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Standard Error of the Kappa Statistic
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I show that the large-sample standard error of kappa is largely determined by just two parameters,
kappa itself and the proportion of agreement expected by chance. I provide nomograms relating the
standard error to these two parameters. These nomograms can be used to anticipate the degree of
precision provided by a given sample size or to determine the sample size required for a prespecified
level of precision. Also, they are sufficiently accurate over the range of interest that they can be used,
instead of the usual lengthier formula, to obtain the standard error of the observed kappa.

The kappa coeflicient (x) is a measure of association used to
describe the degree of interrater agreement when using a nomi-
nal scale. It plays a role for nominal measures analogous to that
played by the intraclass coefficient for interval measures and
can be used as one criterion of the validity of a nominal scale
(Kraemer, 1983). .

In its original and simplest form (Cohen, 1960),  can be cal-
culated when two fixed observers (or two methods) indepen-
dently classify the same N (randomly chosen) subjects into k&
mutually exclusive categories. As is shown in Table 1, these as-
sessments produce marginal proportions {p;.} and {p;} (the
proportions of subjects classified into each category by each of

the two observers separately), along with a k X k table, giving

the proportions p; of the number of subjects who are classified
into category i by the first observer and into category j by the
second. The proportion of subjects on whom the observers
agree, often called the observed agreement, or p,,, is then 2 p;.
It can be argued that if the observers classified subjects in the
proportions {p;.} and {p;}, respectively, but had no good rea-
son to agree on any particular subject, they would agree, by
chance alone, on a proportion p. = 2 p;.p.; of subjects, leaving
only the remaining fraction (1 — p.) on which agreement would
be more than just by chance. Exactly how much of this potential
excess is actually attained is measured by the fraction « =
(P, — Pe)/(1 — p.), thus making « a “chance-corrected” measure
of agreement, ranging in value from 1 (complete agreement) to
0 (no agreement beyond chance) to a lower limit between 0 and
—1 (less than chance agreement).

To some, the kappa coefficient is unnecessarily stringent in
crediting so much of observed agreement to chance; if certain
categories predominate, seemingly good agreement can still re-
sult in low values of kappa (Walter, 1984). In spite of this, the «
statistic has become very popular: Cohen’s 1960 paper was cited
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in over 810 publications in the social sciences between 1960 and
1985 (Institute for Scientific Information, 1986). It has been
extended to the case of several fixed or random observers and
to the case of ordered categories, with partial credit for partial
agreement (Kraemer, 1983). Inferential procedures (standard
errors, confidence intervals, and tests of significance) have been
developed for most large-sample situations (Fleiss, 1981).

The standard error (SE) of « is a closed form expression that
can be evaluated with a calculator once the data have been tabu-
lated (see Equation 1). In contrast to other statistics based on
tabulated data (binomial parameters, odds ratios, and so on),
however, the expression is cumbersome, and it is not easy to see
how its various components affect the result. Thus, it is difficult
to assess, before the data have been collected, what the size of
SE(x) is likely to be and what sample size (N) is needed for any
desired level of statistical precision or power. Investigators can
only make up various scenarios, calculate x and SE(«) for each,
and by trial and error arrive at an N that ensures the required
precision. This approach is time-consuming, particularly if one
is interested in the nonnull case (x > 0) and if k is greater
than 2.

Therefore, I investigated the behavior of the nonnull SE(x),
restricting my attention to unweighted «, in studies with k = 2,
3, or 4 and in which there were two fixed observers. The
purposes were to (a) study the sources of variation in the magni-
tude of SE(x) (I hypothesized that the SE is largely determined
by « and by p, in much the same way that the SE of a binomial
proportion, p, is determined by its expected value and by N);
(b) present a nomogram, displaying the influence of x and p, on
SE(x), which could be used both in planning the size of a sample
and in calculating the SE of the « obtained in the actual sample;
and (c) if possible, provide an intuitive approach to the calcula-
tion of SE(x) by considering « as an estimate of a binomial pa-
rameter derived from a sample with a reduced V.

