computing, we can use a b/c ratio as high as 100.

• b/c = 100 → Var [β̂]b/c=100 = 1.01× Var [β̂]b/c=∞, i.e. 1% ↑

• Var [β̂] ∝ 1/c + 1/100c rather than 1/c + 1/∞.
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OUR HAZARD MODEL FOR SHEP DATA

log[h] = ΣβkXk , where

X1 = Age (in yrs) - 60
X2 = Indicator of male gender
X3 = Indicator of Black race
X4 = Systolic BP (in mmHg) - 140
......................................................................
X5 = Indicator of active treatment
......................................................................
X6 = T
......................................................................
X7 = X5 × X6. (non-proportional hazards)
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PARAMETER ESTIMATION

• Formed person-moments dataset pertaining to:
• case series of size c = 263 (Y = 1)

and
• (randomly-selected) base series of size b = 26, 300

(Y = 0).
• Each of 26,563 rows contained realizations of

• X1, . . . , X7
• Y
• offset = log(20, 894/26, 300).

• Logistic model fitted to data in the two series.
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DATASET FOR LOGISTIC REGRESSION (SCHEMATIC)

1    69  1  0  166  1  0.57

1    69  0  1  161  0  1.79

1    85  0  1  184  0  3.39

0    69  0  0  182  0  1.70
0    73  0  1  167  1  2.02

0    73  1  0  199  0  0.62

0    81  1  0  161  0  1.16

0    70  0  1  185  0  1.11

0    72  0  0  172  1  3.56

Y   Age  B  M  SBP  I   t  
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DATASET: c = 263; b = 10× 263
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FITTED VALUES

Proposed Cox
logistic regression regression

βage−60 0.041 0.041 0.041
βImale 0.257 0.258 0.259
βIblack 0.302 0.301 0.303
βSBP−140 0.017 0.017 0.017
....................
βIActive treatment -0.200 -0.435 -0.435
....................
β0 -5.390 -5.295
βt -0.014 -0.057
βt×IActive treatment -0.107

• Fitted logistic function represents log[hx(t)]
• → cumulative hazard HX (t), and, thus, X -specific risk.
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ESTIMATED 5-YEAR RISK OF STROKE

Risk I h(t) H(5) CI(5) ∆

[ ID(t) ] [
∫ 5

0 hx(t)dt ] [ 1− e−H(5) ]

Low 0 e−4.86−0.014t 0.037 0.036
1 e−5.06−0.124t 0.024 0.024 1.2%

High 0 0.16
1 0.10 6%

Overall 0 0.076
1 0.049 2.7%

Low: 65 year old white female with a SBP of 160 mmHg.
High: 80 year old black male with a SBP of 180 mmHg
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Points
 0  1  2  3  4  5  6  7  8  9 10

Age
60 65 70 75 80 85 90 95 100

Male
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1

SBP
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I
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t
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I.t
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Total Points
 0  2  4  6  8 10 12 14 16 18 20 22

Linear Predictor
−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5

5−year Risk (%)  if not treated
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5−year Risk (%) if treated
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STABILITY ?

Point and (95%
confidence) interval
estimates of hazard
function, and of 5-year
risk for a specific
(untreated) high-risk
profile. Fits are based
on 25 different random
samples of b =26,300
from the infinite
number of
person-moments in
the study base, and
same c = 263 cases
each run.
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KEY POINTS

• Focus on ‘individualized’ – profile-specific – risk functions.
• Cox model CI’s seldom used: dislike ‘step-function’ form?
• Smooth-in-t h(t)—and CI’s– not new; fitting procedure is.
• Borrow from the etiologic study in epidemiology:

case series + base series + logistic regression.
• Not just hazard ratio, but hazard per se.
• Keys: 1. representative sampling of the base; 2. offset.
• Information re hx(t) constrained by c.
• Virtually 100% extracted when b suitably large relative to c.
• b/c =100 feasible and adequate.
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MODELLING POSSIBILITIES

Log-linear modelling for hx(t) via logistic regression ...

• Standard methods to assess model fit.

• Wide range of functional forms for the t-dimension of hx(t).

• Effortless handling of censored data.

• Flexibility in modeling non-proportionality over t .

• Splines for h(t) rather than hr(t).
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DATA ANALYZED BY EFRON, 1988

Arm A [ time-to-recurrence of head & neck cancer ]

Cum. Inc. estimates – K-M, Efron & Proposed
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CLINICAL POSSIBILITIES / DESIDERATA

• PDAs (personal digital assistants) → online information.

• Profile-specific risk estimates for various interventions.

• Already, online calculators: risk of MI, Breast/Lung Cancer;
probability of extra-organ spread of cancer.

• RCT reports should contain: suitably designed risk
function, fitted parameters of hx(t), and risk function.

• (Offline:) risk scores → risks via nomogram/table.
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SUMMARY

• Profile-specific risk (CI) functions are important.

• Two paths to CI, via...

• Steps-in-time S0(t)

• Smooth-in-time IDx(t).

• New simple estimation method for broad class of
smooth-in-time ID functions.

• Biostatistics & Epidemiology methods: a little more unified?
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