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Visualizing the Median as the Minimum-Deviation Location

James A. HANLEY, Lawrence JOSEPH, Robert W. PLATT, Moo K. CHUNG, and Patrick BELISLE

The calculus proofs of this property of the median pre-
sented in mathematical statistics texts are not very instruc-
tive. A noncalculus proof has been published, but is still
somewhat lengthy and likely to deter some nonmathemat-
ical readers. To make the proof more memorable, teachers
can make the minimization task more real by using a con-
crete criterion such as total distance traveled, rather than
simply an abstract sum of absolute deviations. We suggest
a short, simple, heuristic graphical approach, which we il-
lustrate using a Java applet. We pose, and give proofs for,
a related optimization problem.
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1. INTRODUCTION

If asked where they would stand and wait for the next of
three elevators, unequally spaced along a wall, many stu-
dents would choose to stand at the mean position. They
think that by doing so they are minimizing the average dis-
tance to the elevator. They do not recognize that standing
at the mean minimizes the average squared distance and
that the minimal average distance to the elevator is in fact
achieved by standing at the median (Hanley and Lippman
1999).

How to bring students to really understand and remem-
ber this property of the median? Having them formally
prove it by calculus, as in Cramér (1946), and as many
older generations of teachers had to do in graduate school,
is only practical for those who can manipulate integral cal-
culus. And even then, the exercise is not very instructive.
The noncalculus proof of Schwertman, Gilks, and Cameron
(1990) is more instructive, but is still somewhat lengthy and
likely to deter many nonmathematical readers. The Java ap-
plet of Lane (2000) focuses more on the mean and on the
smaller mean squared deviation from the mean than from
the median. Moreover, it presents the calculations in a ta-
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ble, thereby separating them visually from the data points
in the diagram.

We recently asked statistics students in a linear mod-
els class to prove the minimum absolute deviation prop-
erty of the median for n = 3 unequally spaced eleva-
tors. One student (MKC) provided a simple proof that
immediately extends to any n and thus to the median
of the distribution of any continuous random variable.
His solution uses the same ideas as Schwertman et al.
(1990), but allows for a shorter, simpler, and more heuris-
tic graphical approach. We used it to construct an ap-
plet, which we now describe. The applet is available at
http://www.epi.mcgill.ca/hanley/elevator.html.

2. VISUALIZING THE MEDIAN

Like Schwertman et al. (1990), one need only focus on
the total, rather than the average, distance to the elevators.
However, one can entirely eliminate their algebra, and the
numerical calculations of Lane (2000), by representing the
total distance physically—as the total lengths of n lines (see
Figure 1, a screenshot from the applet). Using the mouse to
click on various waiting positions, one will quickly see that
the total distance to the elevators from any position in the
innermost interval (or at the innermost point if n is odd) is
the sum of the [n/2] pairwise “interval-widths,” shown in
different colors; the total distance is greater if one stands
elsewhere.

The proof can be stated in words as follows. First, con-
sider waiting at a median location (a unique point if n is odd,
a point in the middlemost interval if n is even). Then, con-
sider “moving” to a waiting position away from (outside)
this median point (interval). If one does so, one moves away
from more elevators than one moves towards, thereby in-
creasing the sum of the distances to the elevators. These ad-
ditional distances “from the median to the new location and
back” constitute the second term in the key relation used in
the integral calculus proof sketched by Cramér (1946, pp.
178-179; see Appendix).

Teachers can make the proof more memorable in a num-
ber of ways. First, we suggest they work “up” from 2, rather
than “down” from n as Schwertman et al. (1990) did. Sec-
ond, they might make the minimization task more real by
using a concrete criterion—such as total distance traveled—
rather than simply an abstract sum of absolute deviations.
Third, they might avoid all algebra and formal numerical
calculations by employing entirely graphical techniques.