Method

As explained above, let { p;} denote the proportions of the number of
subjects who are classified into category i by the first observer and into
category j by the second; the marginal proportions {p;.} and {p;} are
the proportions of subjects classified into each category by each of the
two observers separately. Thus,
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Table 1
Joint Proportions of Classifications, by Two Observers,
of a Sample of Subjects Into k Categories
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Table 3
Average Percentage Error in Approximating VN. SE(x) by a
Function of Only x and p, Whenk = 3 and 4

Second observer X

First observer y j k Total 2. 0.3 0.5 0.7 0.9
1 Pu Dy D Dr. .8

i k=3 10% % 5% 2%

1 Pu Py Pik bi- k=4 18% 11% 6% 6%
] 6

k Pt P Pue Pr- k=3 10% 6% 4% 6%

Total D D Dok 1 k=4 15% 8% 4% 6%
4

k=3 6% 3% 3% 2%

k=4 17% 6% 3% 8%

k k
Di. = 2 Di» and Di=2 Dy.
j=1 i=1

Then

k

Do = E Dii,
i=1
k

De = 2 Di.D.j, and

i=1
k = (Do~ Pe)/(1 = Pe).
As shown by Fleiss, Cohen; and Everitt (1969), the standard error of

x-is estimated by
SE(k) = (4 + B — C)"*/[(1 ~ p)N'"], (1)
where
- k

4=73 pill = (pi. + p N1 — 0P,

i=1

k
B=(1-«?323 pi(p. +p.)*, and

i#j

i

C=[k—pl — 0.

: . Table 2 :
?' VN.SE(x) as a Function of x and p, Whenk = 2

K

2 3 . 4 5 "6 7 3 9
9 1.88 194 191 181 163 137 099
21 (13) 08 (05 (03 (01 (0.1
8 133 136 133 126 1.4 09 0.0
@2 @7 A7 (10 06 (03 (0.1
K 108 1.0 108 102 092 078 0.7
63 (@1 @7 (1.6 (09 (04 (0.1
6 093 094 092 087 079 067 049
85 (56 (36 (22 (12 (05 (0.1
5 08 085 083 078 070 060 044
(106) (72) (@48 (9 (16 (0.7 (02

Note. The upper entry in each cell is the average of the VN.SEs obtained
in 20 different 2 X 2 tables, all yielding the same value of « and p.; the
lower entry, in parentheses, is the (average) percentage discrepancy
between this average VN.SE and the 20 individual values of VN.SE.
The maximum discrepancy from the tabulated VN.SE was generally
twice the average discrepancy. :

Note. The error is computed by comparing the average discrepancy of
VN SE(x) from the average of the YN.SE(x)s within a 0.05 X 0.05 cell
surrounding the indicated values of x and p..

The objective was to simplify Equation 1 by approximating it in
terms of «, p., and as few additional parameters as possible. Two differ-
ent approaches, one for k = 2 and another for X = 3 and 4, were neces-
sary.

k=2

When k =.2, Equation 1 contains six variables: the four p;s, «, and
Pe. (This does not count V]V, which appears, as expected, in the denomi-
nator.) Both « and p., however, are derived from the ps, and only three
of the latter can.vary independently, because all four must sum to unity.
Thus, once one specifies values for the variables « and p., there is only
one free dimension. If SE(x) does not vary greatly over the range of this
last “degree of freedom,” then it can be approximated by a function of
the first two variables. For each combination of « and p., I used the
following steps to generate this third dimension and to evaluate how
SE(x) varies over it: (a) Calculate p,(= p;, + p22) = x(1 — pe) + Pe. (b)
Find those p,, that respect the previous calculation and that keep p;,,
D21, and p,; as proportions. (See Appendix for details.) (¢) Evaluate
Equation 1 for 20 values of p,,, equally spaced across its allowed range,
and find the mean, minimum, maximum, and standard deviation of the
20 values of the SE.

k=3and4

The approach used for the k = 2 case was not feasible. Instead, I
generated values of « and p, by using a more direct but computer inten-
sive method. For k = 3, I created a series of 3 X 3 tables, each described
by nine p;s, by looping over eight of the pys. (The ninth was constrained
so that all nine summed to unity.) I computed the values of «, p., and
SE(«) from each table. (To avoid low and therefore uninteresting values
of x, I constrained the quantity p, = 2 p; to equal 0.5 or more.) Those
tables that gave rise to approximately the same values of x and p. (i.e.,
to {x, p] values falling within a 0.05 X 0.05 cell in the two-dimensional
[x, p] grid) were grouped together, and the mean, minimum, maximum,
and standard deviation of their SE(x)s were computed. (The looping was
weighted to yield a sufficiently large number of tables in each cell.) I
followed a similar-procedure for the case of k = 4.