Waiting at the median may not optimize other functions
of the n distances. Concern about “missing” the elevator
implies other criteria, such as the maximum distance, or
the probability of being within a certain distance of an
elevator—the same issues faced by planners deciding where
to locate an ambulance or fire station in order to optimize
rapidity of individual responses. To emphasize a function
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Figure 1. Total distances walked to n (=2, 3, 4, or 5) elevators, from median (leftmost panels) and nonmedian (rightmost panels) locations. For
even n, the total distance is the same from all locations between the innermost two elevators; the total distance is greater from any position outside
of them; for odd n, there is only one median position which minimizes the total distance.

that sums the n distances, an example involving average
transportation/fuel costs over many repetitions, rather than
rapidity of response in individual instances, might be better.

3. A RELATED OPTIMIZATION PROBLEM

A more realistic and more challenging example of opti-
mizing an aggregate or average criterion can be posed as
follows. If one’s job is to carry heavy objects to elevators,
one cannot ignore the distance from the initial point of ar-
rival into the elevator area to the optimal place to wait. In
our one-dimensional model, the point of arrival can either
be to the left or right of, or somewhere in between, the
outermost elevators. Where should one stand in order to
minimize the total (or average) distance, which we now re-
define to include the additional distance from the point of
entry to the point where one will wait?

2 Teacher’s Corner

Surprisingly perhaps, the answer is to remain at the point
of entry, and to not move at all! This can be seen by rea-
soning as follows, using first the case of an entry point that
is between the leftmost and median elevators. Waiting just
an epsilon (g) to the right of this entry point would not
change the distance traveled to reach each elevator to the
right (some immediately, the remainder when the elevator
arrives), but it would add 2¢ to the distance traveled to each
elevator to the left of the entry point. Waiting even further
from the entry point only increases the wasted initial and
subsequent travel in a linear way. Thus, to minimize the
total “realistic” distance, one should stay put! In the case
of an entry point that is to the left of the leftmost elevator,
waiting anywhere between it and this elevator does not add
unnecessary travel, but waiting even an ¢ to the right of this
elevator does. A symmetric argument applies to entering the
right side of the room.



Another “proof” follows a typical mathematical strategy:
convert the problem into an equivalent one for which there
is already a solution. The n trips from the entry point to
the n different elevators involve 2n distances, n from the
entry point to the waiting point, and n from the waiting
point to the elevators. But the distance from the entry point
to the waiting point is the same as the distance from the
waiting point to the entry point. Given this symmetry, the
optimal waiting point is the median of the 2n locations: the
n (identical) entry points and the n elevator locations. If the
entry point is between the left and rightmost elevators, the
median is this entry point. If the entry point is say to the
left of the first elevator, the median is anywhere between
the entry point and the first elevator.

4. CONCLUSION

Most mathematical statistics students prove this property
of the median as an exercise at some stage in their training,
but soon forget it. Thus, the long-term impact of the exer-
cise is less than it could be (someone once defined educa-
tion as “what remains after one has forgotten what one has
learned”). Later, many of them, and many nonstatistical stu-
dents too, would, if asked, argue that the average distance
is minimized by the mean. We suggest that it is time to
“move up” from the proofs in mathematical statistics texts
to more instructive ones which, using concrete examples,
allow one to show visually what makes the median such a
central location.

APPENDIX

Cramér (1946, pp. 178-179) denoted the random variable
by &, the median (or in the indeterminate case, any median

value) by p, and any proposed “central” location by c. For
the case of ¢ > u, he used the relation

C

B(l¢ — cf) = B - ul) + 2/ (c — 2)dF (z),

m

and the fact that the second term on the right-hand side is
“evidently positive,” to show that the first absolute moment
E(|¢ — ¢|) becomes a minimum when ¢ = p.

As did Cramér, we leave the proof of the above relation
as an exercise for the reader.

In our examples, £ is a random variable with probability
mass at a finite number (n) of values. When n is even, the
factor of 2 in the second term above can be seen clearly
from Figure 1. When n is odd, however, it appears from
Figure 1 that the “extra” distance from the location ¢ to
& = p is (¢ — p)—rather than the 2(c — ) in the relation. In
this case, one way to “see” the 2 is to convert the probability
mass of 1/n at £ = p into two masses of 1/2n each, and
treat the case as one with an even number n’ = n + 1 of &
values.
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