Results
k=2

Table 2 represents the way in which the values of VN. SE(x)
vary with k and p., as well as how they vary within the (hidden)
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third dimension at each (, p.) point. There is more than a four-
fold variation in VN SE over the range of interest. This is made

up of (a) a slightly less than twofold variation in VN-SE over -

the range of p, (holding « fixed), with VN.SE increasing consis-
tently with increasing p., and (b) a slightly more than twofold
variation in VN-SE over the range of « (holding p, fixed) but in
a more quadratic. fashion, with lower values of VN.SE at the
two « extremes. (Only the upper extreme is shown in Table 2.)
If one holds « and p. fixed and if « is large, the variation in
VN.SE over the third dimension is much smaller, rarely more
than 10% (on average), seldom over 5%, and commonly under

1%; that is, the error in using an average SE is between 1 J/VN
and 10/VN percent. In other words, the magnitude of SE(x) is
adequately predicted simply from knowledge of «, p., and, of
course, N. Figure 1 represents this numerical relation between
VN SE(x) and « and p. in a more expanded and useful
smoothed nomogram form.

k=3and4

The variation of SE(«) has a similar pattern to that for k = 2,
with the SE again increasing with p. and decreasing as « ap-
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Figure 1. An approximation to VN. SE(x) when « is calculated from a 2 X 2 table. Each curve is derived
from 14 data points, corresponding to « = 0.3(0.05)0.95; each data point was obtained by averaging the
SEs from 20 different tables yielding the same value of « and p.; the error of approximation in using this
nomogram instead of Equation 1 to calculate SE(x) is generally on the order of 1 /VN to 3/VN percent.
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proaches its upper limit. As is shown in Table 3, however, the
percentage error incurred in approximating each Vn. SE(x) by
an average SE (within what is now a larger high-dimensional
cell) is higher than when k = 2, but the approximation is still
certainly adequate for planning purposes and in many cases for
actual data,

Compared with k = 2, the cases of k = 3 and k = 4 show that
(a) achievable p, values are lower, reflecting the greater observer
skill required to produce the same value of p,, and (b) the values
of SE for the same « and p, are lower. In the interest of readabil-

ity, the smoothed relations between VN. SE(x) and « and p. are
pletted separately but on the same scale for k = 2, 3, and 4 in
Figures 1, 2, and 3, respectively.

In Table 4, I compare the performance of the nomogram in
approximating Equation 1 in several examples from textbooks
and from the literature. In all but one of the cases examined,
the approximation was good to two decimal places.

To illustrate the ease of use and the accuracy of the nomo-
grams, consider Example 6 in Table 4, which is the worked ex-
ample given on pages 221-222 of Fleiss (1981), where k = 3,
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Figure 2. An approximation to VI_V-SE(K) when « is calculated from a 3 X 3 table with no credit for partial
agreement. Each curve is derived from 14 data points, corresponding to « = 0.3(0.05)0.95; each data point
was obtained by averaging the SEs from several (>200) different tables yielding similar values of « and p.;
the error of approximation in using this nomogram for SE(x) is on the order of 2/VN to 10/VN percent.
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N =100, « = 0.68, and p, = 0.66. By visual interpolation be-
tween the curves marked “p. = .60 and “p, = .70” in Figure
2, one can determine that m-SE(x) is approximately 0.84;
thus, the SE itself is approximately 0.084. This compares favor-
ably with the 0.087 calculated in the worked example.

Discussion

The purpose of this investigation was to examine the way in
which SE(x) varies and, if possible, to simplify the expression
for it. I found that it can be largely determined from « and p,

and that the form of this relation can be represented by a useful
nomogram. Before a study, the nomogram can be used to deter-
mine whether a given sample size will ensure a sufficiently small
SE. Also, although this nomogram is not always perfectly accu-
rate, it is seldom in error by more than 10/VN percent; if NV is
greater than 100, the error is less than 1% and, therefore, affects
only the third decimal place. Thus, the nomogram can also be
used with actual data if one wishes to avoid evaluating Equa-
tion 1. _

The small inaccuracies in using the nomogram are inconse-
quential; investigators should seldom be interested in testing
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Figure 3. An approximation to VN. SE(x) when « is calculated from a 4 X 4 table with no credit for partial
agreement, Each curve is derived from 14 data points, corresponding to x = 0.3(0.05)0.95; each data point
was obtained by averaging the SEs from several (>200) different tables yielding similar values of x and p.;
the error of approximation in vusing this nomogram for SE(«) is on the order of 3/‘/171 to 18/VN percent.
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Table 4 '
Performance of the Nomogram in Approximating WW. SE(x):
Examples From Textbooks and From the Literature

SE calculated  SE obtained
by using from Figure
Example k K De N Equation 1 1,2,or3

1 2 70 66 179 0.066 0.063
2 2 83 67 179 0.052 0.050
3 2 89 54 77 0.055 -0.054
4 3 36 .35 72 0.091 0.082
5 3 43 48 200 0.054 0.053
6 3 68 .66 100 0.087 0.084
7 4 76 49 81 0.068 0.067
8 4 93 .70 180 0.036 0.035

whether the true « is zero or in producing extremely precise
estimates of «; rather, they should use confidence intervals to
locate and broadly categorize the true x. What one wishes to
know is whether the true &, when expressed as a percentage, is,
for example, in the 30s, 50s, 70s, or 90s. (See, e.g., the guidelines
proposed by Landis & Koch, 1977.) Moreover, it is false preci-
sion to use any finer grain in a confidence interval than is
achievable with these nomograms, especially because, even if
one uses Equation 1, the sample sizes are seldom large enough
or the underlying statistical theory accurate enough to ensure
that the quoted confidence level is absolutely correct.

The pattern in the nomograms is not surprising if one exam-
ines the structure of «. Its denominator (1 — p.) represents the
fraction of the subjects in whom the. two observers should be
able to show their skill and training (beyond just chance agree-
ment p.). In other words, the effective sample size is not N but
N' = N(1 — p.). Thus, a larger p. leads to a smaller N' and a
larger SE(x). The decreasing SE with increasing x has a similar
intuitive basis in that with N’ as a denominator, £ might be
thought of—very roughly—as a percentage of skill, with sample
size N' and expected proportion of skill «. If ¥ were to act as a
binomial statistic, its SE should take the quadratic shape
[x(1 — k)/NTV%. As one can discover by superimposing this
function on Figures 1-3, such a binomial-based formula would
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underestimate SE(x) and be accurate only for very high «, 0f0.8
or more. Unfortunately, I have not been able to find an appro-
priate transformation to bring the nomograms to a full para-
metric form.

The above results can serve as a guide in planning agreement
studies. They illustrate that one should (a) keep the number of
categories (k) as large as possible to reduce p, and SE(x) and (b)
use categories that will not produce very skewed proportions
{p:.} and {p;}, which also increase p.. They also show that
ignoring Figures 1-3 altogether and using 1 /V-I-\_f for SE(x) will
often give a rough first approximation.

The entire emphasis in this article, namely, simplifying
SE(x), presupposes that it is going to be used with the z (Gaus-
sian) tables to form symmetric confidence intervals, tests of sig-
nificance, or both. As Fleiss and Cicchetti (1978) pointed out,
relatively large sample sizes are needed before, for example,
95% confidence intervals have exactly 95% coverage. (They sug-
gested N = 16k2.) I will report more exact confidence intervals
for small samples or extreme «s in a separate article.
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Appendix

Range of p;; in 2 X 2 Tables

It can be shown that the lower and upper bounds (a, ) for
Dy are

a=[po—(ps* = 2p, + po)"1/2
and
d= [po + (p02 - 2po +pe)1/2]/2-

When p. < 0.5, p; can vary over the entire (@, d) range. When
D. > 0.5, the admissible range is the union of the two intervals
(a, b)and (c, d), where

b=[po— Q2p.— 1)")/2

and
¢ = [po+ (2p.— 1)"*/2.
The three remaining variables are then calculated as
P22 = Do+ Pe) — i1,
P21 =[(1 = po) + (1 + ps* — 2p. — 4pu.p22)*1/2, and
Pi2= 1= (po+ pa).
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